THERMODYNAMIC TESTING AND CORRELATIONS

The experimental activity coefficient data were found to satisfy Herington's area condition (3). The data are correlated by Wilson's equations (5, 9):

$$\ln \gamma_1 = -\ln (x_1 + \Lambda_{12} x_2) + x_2 \left[\frac{\Lambda_{12}}{x_1 + \Lambda_{12} x_2} - \frac{\Lambda_{12}}{\Lambda_{21} x_1 + x_2} \right]$$
(2)

$$\ln \gamma_2 = -\ln (x_2 + \Lambda_{21} x_1) - x_1 \left[\frac{\Lambda_{12}}{x_1 + \Lambda_{12} x_2} - \frac{\Lambda_{21}}{\Lambda_{21} x_1 + x_2} \right] \quad (3)$$

The values of the parameters Λ_{12} and Λ_{21} obtained from a least-squares fit are 0.19644 and 0.42955, respectively. The average deviations of the calculated activity coefficients from the experimental values are expressed by the following equation (6):

$$\omega_1 = \frac{\Sigma k_1^2 - (\Sigma k_1)^2 n_1^{1/2}}{n_1 - 1}$$
(4)

The small deviations ($\omega_1 = -0.0602$ and $\omega_2 = -0.0055$) indicate that Wilson's equations correlate the data very well.

ACKNOWLEDGMENT

The authors thank the authorities of Indian Institute of Technology, Kharagpur, for financial support.

NOMENCLATURE

K = deviation of calculated ln γ from experimental ln γ P^0 = pure component vapor pressure

- R = gas law constant
- Т = absolute temperature
- V =molal liquid volume
- x = mole fraction in liquid phase
- y = mole fraction in vapor phase

Greek Letters

- ß = second virial coefficient
- liquid activity coefficient = Y
- Λ = Wilson's parameter
- Σ = summation total pressure
- π =
- defined deviation of k from mean value of kω

Subscripts

1, 2 = components 1 and 2

12, 21 = binary system

LITERATURE CITED

- (1)Barile, R.G., Thodos, G., Can. J. Chem. Eng. 43, 137 (1965).
- Hala, E., Pick, J., Fried, Y., Vilim, O., "Vapor-Liquid (2)Equilibrium," Pergamon, London, 1958.
- Herington, E.F.G., J. Inst. Petrol. 37, 457 (1951). (3)
- Miller, D.G., Ind. Eng. Chem. 56, 46 (1964). (4)
- (5)
- Orye, R.V., Prausnitz, J.M., *Ibid.*, 57, 18 (1965). Prabhu, P.S., Van Winkle, M., J. CHEM. ENG. DATA 8, (6)210 (1963).
- (7)Raju, B.N., Ranganathan, R., Rao, M.N., Indian Chem. Eng. 7, Trans. 33 (1965).
- Riddick, J.A., Troopes, E.E., "Organic Solvents," 2nd ed., (8)Interscience, New York, 1955.
- (9) Wilson, G.M., J. Am. Chem. Soc. 86, 127 (1964).

RECEIVED for review April 18, 1966. Accepted June 27, 1966.

Vapor Pressure Relations of 36 Sulfur Compounds Present in Petroleum

ANN G. OSBORN and DONALD R. DOUSLIN

Bartlesville Petroleum Research Center, Bureau of Mines, U. S. Department of the Interior, Bartlesville, Okla.

> Compilations of vapor pressures measured by static and ebulliometric methods, covering more than five orders of magnitude in pressure, are given for "key" members of classes of alkane thiols, alkane sulfides, alkane disulfides, and cyclic sulfides which were selected for a comprehensive study of their thermodynamic properties. Constants of the Antoine and Cox vapor pressure equations are provided as an aid to interpolating or extrapolating the experimental results.

SINCE 1948 thermochemical studies of organic sulfur compounds either in or related to petroleum have been in progress at the Bureau of Mines under the sponsorship of the American Petroleum Institute Project 48A. The purpose of this paper is to assemble and summarize the vapor pressure-temperature relationships of 36 of the sulfur compounds selected from the program. Previously, White, Barnard-Smith, and Fidler $(\hat{3}3)$ presented vapor pressuretemperature relationships and Antoine equation constants for 15 alkane sulfides, 8 alkane disulfides, 9 cyclic sulfides, and 3 thiophenes

During the early years of the program, when the pressure and temperature ranges were usually smaller than for the modern equipment now in use, the Antoine equation (1), $\log p = A - B/(t + C)$, was capable of representing the results within experimental error and was adopted generally for correlating purposes. With improvements in apparatus that led to results of greater precision, accuracy, and range, the need for a more accurate equation became apparent. Also, the moderately polar character of sulfur compounds gives a type of behavior in vapor pressure that cannot be correlated accurately with the Antoine equation. Consequently, the Cox equation (4), $\log (p/760) = A(1 - B.P./T)$ where $\log A = a + bT + cT^2$, was adopted because it was more versatile in fitting data. However, for the sake of continuity with previous work on sulfur compounds, the evaluation of Antoine constants was continued, and compounds previously correlated in terms of the Antoine equation were recorrelated in terms of the Cox equation. Therefore, constants for both equations were

Figure 1. Comparative ebulliometric vapor pressure apparatus

included in the program to provide, for any specific application, a choice between the greater mathematical convenience of the Antoine equation or the greater accuracy of the Cox equation.

Some of the vapor pressure results given here were reported previously in the scientific literature. For those results, derived values of the constants in the correlating equations will appear recalculated in terms of the presently defined International Temperature Scale (30). Consequently, small differences from the constants originally published will appear.

MATERIALS

All samples were stock materials prepared and purified for the API Standard Sample Repository (Petroleum Research Laboratory, Carnegie Institute of Technology, Pittsburgh, Pa.) by the Bureau of Mines Laramie Petroleum Research Center, Laramie, Wyo. Estimated purities of the compounds were determined from freezing temperature vs.fraction melted curves observed by the Low-Temperature Calorimetry Group at the Bartlesville Petroleum Research Center.

EXPERIMENTAL METHODS

Vapor pressure measurements were made by three different methods. A static method, used to obtain part of the data for 2,3-dithiabutane and 3,4-dithiahexane, was described in an earlier publication (32) from this laboratory. An inclined-piston method, described previously by Douslin and McCullough (5) and Douslin and Osborn (6), was used to obtain low pressure measurements on four compounds: 2,3-dimethyl-2-butanethiol, 2,2-dimethyl-1propanethiol, 1-heptanethiol, and 1-decanethiol. Comparative ebulliometry was used on all compounds in some part of the reported range. Details of the comparative ebulliometric method and apparatus, an earlier version of which was described by Waddington, et al. (32), are given in the next section.

EBULLIOMETRIC APPARATUS

Measurements are made by directly comparing the boiling temperature of the sample with the boiling temperature of a suitable reference compound, in a common-pressure manifold system, Figure 1, blanketed with purified helium. From 150 to 2026 mm. of Hg, water served as the reference. and from 72 to 150 mm. of Hg, benzene served as the reference. The upper pressure limit was determined by the strength of the glass ebulliometers, and the lower pressure limit was determined by the boiling characteristics of water and benzene. Also, an upper temperature limit of about 200°C. was imposed by the design of the heating element in the boiler. Figure 2, and a lower temperature limit of about 3°C. was imposed by the capacity of the refrigerant system used to cool the surroundings in which the sample ebulliometer was housed. The reference water was deionized and distilled over potassium permanganate

to give a conductivity less than 1.0 micro-mho. The benzene was drawn from a central supply that was purified by distillation and certified to be 99.95% pure by freezing point determinations. Thus, the effect on the measured boiling temperatures of any possible impurities in the two reference substances was less than 0.001° C. Standard values of the vapor pressure of water were taken from the International Steam Tables (15) as reported by Osborne, *et al.* (16); values of benzene were taken from the API RP 44 "Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds" (19). These standard values of water and benzene, at selected increments, are reproduced in the Appendix.

The differential ebulliometers, Figures 1 and 2, were based on a design described, in principle, by Swietoslawski (31). They consist of boiler and condenser sections provided with re-entrant wells for measurement of boiling and condensing temperatures. Each ebulliometer is connected to a common manifold through a diffusion barrier and is also connected to a ballast with a volume of about 16.5 liters. Although the ebulliometers were encased in insulation to prevent heat loss, particularly around the thermometer wells, the percolation tube above the boiler heater remained essentially uninsulated so that any superheat created in the boiling liquid would be dissipated during its passage to the thermometer well. To provide the necessary cooling effect in the percolation tube, the surroundings were maintained at least 10° C. cooler than the boiling temperature of the liquid. The boiler section was, therefore, never enclosed in a Dewar or insulated vessel. The electrical heater unit was enclosed in a glass re-entrant well in the boiler with silicone fluid No. 704 for a heat-transmitting medium. To promote steady boiling, the inner surface of the well exposed to the sample was wrapped with glass thread.

Temperatures were measured with a precision of 0.001°. on the International Temperature Scale $[T, \circ K] = t, \circ C$. (Int., 1948) + 273.15 (30), by use of a 25-ohm platinum resistance thermometer that had been calibrated by the National Bureau of Standards and checked at the triplepoint temperature of a certified benzoic acid cell. Periodic observations of the ice-point resistance of the thermometer showed no significant change. The ice-point resistance was obtained with the thermometer immersed about 150 mm. into a slush prepared by freezing distilled water with liquid air and decanting the excess water. Corrections (2) were applied to the ice-point resistance for the effects of atmospheric pressure and immersion pressure on the melting point of ice and the specific conductance of the water taken from the ice-point cell at the end of the measurement. The resistance of the thermometer was measured with a precision of 2×10^{-5} ohm on a Mueller G-2 bridge with a high sensitivity galvanometer. Each measuring coil in the bridge was calibrated, by the intercomparison of coils, in terms of a 100-ohm standard resistor certified by the National Bureau of Standards to 0.002%.

According to present procedure, the materials are dried by Molecular Sieve and then introduced directly from the drying section into the boiler through the sample inlet port by low-pressure distillation under a helium blanket. Thus the pure, dry samples are never in contact with air. They are recovered after the measurements in an evacuated break-off tip ampoule connected to the bottom of the boiler section of the sample ebulliometer.

Measurements were made along a series of pressure points that corresponded to preselected boiling temperatures of the reference substances given in the Appendix. At each point the pressure of the helium in the system was first adjusted approximately by mercury manometer; then boiling was started in the sample and reference compound; and finally, the boiling temperature of the reference was brought to the selected reference temperature by adjusting the helium pressure. Small observed differential temperatures of boiler and condenser, usually $< 0.005^{\circ}$ C., were taken to indicate adequate purity of sample. Any progressive increase in differential temperature at constant pressure would have meant sample deterioration by either decomposition or polymerization. To avoid the effects of small, steady pressure drifts beyond ballast control, it was necessary to take initial and final temperature readings on the reference substance and an intermediate reading on the sample. Then, by interpolating the boiling temperatures of the reference substance with respect to time, the equivalent of simultaneous boiling temperatures on sample and reference could be calculated. As a result of pressure drift the interpolated measurements were seldom at the exact preselected reference points; sometimes they were as much as 0.01°C. from the desired standard boiling point of the reference substance. The measured values were then adjusted exactly to the reference point by applying approximate vapor pressure-temperature relationships between sample and reference substance.

Table I. Experimental Vapor Pressures of Alkane Thiols: Ebulliometric Results⁴

				Te	mperature, ° C	2.			
Pressure, Mm. of Hg	Ethane- thiol (13)	1-Propane- thiol (17)	2-Propane- thiol (11)	1-Butane- thiol (26)	2-Butane- thiol (12)	2-Methyl- 1-propane- thiol (29)	2-Methyl- 2-propane- thiol (14)	1-Pentane- thiol (7)	2-Methyl- 1-butane- thiol
71.87			•••						51.339
81.64									54.284
92.52							• • •	• • •	57.243
104.63									60.219
118.06									63.194
132.95									66.193
149.41		24.275	10.697	51.40 9	38 .96 2	42.207	20. 496	76.470	69.207
187.57	0.405	29.563	15.770	57.130	44.549	47.830	25.785	82.569	75.263
233.72	5.236	34.891	20.8 99	62.8 9 7	50.185	53.498	31.127	88.721	81.361
289.13	10.111	40.254	26.071	68.710	55.866	59.211	36.519	94.918	87.510
355.22	15.017	45.663	31.282	74.567	61.597	64.974	41.959	101.167	93.708
433.56	19.954	51.113	36.536	80.472	67.370	70.780	47.446	107.457	99.955
525.86	24.933	56.605	41.833	86.418	73.195	76.641	52.983	113.802	106.253
633. 99	29.944	62.139	47.175	92.414	79.063	82.542	58.573	120.193	112.600
760.00	35.000	67.719	52.558	98.454	84.981	88.493	64.217	126.638	118.999
906.06	40.092	73.341	57.985	104.544	90.945	94.493	69.908	133,131	125.446
1074.6	45.221	79.004	63.461	110.682	96.963	100.539	75.654	139.671	131.944
1268.0	50.390	84.710	68.979	116.863	103.020	106.640	81.449	146.255	138.492
1489.1	55.604	90.464	74.540	123.088	109.133	112.785	87.294	152.896	145.089
1740.8	60.838	96.255	80.143	129.362	115.287	118.972	93.188	159.580	151.733
2026.0	00.115	102.088	80.790	135.075	121.405	125.212	99 .130	100.314	100.420
	2-Methyl-	3-Methyl-	Cyclo-		2-Methyl-	2, 3- Di-	Cyclo-		
Pressure,	2-butane-	2-butane-	pentane-	1-Hexane-	2-pentane-	methyl-2-	hexane-	Benzene-	1-Heptane
Mm. of Hg	thiol (20)	thiol	thiol (3)	thiol	thiol	butanethiol	thiol	thiol (28)	thiol (6)
71.87		42.969		80.694	55.855	55.814	83.740		101.627
81.64		45.876	•••	83.837	58.860	58.867	87.006		104.908
92.52		48.791	• • •	86.991	61.877	61.931	90.289		108.205
104.63	• • •	51.720		90.157	64.907	65.011	93.576		111.517
118.06		54.658	• • •	93.334	67.949	68.099	96.881	• • •	114.840
132.95	ro. 000	57.613	00.054	96.530	71.008	71.208	100.201	114 540	118.182
149.41	50.888	60.592	80.874	99.733	74.089	74.334	103.549	114.543	121.546
187.57	56.725 CO.COT	00.000	87.107	100.108	80.269	80.613	110.259	121.191	128.269
233.72	02.020	12.010	93.390	112.008	80.502	80.949	117.023	127.897	130.000
209.10	00,070	10.040	99.729	119.190	92.707	90.000	123.043	134.049	141.911
300.22 499 56	14.018	04.700	110549	120.109	105 591	106 992	130.719	141,447	140.007
400.00	96 740	07 161	112.040	132.429	111.079	110.200	107.004	140.294	160.709
622.00	02 01 4	102 421	195 577	145 966	119.475	110.459	151 605	169 140	160 919
760.00	00 139	100.401	132 165	159 650	195 039	196 190	158 802	160 197	176 010
906.06	105 401	116 139	138 806	159 507	131 646	132 858	165 969	176 189	184 092
1074 6	111 798	129 571	145 501	166 403	138 314	130 644	173 196	183 979	101.002
1268.0	118 106	129 051	159 945	173 351	145 037	146 499	180 464	190.426	198 551
1489 1	124 537	135 585	159 040	180 349	151 815	153 391	187 801	197 623	100.001
1740.8	131.021	142.170	165.887	187.397	158.645	160.344	195,196	204.867	•••
2026.0	137,559	148.805	172.783	194.494	165.531	167.355	202,645	212.160	

"Results for 2,2-dimethyl-1-propanethiol and 3-methyl-1-butanethiol are in Table VIII.

RESULTS

Observed values of the vapor pressures are summarized for 21 alkane thiols, Tables I, II, and VIII; for 7 alkane sulfides, Table III; for 3 alkane disulfides, Tables IV and V; and for 4 cyclic sulfides, Table VI. The measurements, which were accumulated over a period of years, are reported for four pressure ranges that developed from innovations or improvements in apparatus and method as time progressed. Some of the earliest measurements were obtained on 2,3-dithiabutane and 3,4-dithiahexane by a static, manometric method from 1 to 141 mm. of Hg, and by a comparative ebulliometric method, with water as reference substance, from 150 to 2026 mm. of Hg. Later the ebulliometric range was extended downward to 72 mm. of Hg by using pure benzene as a second reference substance. Finally, development of the inclined-piston gage made possible an extension of the range to still lower pressures, approximately 0.01 to 30 mm. of Hg. However, the vapor pressures of only four compounds, those listed in Tables II and VIII have been measured in the inclined-piston range. For one of these compounds, 2,3-dimethyl-2-butanethiol, the full range of the inclined-piston gage was not used because the measurements were confined to the liquid phase of the

Table II.	Experimental Vapor Pressures of Alkane Thiols:
	Static Inclined-Piston Results

2,3-Dim 2-butan	ethyl- ethiol	1-Heptanethiol (6)		1-Decane	thiol (6)
Pressure, Mm. of Hg 8.272 9.561 11.034 12.694	t, ° C. 12.493 15.000 17.500 19.999	Pressure, Mm. of Hg 0.211 0.247 0.317 0.384 0.458 0.553 0.663 0.943	t, ° C. 0.000 2.500 5.000 7.500 10.000 12.500 15.000 20.000	Pressure, Mm. of Hg 0.006 0.011 0.014	<i>t</i> , ° C. 10.000 15.000 20.000

compound which freezes just below the lowest temperature recorded.

The experimental values, Tables I to VI and VIII, as well as values for 2-thiapropane and 3-methyl-2-thiabutane published by White, Barnard-Smith, and Fidler (33), were correlated by Antoine and Cox equations. Derived values for the constants in these equations were evaluated by a least-mean-square procedure according to the method outlined by Willingham, Taylor, Pignocco, and Rossini (34), with each experimental point assigned unit weight.

	Temperature, ° C.						
Pressure,	2-Thiabutane	3-Thiapentane	2-Thiahexane	3,3-Dimethyl-2-	2,4-Dimethyl-	Cyclopentyl-	1-Phenyl-
Mm. of Hg.	(25)	(23)	(10)	thiabutane (27)	3-thiapentane	1-thiaethane	1-thiaethane
71.87	•••		•••	33.713	52.101	82.745	117.1 46
81 <i>.</i> 64		•••		36.543	55.052	85.956	120.530
92 .52	• • •			39.388	58.010	89.177	123. 9 12
104.63	• • •			42.24 2	60.990	92.416	127.321
118.06		• • •		45.107	63.980	95.654	130.728
132.95	• • •			47.990	66.983	98.917	134.156
149.41	23.435	45.920	73.752	50.890	70.011	102.197	137.606
187. 57	28.695	51.536	79.798	56.709	76.075	108,769	144.514
23 3.72	33 .99 7	57.204	85.888	62.586	82.193	115.396	151.477
289 .13	3 9 .339	62.905	92.025	68.507	88.366	122.068	158.487
355.22	44.717	68.659	98.211	74.478	94.588	128.797	165.548
433.56	50.136	74.452	104.442	80.507	100.863	135.575	172.658
525.86	55.600	80.286	110.725	86.585	107.192	142.411	179.821
633.99	61.104	86.169	117.048	92 .706	113.574	149.293	187.036
7 60 .00	66.65 5	92.100	123.423	98.892	120.007	156.230	194.306
906.06	72.241	98.073	129.847	105.128	126.493	163.222	201.622
1074.6	77.870	104.098	136.317	111.420	133.032	170.265	
1268.0	83.551	110.1 6 5	142.839	117.761	139.623	177.364	
1489.1	89.265	116.279	149.403	124.156	146.269	184.514	• • •
1740.8	95.020	122.433	156.019	130.595	152.965	191.714	
2026.0	100.825	•••	162.676	137.088	159.712	198.970	• • •

Table IV. Experimental Data on Alkane **Disulfides: Ebulliometric Results**

		Temperature, °C.	
Pressure, Mm. of Hg	2,3-Dithia- butane (21)	3,4-Dithia- hexane (24)	4,5-Dithia- octane (8)
71.87			117.472
81.64			120.869
92 .52			124.340
104.63			127.798
118.06			131.251
132.95	• • •		134.732
149.41	61.411	100.567	138.207
187.57	67.301	107.079	145.223
233.72	73.234	113.627	152.297
289.13	79.201	120.230	159.426
355.22	85.218	126.884	166.604
433.56	91.283	133.579	173.848
525.86	97.393	140.336	
633.99	103.540	147.136	
760.00	109.739	153.986	• • • •
906.06	115.984	160.884	
1074.6	122.273		
1268.0	128.611		
1489.1			
1740.8			•••
2026.0	•••	•••	•••

Table V. Experimental Data on Alkane Disulfides: Static Manometric Results

	Pressure, Mm. of Hg		
	2,3-Dithia-	3,4-Dithia-	
<i>t</i> , ° C.	butane ^a (21)	hexane ^{\circ} (24)	
0.00	6.78	0.76	
15	16.73	2.22	
20	22.02	3.10	
25	28.69	4.23	
30	36.98	5.74	
35	47.26	7.66	
40	59 .82	10.14	
45	75.06	13.32	
50	9 3.37	17.28	
55	115.20	22.18	
60	141.11	28.20	
65		35.56	
70		44.47	
75		55.16	
80		67.96	
Average of two determi	nations.		

506

Table VI. Experimental Data on Cyclic

Sulfides:	Ebulliometri Tempera	c Results ture, °C.	
niacyclo- cane (22)	Thiacyclo- pentane (9)	2-Methyl- thiacyclo- pentane	3-Methyl- thiacyclo- pentane

Pressure, Mm. of Hg	Thiacyclo- butane (22)	Thiacyclo- pentane (9)	thiacyclo-	thiacyclo-
	Summe (22)	pendane (0)	pointane	pentane
71.87			62.633	67.540
81. 64			65.683	70.633
92.52			68.744	73.733
104.63			71.813	76.849
118.06			74.898	79.973
132.95			77.997	83.112
149.41	48.357	71.182	81.114	86.270
187.57	54.044	77.278	87.359	92,606
233.72	59.771	83,405	93.661	98,990
289.13	65 534	89 580	100.004	105 423
355 22	71 341	95 803	106 398	111 905
433 56	77 187	102 056	112 840	118 436
525.86	83 073	108 365	110 326	195 019
633.00	88.008	114 716	105 077	120.013
760.00	00.330	101 114	120.077	101.040
700.00	94.908	121.114	132.471	138.330
906.06	100.977	127.558	139.114	145.062
1074.6	107.027	134.046	145.809	151.846
12 68 .0	113.118	140.574	152.555	158.679
1489.1	119.249	147.163	159.352	165.561
1740.8	125.421	153,775	166.197	172.495
2026.0	131.639	160.451	173.090	179.476

Alternatively, a least-mean-square evaluation of the constants in the Cox equation could not be approached directly as for the Antoine equation. However, a Cox equation that is very close to a formal least-mean-square solution of the experimental results was derived by adjusting its constants while keeping the deviations between calculated and observed values always less than the deviations given by the least-mean-square Antoine equation for the same set of points. This method of deriving Cox constants seemed to work quite well even in special cases-for example, 2,2dimethyl-1-propanethiol and 2,3-dimethyl-2-butanethiolwhere least-mean-square Antoine equations that would represent the observed results with acceptable accuracy could not be derived. By proceeding as described, Cox equations were obtained which represented, in nearly every case, the experimental data more accurately over a wider temperature range than did the corresponding Antoine equation. Detailed results for two compounds, Table VIII, demonstrate the usual performance of each equation.

Tables of boiling temperatures at even pressures based on the Cox equations will be made available to any interested person by request addressed to the Bureau of

Compound	Mole %	-	ſ							17571017101
		W	В	C	Mm. of Hg	а	$b \times 10^{-4}$	$c \times 10^{-7}$	B.P.	Mm. of I
			Ţ	SIOLS						
Ethanethiol	99.978	6.95206	1084.531	231 385	0.17	0.818399	7 19056	00760 8	000 150	LF C
1-Propanethiol	99.985	6.92846	1183.307	224 694	0.08	0.839530	- 7 16756	0.175 7	0.00.000	er.u
2-Propanethiol	686.66	6.87734	1113,895	226 157	0.06	0.830445	37613 L-	CO110.1	040.009 905 700	0.03
1-Butanethiol	066.66	6.92754	1281 018	918 100	010	0.94260	C 0100E	0.10002	323.708	0.04
2-Butanethiol	99 Q ⁴	6 88608	1990 004	001-017	01.0	00000000	0701070	0.03302	CU0.1/5	c0.0
2-Methyl-1-nronanethial	00.00	0.00000	1002 000	120.222	01.0	0.833/12	-7.12952	7.10737	358.131	0.03
9. Mathul 9 monomothial	000000	0.00/40	1231.282	220.313	0.11	0.840128	-7.25874	7.16173	361.643	0.05
z meunyi-z-propanennoi 1 Dootentetto	99.989	0.78781	1115.565	221.314	0.10	0.843650	-8.28280	8.78380	337.367	0.04
	99.944	6.93311	1369.479	211.314	0.11	0.863844	-7.16655	6.45783	399.788	0.04
z,z-Dimethyl-1-propanethiol		6.84006	1274.353	218.187	0.09	0.844496	-7.48718	7.29159	376 830	0.04
Z-IMethyl-I-butanethiol		6.91385	1347.317	215.072	0.09	0.851295	-7.04489	6.50881	399 149	0.03
3-Methyl-1-butanethiol	99.95	6.91491	1342.509	214.446	0.05	0.850516	-6.91250	6 98310	301 401	0.00
2-Methyl-2-butanethiol	99.89	6.82837	1254.885	218.759	0.13	0.842972	-7.56801	7 46850	101-100 379-921	20.0
3-Methyl-2-butanethiol	966.66	6.87521	1307.162	217.488	60.0	0.838139	-6.84930	6 20177	107.210	0.00
Cyclopentanethiol	66'66	6.91375	1387 803	911 959	0.07	0.950756	0002070	C 00000	016.200	0.02
1-Hexanethiol	99.97	6.94664	1454.004	204 954	0.07	0.877150	- 7.00202	0.00000	405.315	10.0
$2-Methyl-2-pentanethiol^{b}$		6.85849	1343 804	919 803	0.07	0.050011		0.30140	420.010	10.0
2,3-Dimethyl-2-butanethiol ^{b,c}		6.83943	1354 154	915 947	0.0	0.025466	-1.00441	0.39145	398.182	0.03
Cyclohexanethiol	99.978	6 88709	1476 958	000 857	60-0 0 0	0.0000000000000000000000000000000000000	-0./1990	b.10848 7 00000	399.279	0.04
Benzenethiol	86.66	6 99019	1599 454	903 048	0.00	0.040323	-0.30202	5.30808	431.953	0.05
1-Heptanethiol ^c	00 07	6 05940	16 05 011	107 000	10.0	0.0712014	-0.44145	5.16493	442.287	0.04
	10.00	01-200-0	110.0201	060.161	0.04	0.891/98	-7.29517	5.95229	450.069	0.02
·			SUL	FIDES						
2-Thiapropane	99.95	6.94879	1090.755	230.799	0.10					
2-Thiabutane	99.998	6.93849	1182.562	224.784	0.08	0.833669	-7 20206	7 44480	330 805	000
3-1 hiapentane	99.995	6.92836	1257.833	218.662	0.08	0.839793	-6 77471	6 37905	365 950	0.05
2-Thiahexane	96.96	6.94583	1363.808	212.074	0.08	0.857733	-6.86510	6.1179	002.200 206 574	60.0
3-Methyl-2-thiabutane	9 .66	6.90196	1232.170	221.670	0.11	0010000	ATCOD'0	7/ 117.0	410.060	0.04
3,3-Dimethyl-2-thiabutane	86.66	6.84709	1259 648	918 609	0.19	0 836063	7 04177	1 2012 2	010 010	0000
2,4-Dimethyl-3-thiapentane	99.992	6.87487	1328 949	919 799	0.07	0.860511	0.11F0.1	0./1004 6.00767	3/2.042	0.09 0.09
Cyclopentyl-1-thiaethane	986.66	6.94462	1483 379	208 784	0.11	0.840179	00011-1	10125.0	100.001	0.04
1-Phenyl-1-thiaethane	76.96	7.01149	1603.887	193 984	0.06	0 904411	-6.07803	4.30000 5 40051	105.624	0.04
					0000	11110000		10001-0	401.400	0.03
			USICI	TFIDES						
2,0-Ditniabutane	99.97 20.00	6.97792	1346.342	218.863	0.12	0.844338	-6.69483	6.17889	382.889	0.04
0,4-Dutuanexane	26.66	6.9/507	1485.970	208.958	0.05	0.885753	-7.79157	7.11901	427.136	0.02
4,0-11111a0ctane	1.6.66	6.97529	1603.793	195.848	0.06	0.918895	-8.06535	6.82511	468.998	0.05
			CYCLIC	SULFIDES						
Thiacyclobutane	99.988	7.01667	1321.331	224.513	0.04	0.819904	-5.88488	5 52129	368 118	10.0
I hiacyclopentane	99.987	6.99540	1401.939	219.607	0.10	0.822304	-5.57266	4.83166	394 264	0.04
2-Methylthiacyclopentane	99.76	6.94412	1409.503	214.408	0.10	0.838967	-6.13330	5 26227	405.691	0.03
3-Methylthiacyclopentane	99.95	6.95111	1433.157	213 766	0.06	0 840679	-6.19059	5 99909	120.001	0.00
				001017	0000	7 001000	70071-0-	0.6222.0	411.400	0.02

Table VII. Constants of the Antoine and Cox Vapor Pressure Equation

Table VIII. Comparison of Observed and Calculated	l Values
---	----------

Obs	erved	p(Obsd.), Mm.	-p(Calcd.), Mm.
Pressure,	_	Antoine	
Mm. of Hg	<i>t</i> , ° C.	Eq."	Cox Eq."
	3-Methyl-1-e	BUTANETHIOL	
71.87	50.952	+0.02	-0.01
81.64	53.895	0.00	-0.02
92.52	56.838	+0.01	0.00
104.63	59.800	0.00	+0.01
118.06	62.770	0.00	+0.02
132.95	65.757	-0.01	+0.01
149.41	68.760	-0.05	-0.03
187.57	74.786	-0.05	-0.03
233.72	80.862	-0.04	-0.03
289.13	86.984	-0.01	-0.02
355.22	93.155	+0.03	0.00
433.56	99.378	+0.05	-0.01
525.86	105.648	+0.08	+0.01
633.99	111.970	+0.08	-0.01
760.00	118.341	+0.07	0.00
906.06	124.762	+0.05	0.00
1074.6	131.234	0.0	0.0
1268.0	137.754	0.0	+0.1
1489.1	144.327	-0.1	0.0
1740.8	150.949	-0.1	0.0
2026.0	197.010	0.0	0.0
	2,2-DIMETHYL-I	-PROPANETHIOL	
0.073°	-60.069	+0.013	0.000
0.125°	-55.419	+0.022	+0.005
0.195°	-50.619	+0.023	-0.001
0.316	-45.768	+0.035	+0.004
0.495	-40.925	+0.047	+0.008
0.748	-36.027	+0.049	+0.001
1.213	-30.184	+0.060	+0.001
1.764	-25.344	+0.059	-0.009
2.002	-20.400	+0.007	-0.008
5.034	-10.664	+0.070	-0.005
5.079 7.014 ⁶	-10.004	+0.075	-0.009
0.808	-0.266	+0.070	-0.005
13 447	-0.200 +4.851	+0.074	-0.005
18.062	10 004	+0.001	-0.006
23.767°	15.001	+0.045	+0.001
30.918'	19,998	+0.030	+0.003
71.87	37.527	0.00	+0.04
81.64	40.395	+0.01	+0.06
92.52	43.282	0.00	+0.05
104.63	46.180	0.00	+0.05
118.06	49.086	+0.01	+0.06
132.95	52.009	+0.01	+0.06
149.41	54.953	-0.04	+0.01
187.57	60.860	-0.04	0.00
233.72	66.819	-0.02	-0.01
289.13	72.829	+0.01	0.00
355.22	78.892	+0.04	0.00
433.56	85.009	+0.06	0.00
525.86	91.179	+0.06	-0.01
633.99	97.401	+0.07	+0.02
760.00	103.680	+0.01	0.00
900.00 1074 C	110.010	-0.03	+0.03
1968 0	100 201	-0.1	+0.1 +0.1
1489 1	129 325	-0.2	0.0
1740.8	135.869	-0.1	+0.1
2026.0	142.464	+0.3	0.0

^ePressure differences calculated using Antoine and Cox vapor pressure constants given in Table VII. ^bInclined-piston data.

Mines, Bartlesville Petroleum Research Center, Bartlesville, Okla.

APPENDIX

Standard vapor pressure values for water, based on the International Steam Tables (IST), and standard values for

Appendix			
Water Reference Substance		Benzene Reference Substance	
Boiling Temperature, °C.	Pressure, Mm. of Hg	Boiling Temperature, °C.	Pressure, Mm. of Hg
$\begin{array}{c} 60\\ 65\\ 70\\ 75\\ 80\\ 85\\ 90\\ 95\\ 100\\ 105\\ 110\\ 115\\ 120\\ 125\\ 130\\ \end{array}$	$149.41 \\187.57 \\233.72 \\289.13 \\355.22 \\433.56 \\525.86 \\633.99 \\760.00 \\906.06 \\1074.6 \\1268.0 \\1489.1 \\1740.8 \\2006.0 \\0$	$19.061 \\ 21.720 \\ 24.388 \\ 27.068 \\ 29.757 \\ 32.460 \\ 35.174$	$71.87 \\ 81.64 \\ 92.52 \\ 104.63 \\ 118.06 \\ 132.95 \\ 149.41$

benzene, based on the American Petroleum Institute Research Project 44 (API RP 44) Tables, are slightly inconsistent with each other below a water temperature of 100°C. At the juncture of the two reference scales, 149.41 mm. of Hg, the observed vapor pressures of the samples being studied would consequently be about 0.05 mm. of Hg higher on the benzene scale than on the water scale. The difference in the two scales originated with the "Stimson and Cragoe" corrections which Rossini, et al. (18), applied to the IST water values and, thus, through the use of water as a calibration substance, introduced into the benzene vapor pressure values. In the present vapor pressure work the "Stimson and Cragoe" corrections were not applied to the standard water values; however, this correction is inherently present in the benzene standard values. Since the "Stimsom and Cragoe" corrections to the IST values are small and have not appeared in the scientific literature, they were ignored in the present work with the water scale and also in the correlating equations. Should the IST water values or the API RP 44 benzene values be adjusted at some future time, pertinent small changes in the standard values could, if needed, be applied to the comparative ebulliometric vapor pressure results.

LITERATURE CITED

- (1)Antoine, C., Compt. rend. 107, 681 (1888)
- (2)Beattie, J.A., Huang, T.-C., Benedict, M., Proc. Am. Acad. Arts Sci. 72, 137 (1938).
- Berg, W.T., Scott, D.W., Hubbard, W.N., Todd, S.S., Messer-(3)ly, J.F., Hossenlopp, I.A., Osborn, A., Douslin, D.R., McCullough, J.P., J. Phys. Chem. 65, 1425 (1961).
- Cox, E.R., Ind. Eng. Chem. 28, 613 (1936). (4)
- (5)Douslin, D.R., McCullough, J.P., BuMines Rept. of Inv. 6149 (1963).
- (6)
- Douslin, D.R., Osborn, A., J. Sci. Inst. 42, 369 (1965). Finke, H.L., Scott, D.W., Gross, M.E., Waddington, G., (7)Huffman, H.M., J. Am. Chem. Soc. 74, 2804 (1952).
- Hubbard, W.N., Douslin, D.R., McCullough, J.P., Scott, D.W., Todd, S.S., Messerly, J.F., Hossenlopp, I.A., George, (8)A., Waddington, G., Ibid. 80, 3547 (1958).
- (9)Hubbard, W.N., Finke, H.L., Scott, D.W., McCullough, J.P., Katz, C., Gross, M.E., Messerly, J.F., Pennington, R.E., Waddington, G., Ibid. 74, 6025 (1952).
- (10)McCullough, J.P., Finke, H.L., Hubbard, W.N., Todd, S.S., Messerly, J.F., Douslin, D.R., Waddington, G., J. Phys. Chem. 65, 784 (1961).
- (11)McCullough, J.P., Finke, H.L., Scott, D.W., Gross, M.E., Messerly, J.F., Pennington, R.E., Waddington, G., J. Am. Chem. Soc. 76, 4796 (1954)
- (12) McCullough, J.P., Finke, H.L., Scott, D.W., Pennington, R.E., Gross, M.E., Messerly, J.F., Waddington, G., Ibid. 80, 4786 (1958).

- (13) McCullough, J.P., Scott, D.W., Finke, H.L., Gross, M.E., Williamson, K.D., Pennington, R.E., Waddington, G., Huffman, H.M., *Ibid.* 74, 2801 (1952).
- (14) McCullough, J.P., Scott, D.W., Finke, H.L., Hubbard, W.N., Gross, M.E., Katz, C., Pennington, R.E., Messerly, J.F., Waddington, G., *Ibid.* 75, 1818 (1953).
- (15) Mechanical Engineering 57, 710 (1935).
- (16) Osborne, N.S., Stimson, H.F., Ginnings, D.C., J. Res. Natl. Bur. Std. 23, 261 (1939).
- (17) Pennington, R.E., Scott, D.W., Finke, H.L., McCullough, J.P., Messerly, J.F., Hossenlopp, I.A., Waddington, G., J. Am. Chem. Soc. 78, 3266 (1956).
- (18) Rossini, F.D., Mair, B.J., Streiff, A.J., "Hydrocarbons in Petroleum," p. 198, Reinhold, New York, 1953.
- (19) Rossini, F.D., Pitzer, K.S., Amett, R.L., Braun, R.M., Pimentel, G.C., "Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds," Carnegie Press, Pittsburgh, Pa., Table 5k, 1953.
- (20) Scott, D.W., Douslin, D.R., Finke, H.L., Hubbard, W.N., Messerly, J.F., Hossenlopp, I.A., McCullough, J.P., J. Phys. Chem. 66, 1334 (1962).
- (21) Scott, D.W., Finke, H.L., Gross, M.E., Guthrie, G.B., Huffman, H.M., J. Am. Chem. Soc. 72, 2424 (1950).
 (22) Scott, D.W., Finke, H.L., Hubbard, W.N., McCullough, J.P.,
- (22) Scott, D.W., Finke, H.L., Hubbard, W.N., McCullough, J.P., Katz C., Gross, M.E., Messerly, J.F., Pennington, R.E., Waddington G., *Ibid.* 75, 2795 (1953).
- (23) Scott, D.W., Finke, H.L., Hubbard, W.N., McCullough, J.P., Oliver, G.D., Gross, M.E., Katz, C., Williamson, K.D., Waddington, G., Huffman, H.M., *Ibid.*, 74, 4656 (1952).
- (24) Scott, D.W., Finke, H.L., McCullough, J.P., Gross, M.E., Pennington, R.E., Waddington, G., Ibid., 74, 2478 (1952).

- (25) Scott, D.W., Finke, H.L., McCullough, J.P., Gross, M.E., Williamson K.D., Waddington, G., Huffman, H.M., Ibid. 73, 261 (1951).
- (26) Scott, D.W., Finke, H.L., McCullough, J.P., Messerly, J.F., Pennington, R.E., Hossenlopp, I.A., Waddington, G., Ibid. 79, 1062 (1957).
- (27) Scott, D.W., Good, W.D., Todd, S.S., Messerly, J.F., Berg, W.T., Hossenlopp, I.A., Lacina, J.L., Osborn, A., McCullough, J.P., J. Chem. Phys. 36, 406 (1962).
- (28) Scott, D.W., McCullough, J.P., Hubbard, W.N., Messerly, J.F., Hossenlopp, I.A., Frow, F.R., Waddington, G., J. Am. Chem. Soc. 78, 5463 (1956).
- (29) Scott, D.W., McCullough, J.P., Messerly, J.F., Pennington, R.E., Hossenlopp, I.A., Finke, H.L., Waddington, G., Ibid. 80, 55 (1958).
- (30) Stimson, H.F., J. Res. Natl. Bur. Std. 65A, 139 (1961).
- (31) Swietoslawski, W., "Ebulliometric Measurements," p. 11, Reinhold, New York, 1945.
- (32) Waddington, G., Knowlton, J.W., Scott, D.W., Oliver, G.D., Todd, S.S., Hubbard, W.N., Smith, J.C., Huffman, H.M., J. Am. Chem. Soc. 71, 797 (1949).
- (33) White, P.T., Barnard-Smith, D.G., Fidler, F.A., Ind. Eng. Chem. 44, 1430 (1952).
- (34) Willingham, C.B., Taylor, W.J., Pignocco, J.M., Rossini, F.D., J. Res. Natl. Bur. Std. 35, 219 (1945).

RECEIVED for review May 2, 1966. Accepted July 3, 1966. American Petroleum Institute Research Project 48A on the "Production, Isolation, and Purification of Sulfur Compounds and Measurement of Their Properties," which the Bureau of Mines conducts at Bartlesville, Okla. and Laramie, Wyo.

Heat Capacities of the Liquid Phase in the System $CaO - P_2O_5 - H_2O_5$

EDWARD P. EGAN, Jr., and BASIL B. LUFF

Division of Chemical Development, Tennessee Valley Authority, Muscle Shoals, Ala.

Measurements were made of the heat capacities at 25°, 50°, and 80°C. of solutions in the system CaO-P₂O₅-H₂O, and the measured specific heats were converted to partial molal heat capacities of the calcium phosphates $Ca(H_2PO_4)_2 \cdot H_2O$, $Ca(H_2PO_4)_2$, CaHPO₄ · 2H₂O, and CaHPO₄.

THERMAL data on the solid and liquid phases in the system $CaO-P_2O_5-H_2O$ are useful in interpretation of the reactions involved in fertilizer manufacturing processes and in the behavior of fertilizers in the soil. Measurements were made of the specific heats of liquid phases in the system at 25° , 50° , and 80° C., and the partial molal quantities were derived from the results. The specific heats, with the heats of solution at the same composition (2), may be used to determine the temperature dependence of other physical properties of the solutions, such as vapor pressure and electrochemical potentials. The specific heats of the solution are of direct value in engineering calculations involving calcium phosphate solutions.

The measured specific heats of the solutions were converted to partial molal heat capacities of the calcium phosphates $Ca(H_2PO_4)_2 \cdot H_2O$, $Ca(H_2PO_4)_2$, $CaHPO_4$, and $CaHPO_4 \cdot 2H_2O$. For these conversions, the solution compositions were recalculated to represent each of the four ternary systems comprising a single calcium phosphate, phosphoric acid, and water.

VOL. 11, No. 4, OCTOBER 1966

MATERIALS AND APPARATUS

Phosphoric Acid. Phosphoric acid hemihydrate, $2H_3PO_4$. H_2O , was twice recrystallized from reagent phosphoric acid (3). The drained, unwashed crystals were melted to form a stock solution (90% H_3PO_4), the exact composition of which was established by its density (1).

Dicalcium Phosphate. A solution (5) containing 5% CaO, 21% P₂O₅, and 74% H₂O was prepared from reagent dicalcium phosphate and the stock phosphoric acid. The solution was filtered, then heated to crystallize anhydrous dicalcium phosphate.

Preparation of Solutions. The compositions of the solutions used in the measurements were intersections of "water rays" (9) of constant ratios P_2O_5 :CaO with tielines between $Ca(H_2PO_4)_2$ and 0.5, 1, 1.5, 2, 3, 4, 6, 8, and 10 molal phosphoric acid solutions. The weight ratios P_2O_5 :CaO selected for the water rays were 39.180, 19.081, 12.706, 9.514, 7.596, 6.314, 5.396, 4.705, and 4.161. The most concentrated solution on each water ray was prepared by