tert-butyl ether by any of a variety of conventional tech-
niques is well established (22).
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Petroleum Research Center, Bureau of Mines, U. S. Department of the Interior, Bartlesville, Okla.

The thermodynamic properties, H — H°, § - §°, and G - G°, of tetrafluoromethane
were determined as functions of temperatures (0° to 350° C.) and molal density (0.75
to 11.0 gram-moles per liter) over a pressure range of 0 to 400 atm. The analytical
and graphical correlating techniques described have produced results that reflect all of
the inherent accuracy of the basic data used, and in this sense the values given are

useful as comparison standards.

THE thermodynamic properties of compressed gaseous
tetrafluoromethane were determined at the Bureau of Mines
as part of a larger program (8, 9) to evaluate P-V-T and
intermolecular potential energy relationships as well as
chemical thermodynamic properties for hydrocarbons,
fluorocarbons, and mixtures of hydrocarbons and fluoro-
carbons.

The quantities presented in this paper are the contribu-
tions that originated in the intermolecular phenomenon or
nonideality of the gas. Thus, to obtain thermodynamic
properties for the total or real gas, one must add to the
present values the contributions for the ideal gas at the
same temperature and at 1-atm. pressure. Spectroscopically
based values of the ideal gas have been reported by
Nagarajan (13) and by McBride and coauthors (12).

In addition to providing useful information for various
direct engineering applications, the present values will
qualify, when required, as standards in the sense that they
reflect faithfully all of the trends that appear in the experi-
mental data from which they were derived. Because the
computations are based directly on unsmoothed experi-
mental compressibility values (8) measured at even tem-
peratures and densities, the introduction of spurious trends
from arbitrary smoothing of the basic data was prevented.
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Many of the numerical calculations were performed on a
digital computer; however, a combination of analytical and
graphical correlational methods was adopted to ensure full
utilization of the inherent accuracy and precision of the
experimental results.

Briefly, the approach to the correlations was as follows:
First, the temperature-dependent slopes of the experimental
isometric lines (6 P/9T) ,, which appear in the integrands for
enthalpy and entropy (Equations 1 and 2}, were evaluated
by fitting analytical functions to them, differentiating the
analytic functions with respect to temperature, and adding
graphically determined residuals. The integrals that con-
tained (9 P/3T), were then evaluated graphically. Location
of the zero density intercepts of the integrals, which usually
presents a problem, was accurately placed by a method
based on independently derived values of the second virial
coefficients and their first derivatives with respect to tem-
perature.

Recently, Chari (7) calculated thermodynamic properties
for the saturated liquid and gas, and the superheated gas.
However, his calculations for the super-heated gas were
based on unpublished values of the P-V-T properties, and
it seemed best, therefore, not to make a serious attempt
at comparing those results with the currently derived ones.
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For ease in evaluating thermodynamic properties from

isometric data, the functions given for the real gas (I, 4)

THERMODYNAMIC RELATIONS

JOURNAL OF CHEMICAL AND ENGINEERING DATA

TEMPERATURE
Figure 1. Schematic representation of original
and “'straightened” isometric
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pressure and temperature over the extremes of an iterated
isometric line are represented by Ap’ and AT, respectively.
Any difference between the pressure denoted by a “straight-
ened”’ isometric and a straight line represented by ¢ is
carried as a residual pressure, r. For tetrafluoromethane,
minimum values of the residual pressures were obtained for
all isometrics when k = 1.5. Thus, differentiation of the
relationship

P=gq+r-clap’/aT),/ VT (4)

yielded an exact expression for the slope of the isometric
line at any data point,

(9P/9T) = (89/8T) , + (9r/6T), + 1.5c(ap’/aT),/ VT* (5)

Since the first and third terms on the right of Equation 5
were evaluated analytically, all errors arising strictly from
imperfection in the analytical representation of the iso-
metric data accumulated in the residual terms and were
finally accounted for in a graphical evaluation of (3r/0T),.
Consequently, the estimated percentage error in (3P/4T),
will be equal to the estimated percentage error in (4r/dT)
multiplied by the ratio (3r/dT) ,/(8P/3T),.

By far the most difficult areas for determining (dr/aT),
are at the temperature extremities of the isometrics and
are, therefore, the areas where the largest purely correla-
tional errors are introduced. Thus, at both 0° and 350°C.
the probable correlational error in (3P/3T), varies from
<0.1% at the lowest and highest densities to 0.3 to 0.4%
at medium densities. For all densities at intermediate tem-
peratures the correlational errors in (6P/3T), are con-
siderably less than 0.1%.

I

g-mole2

P-T (8P/9T )p atm liter2
p2

RT2[dB/dT) +(dC/dT)p +
(dD/dT)p2)

\' 2[(dB/dT)+(dC/dT)
w/////?//}///)/(///’J A
T

DENSITY, g-mole/liter
Figure 2. Integrand from enthalpy function at 75° C.
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A comprehensive analysis of the way small experimental
and cdrrelational errors are translated to the final thermo-
dynamic function is involved and generally impossible to
give in numerical terms; but in some areas at least, one
can reasonably expect them to be magnified when reckoned
on a percentage basis. In the integrand of H - H°, Equa-
tion 1, for example, the situation becomes most critical when
the magnitude of the product T(6P/dT), approaches that
of the pressure. Near this point, the error in the integrand
may be an order of magnitude greater than the error in
(8P/aT), itself. Fortunately, the integration over density
takes advantage of the cancellation of errors having oppo-
site sign, a likely occurrence when the residual quantities
are taken into account. On the other hand, large systematic
errors are possible when thermodynamic functions are
calculated by analytical methods only, based on closed
equations of state that deviate consistently in one direction
from the true slope (3P/8T), over fairly wide ranges
of density.

INTEGRATION OF FUNCTIONS

The integrals in Equations 1, 2, and 3 were determined
by graphical integration with little or no introduction of
spurious errors from this operation. However, the entropy
values tabulated were obtained from (G- G°) = (H - H°) -
T(S — S°) rather than from Equation 2 in order to preserve
numerical consistency between the values for (S - S°),
(H - H°), and (G - G°). To make certain that no significant
errors were introduced by the correlating techniques them-
selves, comparisons were made of the entropies, (S — S°)’s,
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Figure 3. Integrand from entropy function at 75° C.
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Figure 4. Integrand from Gibbs energy function at 75° C.

calculated by the two methods. The greatest percentage
deviation, 0.01%, was found for some points on the 0?, 25°,
and 30° isotherms. Results of a comparison for integer
values of the density on the 75° isotherm, given in Table I1I,
are typical of most isotherms.

Characteristic behaviors of the integrands are illustrated
for a single temperature, 75° C. (Figures 2, 3, and 4) by solid
lines drawn through points calculated from experimental
values of P, T, p, and derived values of (6P/3T),. These
lines terminate on the zero density intercepts at points
calculated from the second virial coefficients and/or their
first derivatives with respect to temperature.

Approximate values of the integrands, shown as dashed
lines, relate them to the virial equation of state,

P=RTp(l+Bp+Cp2+Dp3+....) 6)

in which B, C, and D are the temperature-dependent second,
third, and fourth virial coefficients, respectively. At zero
density, the integrands reduce to exact functions of the
second virial coefficients and their derivatives with respect
to temperature; at densities above zero the integrands are
functions of an infinite series of virial coefficients and their
temperature derivatives. Successive approximations through
the fourth virial coefficient were calculated and plotted
to illustrate the various degrees of approximations that can
be expected from terminated virial expansions.
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Table Il. —(§

Density,
G. Moles/ (G- G°) -

— §°) for the 75° Isotherm

Liter (H-H°)/T Eq. 2 Dev., %

1 6.9188 6.9188 0

2 8.5526 8.5526 0

3 9.6148 9.6147 0.001
4 10.4445 10.4444 0.001
5 11.1505 11.1505 0

6 11.7833 11.7833 0

7 12.3712 12.3710 0.002
8 12.9326 12.9324 0.002
9 13.4820 13.4817 0.002
10 14.0298 14.0295 0.002
11 14.5843 14.5841 0.001

For these calculations, numerical values of B, C, and D
were taken from a previous publications (8).

The first derivatives of the second virial coefficients with
respect to temperature, dB/dT, were calculated from the
differentiated equation of the Lennard-Jones [n,m] (11)
statistical mechanical expression fitted to experimental B
values. Correlation of the second virial coefficient of tetra-
fluoromethane by the Lennard-Jones [n,m] potential with
n =500 and m = 6 will appear in a separate publication. To
these calculated derivatives were added small graphically
determined temperature derivatives of the differences
between observed and calculated values of the second virial
coefficients according to the [500,6] potential. Values for the
derivatives of the third and fourth virial coefficients with
respect to temperature, dC/dT and dD/dT, were deter-
mined by graphical differentiation of experimental values of
the third and fourth virial coefficients, respectively.

Closed equations of state applied without the aid of a
residual term are notoriously unreliable for estimating
thermodynamic properties, particularly when a derivative
quantity is involved. For comparison with results obtained
by the present method, the enthalpies of tetrafluoromethane
were also calculated at 20 selected points based on the
Redlich-Kwong (14) and the Benedict-Webb-Rubin (5, 8)

1,500 —

i,oooT——
r,

—{H-H"°), cal/g-mole
o

500 — YA

] ] ! I | I | |
[¢] 5 1o
DENSITY, g-mole/liter

Figure 5. Enthalpy, —(H — H°)
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Figure 6. Entropy, —(S — §°)

equations of state. In general, the results indicated that
a closed equation of state that had the ability to represent
the P-V-T data over a given range of variables with an
average deviation of less than 1%, would often, because of
large percentage errors in (8 P/3T),, produce numbers for
the enthalpy that deviated an order of magnitude greater
over the same range of variables. Some individual points
were off by as much as 27%.

Values for the thermodynamic properties, P, H — H°,
S - 8°, and G - G°, are presented in Table I, tabulated at
the even densities and temperatures corresponding to the
original experimental data (8). In some cases the values
are given to an extra significant figure to minimize uncer-
tainties in any subsequent calculations rather than to
indicate this degree of accuracy. )

As previously discussed, the methods have introduced
small uncertainties from (3P/4T),, dB/dT, and the graph-
ical integrations. These uncertainties apply largely to the
enthalpy and entropy functions because the free energy
functions are independent of (8P/4T), and dB/dT. How-
ever, all calculations are dependent on the original data
whose estimated maximum uncertainty is 0.03% at the
lowest temperature and pressure and 0.3% at the highest
temperature and pressure. As noted in the original publica-
tion (8), the values of “observed pressure’” were corrected
for the partial pressure of mercury vapor adjusted at each
pressure for the Poynting effect. The correction did not
include the van der Waals interaction of mercury vapor
with tetrafluoromethane, but the inaccuracy introduced is
probably within the range of the stated over-all uncertainty
of the P-V-T data. Thus, the thermodynamic properties
are, possibly, subject to small but significant corrections
due to the van der Waals interaction.
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The enthalpy and entropy data in Table I have been
plotted in Figures 5 and 6 to illustrate the internal con-

sistency of the derived values.

Values of the thermodynamic properties (H — H°)/T,
(Sp - Sp,ideal)9 (S~ Sv‘ideal)y (Gp - Gp, ideal)» @G, - Gv, ideal)
(G- G°/T, and activity coefficient v, were tabulated also,
and can be made available to interested parties upon
request. ’

NOMENCLATURE

B = second virial coefficient, cm.?/mole
¢ = aparameter
C = third virial coefficient, cm.’/mole®
D = fourth virial coefficient, cm.’/ mole®
G = molal Gibbs energy, cal./mole
H = molal enthalpy, cal./mole
k = aparameter
m = value of attractive exponent in Lennard-Jones potential
function
n = value of repulsive exponent in Lennard-Jones potential
function
P = pressure, atm.
p’ = “corrected”’ pressure, atm.
g = P+c(ap/aT),/VT'=-r
r = residual pressure, atm.
R = gasconstant = 0.0820544 liter atm./mole deg.
S = molal entropy, cal./deg. mole
T = thermodynamic temperature = 273.16 + (0.04106 — 7.363
x 107°) (¢/100) (¢/100 - 1)
t,°C. = International Celsius temperature
V = molal volume, liter/g.-mole
v = activity coefficient = exp.[(G - G°}/RT]/P
p = molal density, g.-mole/liter
cal. = 4.12917 x 1072 liter atm. = 4.1840 joules
® = superscript indicating standard state
ideal = subscript indicating ideal gas state
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