Vapor-Liquid Equilibrium Data for the System n-Heptane-n-Butyl Alcohol at Medium Pressures

S. V. VIJAYARAGHAVAN, P. K. DESHPANDE, and N. R. KULOOR
Department of Chemical Engineering, Indian Institute of Science, Bangalore, India

Abstract

Vapor-liquid equilibrium data for the system n-heptane-n-butyl alcohol at pressures of $1445,2205,2965$, and 3725 mm . of Hg have been reported. The data are correlated with Chao's modified Redlich-Kister equation.

VAPOR-LIQUID equilibrium data for the systems n -heptane- n-butyl alcohol are available at 685 mm . of Hg pressure (7) and at isothermal conditions (5). In the present work the system has been studied at 1445 , 2205, 2965, and 3725 mm . of Hg pressure to find the effect of pressure on the azeotrope.

EXPERIMENTAL

The equilibrium still and the experimental procedure have been described earlier (6). The properties of reagents used are given in Table I. The samples were analyzed by density determination at $25 \pm 0.1^{\circ} \mathrm{C}$., reproducible within ± 0.0001. The pressure in the still was measured by a bourdon gage with an accuracy of 0.5 lb . per sq. inch, the temperature by a thermometer of $0.1^{\circ} \mathrm{C}$. accuracy.

THERMODYNAMIC CONSISTENCY

The experimental vapor-liquid equilibrium data for this system are presented in Table II and Figure 1.

Liquid phase activity coefficients are calculated from the equation,

$$
\begin{equation*}
\gamma_{i}=\frac{y_{i} \pi}{x_{i} P_{i}} \theta_{i} \tag{1}
\end{equation*}
$$

The vapor pressure data are taken from the literature (2). Since the vapor phase imperfection correction factor, θ, varied from 0.961 to 0.987 for n-butyl alcohol and from 0.955 to 1.013 for n-heptane, it was taken into account in calculating the values of activity coefficients. The θ values were taken from Scheibel's nomograph (4).

The system forms an azeotrope at all pressures studied. The data are correlated with Chao's modified Red-lich-Kister equation (1). The constants of the equation,

$$
\begin{aligned}
& \log \gamma_{1} / \gamma_{2}=a+b\left(x_{2}-x_{1}\right)+c\left(6 x_{1} x_{2}-1\right)+ \\
& d\left(x_{2}-x_{1}\right)\left(1-8 x_{1} x_{2}\right)
\end{aligned}
$$

at all pressures studied are given below.

Pressure,	Constants			
Mm. of Hg	a	b	c	d
$\mathbf{1 4 4 5}$	0.018	0.644	0.130	-0.030
2205	-0.035	0.644	0.067	0.003
2965	-0.073	0.644	0.069	0.010
3725	-0.065	0.644	0.025	0.017

Table I. Properties of Pure Components				
Compound	Density, at $20^{\circ} \mathrm{C}$.		Refractive Index, at $20^{\circ} \mathrm{C}$.	
	Exptl.	Lit. (2)	Exptl.	Lit. (2)
n-Heptane	0.6838	0.68376	1.3880	1.3876
1-Butanol	0.8099	0.80978	1.3988	1.3991

The values of constants a, b, c, d are correlated with pressure and the following relationships are obtained:

$$
\begin{aligned}
a & =-0.00005789 \times \pi+0.104 \\
b & =0.644
\end{aligned}
$$

Table II. System: n-Heptane(1)-n-ButyI Alcohol(2).

$\begin{aligned} & \text { Temp., } \\ & \circ \text { C. } \end{aligned}$	x_{1}	y_{1}	γ_{1}	γ_{2}	$y_{\text {lealcd. }}$
1445 mm .					
128.5	9.4	21.9	2.972	1.001	31.9
124.4	15.6	43.9	2.726	1.004	44.5
118.3	32.3	60.7	2.122	1.075	61.3
116.6	40.2	64.1	1.861	1.172	64.6
115.4	49.7	66.6	1.627	1.355	65.6
115.0	58.6	68.5	1.436	1.571	66.6
114.8	65.1	69.4	1.317	1.831	67.3
114.8	76.4	72.0	1.161	2.463	69.7
115.3	81.2	74.0	1.116	2.839	71.4
117.2	90.6	80.9	1.041	3.941	79.2
2205 mm .					
146.3	6.8	22.5	2.884	1.023	23.8
142.0	12.7	35.0	2.649	1.040	35.8
136.1	24.3	48.2	2.191	1.117	47.9
131.6	38.7	56.5	1.803	1.314	53.5
130.4	48.1	59.5	1.576	1.496	56.1
129.9	55.2	61.2	1.431	1.690	57.9
130.4	72.1	65.4	1.156	2.378	64.2
130.9	76.3	67.0	1.106	2.638	66.4
132.5	84.8	70.9	1.009	3.438	72.1
132.4	90.4	78.2	1.004	3.912	79.2
2965 mm.					
155.0	11.4	30.0	2.558	1.003	30.0
150.6	19.8	41.4	2.254	1.062	45.2
148.0	26.5	46.5	1.982	1.145	46.9
145.8	32.8	51.0	1.842	1.224	48.6
144.1	40.1	53.6	1.648	1.363	51.3
142.5	51.2	57.4	1.436	1.608	54.7
142.0	59.8	59.5	1.286	1.879	57.5
142.4	70.2	62.3	1.134	2.344	65.4
143.0	78.3	65.0	1.047	2.925	66.4
145.0	87.9	72.0		3.966	74.2
3725 mm .					
161.2	10.8	28.6	2.849	1.068	27.8
157.3	18.7	38.5	2.401	1.129	36.9
153.9	30.2	47.5	1.973	1.240	44.1
131.8	41.3	51.7	1.636	1.438	48.1
150.8	50.8	54.3	1.427	1.685	51.4
150.4	60.4	57.6	1.287	1.965	54.5
150.9	68.7	59.7	1.159	2.331	58.7
151.3	72.4	61.3	1.122	2.505	60.2
152.8	79.7	64.5	1.036	2.979	65.7
156.6	89.8	72.5	. . .	4.099	67.1

$$
\begin{aligned}
& c=-0.00004605 \times \pi+0.197 \\
& d=0.00002632 \times \pi-0.068
\end{aligned}
$$

where π is pressure in mm . of Hg .
The area test of Redlich-Kister (3) for thermodynamic consistency is satisfied by the data for all the pressures studied.

SHIFT OF AZEOTROPE WITH PRESSURE

The shift of azeotropic composition with temperature is expressed by the following equation:

$$
\begin{equation*}
t_{a z}=-260.0 x_{a z}+301.0 \tag{2}
\end{equation*}
$$

where $t_{a z}=$ azeotropic temperature, ${ }^{\circ}$ C.; $x_{a z}=$ composition of the azeotrope (mole fraction of n-heptane).
The following relationship is obtained for the variation of the azeotropic temperature and the total pressure:

$$
\begin{equation*}
\log T=0.0963 \log \pi+2.285 \tag{3}
\end{equation*}
$$

where T is the azeotropic temperature in ${ }^{\circ} \mathrm{K}$. and π is total pressure in mm . of Hg .

MODIFIED METHOD OF PRESENTING THE $x-y$ DATA

$\log x_{1} / x_{2}$ is plotted against $\log y_{1} / y_{2}$ in Figure 2, yielding straight lines for different pressures which are expressed by the following relationship:

$$
\begin{equation*}
\log y_{1} / y_{2}=m \log x_{1} / x_{2}+c \tag{4}
\end{equation*}
$$

Since at azeotrope

$$
\begin{equation*}
\log x_{1} / x_{2}=c /(1-m) \tag{5}
\end{equation*}
$$

the azeotropic compositions are evaluated from the above equations. The relationship between the constants m and c in the above equations and total pressure is given by:

Figure 1.t-x-y

Figure 2. $\log x_{1} / x_{2}$ vs. $\log y_{1} / y_{2}$

$$
\begin{align*}
& m=-(140.0 / \pi)+0.303 \tag{6}\\
& c=-0.521 \log \pi+1.935 \tag{7}
\end{align*}
$$

CORRELATION AND PREDICTION OF AZEOTROPIC DATA

By combining Equations 5, 6, and 7, an equation for the change of azeotropic composition with total pressure can be obtained:

$$
x_{a z}=1 /\left(1+10^{K}\right)
$$

where

$$
K=\frac{(0.747 \log \pi-2.776) \pi}{200.86+\pi}
$$

The calculated and experimental values of azeotropic composition and azeotropic temperature at the pressures studied are given below:

Total Pressure, Mm. of Hg	$t_{a z}$			$x_{a z}$	
	Exptl.	Calcd.		Exptl.	Calcd.
1445	114.8	115.3		0.707	0.699
2205	129.8	131.2		0.635	0.643
2965	142.4	143.1		0.602	0.597
3725	150.5	152.2		0.570	0.560

NOMENCLATURE

$a, b, c, d=$ constants in Chao's equation
$m, c, K=$ constants
$P=$ vapor pressure of pure component
$x=$ mole fraction in liquid phase
$y=$ mole fraction in vapor phase
$\gamma=$ activity coefficient
$\pi=$ total pressure, mm. of Hg
$t=$ temperature, ${ }^{\circ} \mathrm{C}$.

LIterature CITED

(1) Chao, K. C., Hougen, O. A., Chem. Eng. Sci. 7, 246 (1958).
(2) "Handbook of Chemistry and Physics," 44th ed., Charles D. Hodgman, Ed., Chemical Rubber Publishing Co., Cleveland, Ohio, 1962-63.
(3) Redlich, O., Kister, A. T., Ind. Eng. Chem. 40, 345 (1948).
(4) Scheibel, E. G., Ind. Eng. Chem. 41, 1076 (1949).
(5) Smyth, C. P., Engel, E. W., J. Amer. Chem. Soc. 51, 2660 (1929).
(6) Vijayaraghavan, S. V., Deshpande, P. K., Kuloor, N. R.,

Indian J. Tech. 3, 267 (1965).
(7) Vijayaraghavan, S. V., Deshpande, P. K., Kuloor, N. R., J. Chem. Eng. Data 11, 147 (1966).

Received for review May 2, 1966. Accepted October 24, 1966.

Vapor-Liquid Equilibrium Data for the Systems Diisopropyl Ether-n-Heptane and Diisopropyl Ether-Carbon Tetrachloride at Medium Pressures

S. V. VIJAYARAGHAVAN, P. K. DESHPANDE, and N. R. KULOOR
Department of Chemical Engineering, Indian Institute of Science, Bangalare, India

Abstract

Vapor-liquid equilibrium data for the systems diisopropyl ether-n-heptane and diisopropyl ether-carbon tetrachloride have been reported at pressures of 760, 1520, and $\mathbf{2 2 8 0} \mathbf{~ m m}$. of $\mathbf{H g}$. The systems form ideal mixtures under the pressure range studied.

Vapor-LIqUID equilibrium data for the systems diisopropyl ether- n-heptane (3) and diisopropyl ethercarbon tetrachloride (4) are reported in the literature only at 685 mm . of Hg pressure. In the present work the systems have been studied at 760, 1520, and 2280 mm . of Hg .

EXPERIMENTAL

The equilibrium still and experimental procedure have been described earlier (2). The properties of reagents used are given in Table I. The samples were analyzed by the refractive index using Abbe's refractometer at $25 \pm 0.1^{\circ} \mathrm{C}$. The refractive index values are reproducible within ± 0.0001. The pressure in the still was measured by a bourdon gage with an accuracy of $0.5 \mathrm{lb} . / \mathrm{sq}$. in., the temperature by a thermometer of $0.1^{\circ} \mathrm{C}$. accuracy.

THERMODYNAMIC CONSISTENCY

The experimental vapor-liquid equilibrium data are given in Tables II and III and Figures 1 and 2.

Table I. Properties of Pure Components				
Compound	Density		Refractive Index	
	Exptl.	Lit. (1)	Exptl.	Lit, (1)
Diisopropyl ether	$0.7250^{\text {a }}$	$0.7258^{\text {a }}$	$1.3672^{\text {b }}$	$1.3678^{\text {b }}$
n-Heptane	$0.6838^{\text {a }}$	$0.68376{ }^{\circ}$	1.3880°	$1.3876^{\text {a }}$
Carbon tetrachloride	1.5840°	$1.5845^{\text {a }}$	1.4606^{a}	$1.4607{ }^{\text {a }}$

${ }^{\circ} \mathrm{At} 20^{\circ} \mathrm{C}$.

Liquid phase activity coefficients are calculated from the equation,

$$
\gamma_{i}=\frac{y_{i} \pi}{x_{i} P_{i}}
$$

Table II. System. Diisopropyl Ether (1)-n-Heptane (2)

$\begin{aligned} & \text { Temp., } \\ & \text { ○ C. } \end{aligned}$	x_{1}	y_{1}	γ_{1}	γ_{2}	$y_{\text {loaled }}$
760 mm .					
90.3	18.7	36.0	0.984	1.006	36.6
85.8	30.3	51.0	0.975	1.035	52.3
84.3	35.4	56.7	0.968	1.035	58.6
82.2	41.6	63.2	0.975	1.042	64.8
79.7	49.8	71.0	0.984	1.036	72.1
78.4	54.5	74.9	0.986	1.050	75.9
76.2	63.4	81.2	0.980	1.037	82.8
74.2	71.3	85.9	0.979	1.062	87.7
71.0	85.4	93.2	0.978	1.125	95.3
69.2	93.2	97.2	0.988	1.050	98.4
1520 mm .					
115.7	20.5	38.0	0.985	0.965	38.6
111.0	32.0	52.5	0.975	0.981	53.9
108.2	39.8	60.7	0.974	0.988	62.3
106.8	43.2	64.1	0.982	1.001	65.3
105.1	48.9	69.5	0.973	0.986	71.2
103.2	54.4	74.2	0.989	0.986	75.0
101.4	60.1	78.7	0.995	0.979	79.1
98.0	75.2	88.0	0.972	1.009	90.6
2280 mm .					
134.0	19.3	34.7	0.941	0.968	36.9
130.7	25.4	42.5	0.942	0.978	45.0
125.8	38.3	57.3	0.941	0.991	60.9
122.7	46.5	65.2	0.947	1.006	68.9
120.3	53.7	72.1	0.959	0.991	75.2
116.8	64.2	80.1	0.969	1.000	82.7
113.8	72.8	85.2	0.977	1.061	87.2
111.9	80.1	90.1	0.973	1.021	92.6

