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confirmed by generation of a theoretical dissociation curve 
as shown in Figure 2. The final stepwise values were pK1 
= 7.30 jz 0.02, P K ~  = 2.60 zt 0.02, and PKJ = 1.12 jz 

0.04. 

I I I I I 1 I 
2 3 4 5 6 7 8  

P H  

Figure 2. Experimental and theoretical proton dissociation 
curves for 2,2’-iminodimethylene dipyridine 

respectively). The temporary values were then refined to 
obtain the stepwise constants with one part per thousand 
agreement. The reliability of the h a 1  stepwise pK,’s was 
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Graphical Determination of ViriaI Coefficients 

by the Burnett Method 

lsopentane and Neopentane 
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A new graphical analysis has been developed for data obtained from the Burnett 
method of compressibility measurement. This method of analysis, based upon the 
Leiden virial equation of state, permits accurate determination of the second and third 
virial coefficients as well as the gas density a t  the initial pressure in the series of 
expansions. If the experimental data are sufficiently precise, fourth virial coefficients 
may also be obtained. In this paper, the method is applied to data on isopentane 
and neopentane from 30’ to 200’ C. 

S I N C E  its introduction 30 years ago, the Burnett method 
( 2 )  of gas compressibility measurement has slowly but 
steadily increased in importance as a rapid means of 
obtaining vapor phase PVT data with high precision. The 
method has been used from temperatures as low as -140” C. 
( 4 ,  5 )  to as high as 1200” C. (12) and a t  pressures ranging 
from sub-atmospheric (6) to greater than 525 atm. ( 4 ,  5 ) .  
The method has been employed with gases of extremely high 
purity, with binary gas mixtures, and with multicomponent 
(natural) gas mixtures. At the present time, a number of 

Burnett apparatus research projects are known to be active 
in the United States. 

Investigators in the past have generally analyzed Burnett 
experimental data either graphically to give compressibility 
factors or analytically, assuming some form of an equation 
of state, to give virial or virial-type coefficients. Both 
graphical and analytical methods were discussed in detail in 
an earlier paper (10) .  The purpose of the present paper 
is to introduce a new method of graphical analysis capable of 
generating second, third, and (with sufficiently precise 
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experimental data) even fourth virial coefficients from 
original, unprocessed data obtained by the Burnett method. 
A further benefit of the method i s  improved accuracy in 
the compressibility factor isotherms themselves. 

BURNETT METHOD 
The original Burnett apparatus consisted of a measuring 

chamber and an expansion chamber, the volumes of which 
are independent of pressure. Both chambers are maintained 
at  the same, constant temperature. The measuring chamber 
is filled to some unknown density, p a ,  with the experimental 
gas, and the initial pressure, p a ,  is measured. The gas is 
then expanded through an interconnecting valve to the 
previously evacuated expansion chamber. When thermal 
equilibrium is restored, the expansion valve is closed and 
another pressure, p l ,  is measured. The contents of the 
expansion chamber are then discarded and the process 
repeated. In  this manner a series of isothermal pressures is 
obtained: PO, p1,. . . , p r , .  . . , pf. The h a 1  pressure, pi,  is 
generally the lowest pressure that can be measured with 
adequate accuracy. 

Modi6cations of this basic method have included: use of 
expansion chambers to allow a choice of the density decre- 
ment with each expansion (8) ,  treatment of chamber 
volumes as functions of pressure ( 4 ,  51, and measuring and 
expansion chambers maintained at  constant but different 
temperatures (22). In the development presented here, it 
will be assumed that all chambers are maintained at  the 
same temperature. 

The apparatus constant is defined as the ratio of the 
system volume after the expansion to that before the 
expansion; this is in general represented by N,. The density 
before the rth expansion p r  - and the density after the rth 
expansion p r  are related by  the following: 

When the compressibility factor z = p / p R T  is introduced 
into Equation 1, there results 

The temperatures Tr-l  and T, have been retained to 
account for possible minor variations in temperature from 
expansion to expansion. Equation 2 is useful for the evalua- 
tion of N, ,  the limiting value of the apparatus constant as 
the pressure approaches zero. Since the compressibility 
factor approaches unity as pressure approaches zero, 

Equation 3 is the basis for the graphical method of deter- 
mining the basic apparatus constant. The method has been 
discussed in detail in an earlier paper (1 0). 

Repetitive application of Equation 1 leads to the fol- 
lowing relation: 

p r  = p a n  NF1 = pea;' (4) 

where P O  is the initial molal density for the series of expan- 
sions. Intjoducing the compressibility factor into Equa- 
tion 4 leads to 

, = 1  

from which it follows that 

Equation 6 is the basis for the graphical determination of 
the initial density, p o ,  by extrapolation to zero pressure, 
as illustrated by the Berlin curve in Figure 1. This technique 
for determining po might be called the Berlin method. 
With this value for p a ,  values of the compressibility factor, 
zr, a t  the various p r  are easily calculated from a rearrange- 
ment of Equation 5. 

VlRlAL COEFFICIENTS 

equation, is written as 
The vinal equation of state, also called the Leiden 

z = p J p R T =  1 + Bp + Cp'+ D p 3 + .  . . (7) 

in which B, C, and D are the second, third, and fourth 
virial coefficients, respectively. Since pressure rather than 
density is measured in the Burnett method, many previous 
investigators have concluded that Equation 7 cannot be 
used directly to analyze the data from a series of expansions 
(a run) in a Burnett apparatus. Consequently, the so-called 
Berlin equation of state has commonly been employed for 
both graphical and analytical treatments of the experi- 
mental data. 

z = 1 + B'p + C'p* + D'p3 + . . . (8) 

The virial-type coefficients B' ,  C', and D' may be related 
to the virial coefficients for the case in which Equations 7 
and 8 are both infinite series. Equation 8 generally does 
not converge so rapidly as does Equation 7; in other words, 
the graph of z us. p generally exhibits less curvature than 
does the graph o f t  us. p .  

Silberberg, Kobe, and McKetta (20) indicated a method 
whereby original experimental data from a Burnett appa- 
ratus might be treated analytically according to Equation 7. 
Least squares values for the virial coefficients as well as 
for the apparatus constant and the initial density could be 
obtained in an iterative procedure. The following develop- 
ment will reveal that a graphical method, involving first 
and second residuals, can similarly be employed directly 
with the experimental data (pr, T,) to yield the initial 
density and second, third, and fourth vinal coefficients, 
provided that the apparatus constant is accurately known. 

NEW METHOD 
Equation 7 may be rewritten as 

p J RT = p + Bp2 + Cp3 + Dp' + . . . (9) 

Applying this equation to the state of the system after the 
rth expansion, there results 

PRESSURE ATM. 
5 a9 8 16 2 4  32 40  

I .o 
0.0 0.2 0.4 as a8 1.0 n: 

Figure 1. Comparison of Leiden 
and Berlin methods 

Isopentone at 188.5" C. run No. 41, data 
of Silberberg ( I  I ) 
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(10) 

where 
B, = B(T,),  the second virial coefficient a t  T ,  

C, = C(T,), the third virial coefficient a t  T, 

D, = D(T,), the fourth vinal coefficient a t  T, 

Combining Equations 4 and 10 results in 

If the temperatures T I ,  Tz, . . . , T, vary only slightly, the 
effect.on E ,  C, and D may be neglected and these virial 
coefficients replaced by single values a t  the average tem- 
perature. 

-!?- T ,  = po + Bpi*;' + C&;' + Dp&? + . . . (12) 

RT, is plotted against 
irr , the zero-abscissa intercept is the initial density, P O ,  and 
the slope at the intercept is Bpi, permitting calculation of 
the second virial coefficient. Since the Leiden virial equation 
generally converges more rapidly than the Berlin equation, 
this Leiden method should result in a graph with less 
curvature and afford greater accuracy in determining p o  
than the Berlin method. This fact is clearly illustrated in 
Figure 1. The Leiden method of determining pa is also 
illustrated by the curves marked a in Figures 2 and 3. 
However, a still more sensitive method is described in the 
next section. 

The independent variable in Equation 12,  T;', is nothing 
more than a reduced density, that  is, the density at pressure 
p ,  is divided by the initial density of the run. Hence, the 
values of K;' always lie between zero and one. Another 
interesting property of K;' is the fact that i t  should not 
contain appreciable random errors, although systematic 
errors may be present from either the calibration to deter- 
mine N ,  or the correction for pressure. 

For the special case in which N1 = NP = . . . = N ,  = N ,  
r r  = N and Equation 12 becomes simply 

RT, 

Equation 1 2  indicates that, if 
-1 

I I I I I I 

5.0 

-I \ 

4.0 2 
5 

3.0 ,$ 

3.0' I I I 11.0 

ao 0.2 0.4 0.6 0.8 1.0 n: 

Figure 2. Determination of the virial coef- 
ficients of isopentane a t  200" C. 

Run No. 38, data of Silberberg ( 7  7 )  

1 I 

r O6 OB l o  
M W  

Figure 3. Determination of the 
virial coefficients of neopentane 

at 125" C. 
Run No. 11,  data of Heichelheim (8) 

For such a case, the graph of p,NIRT,  us. N-' will have a 
zero-abscissa intercept of P O  and a slope a t  the intercept of 
Bpi. Furthermore, regardless of the initial density and even 
the identity of the experimental gas, the set of values of 
the independent variable N-' will remain constant so long 
as N is unchanged. 

The state of the system before the rth expansion is 
described similarly by 

If Equations 13 and 14 are combined, the following rela- 
tion results: 

w (N$- r p) i - 1  = BRN (1 - N ) ~ ; +  

(15) CRN (1 - N 2 ) p W r +  DRN (1 - N 3 ) p 8 - " + .  . . 

For the data of a single run, Equation 15 takes the form of 

N" ( N  $- p) = b+cN- '+dN-"+.  . . (16) 

in which b,  c, and d are constants. Therefore, the residual 
quantity on the left may be plotted against N-' to give a 
graph which tends ever more toward linearity as r increases, 
that  is, as N-' approaches zero. This relationship provides 
a sensitive test of the value of N employed, and in fact 
offers a procedure for determining N which is alternative to 
that represented by Equation 3. This technique has been 
employed by Butcher and Dadson (3 )  and is illustrated here 
in Figure 10 in the Appendix. 
FIRST RESIDUAL DATA PLOTS 

A commonly used technique in the graphical treatment of 
data is to reduce the range of the dependent variable. Some 
other quantity, which varies with the independent variable 
in approximately the same manner or which the dependent 
variable approaches as a limit, is subtracted from its values. 
Such a residual type of function can easily be formed by 
rearrangement of Equation 12. 

, i - 1  

Equation 17 may also be written as 
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Equation 17 offers a very sensitive means for trial-and- 
error determination of the correct value of po from the 
experimental data of a run. As r increases (additional 
expansions), rr increases and P I X , /  RT, approaches po more 
closely, as is shown by Equation 12. Therefore, the value 
of the left side of Equation 17 becomes quite sensitive to 
assumed values of PO.  Since the equation predicts a graph 
which tends to become linear as r;’ decreases, and since the 
spacing of the values of T;’ along the abscissa also decreases, 
the departure of the data points from linearity a t  these low 
values of reduced density is quite marked. The best value 
of po is that  which gives the most nearly linear trend of 
the data points as the density decreases. However, since this 
is a residual treatment of the data, small random errors in 
p ,  a t  these points introduce relatively large deviations in the 
graph, with the result that  an occasional low-pressure data 
point must be ignored in the analysis. 

Figures 2 and 3 illustrate this technique. In Figure 2, 
curve b is based on the value of po determined for iso- 
pentane by Silberberg, McKetta, and Kobe ( I  1 ) from a plot 
of only the low-pressure data using the Berlin method. The 
slight curvature a t  low density indicates the value of po  was 
too high; use of a value approximately 0.04% lower resulted 
in the improved linearity of curve c .  The effect of 0.07% 
error in p o  is shown in Figure 3, based on the neopentane 
data of Heichelheim and coworkers (8). The value of po  = 
0.79976 gram mole per liter determined by Heichelheim 
using the Berlin method is clearly too high. In  both cases, 
the sensitivity of the residual plot to the value of p o  provides 
far greater accuracy in P O  than could be obtained by large- 
scale Leiden method plots of the data as illustrated by the 
curves marked a. 

From Equations 17 and 18, the following observations 
may be made: 

(19) 

R T, (20) 

Equations 19 and 21 indicate that plotting the left side of 
Equation 17 us. T;’ will give a graph with an intercept of 
Bpi and a slope a t  the intercept of Cpi (Figures 2 and 3).  
Therefore, for the same gas a t  the same temperature, each 
series of expansions started from a different initial density 
will give a different intercept and a different slope a t  the 
intercept. On the other hand, Equations 20 and 22 indicate 
that plotting the left side of Equation 18 us. T;’ will, for 
runs at the same temperature but with different initial 
densities, give the same intercept but different slopes a t  
the intercept. This feature of the new method is illustrated 
in Figure 4, in which run No. 38A is actually the last nine 
points of run No. 38, treated as if they constituted a 
separate run. 

SECOND RESIDUAL DATA PLOTS 

tion 17 by rearrangement. 
A second residual function may be created from Equa- 

I I I i I I  
a0 02 0.4 a6 0.8 LO 

0.1 ‘ 
rr: 

Figure 4. Consistency of the virial coef- 
ficients of isopentone at  200” C. 

Data of Silberberg ( I  I )  

These equations require a knowledge of po, determined from 
the first residual plot, and permit a trial-and-error deter- 
mination of B as that value which gives the most linear 
trend when the left side of either equation is plotted us. r;’, 
This second residual function will be very sensitive to the 
assumed value of B. However, this same sensitivity will 
cause wide scattering of the low-density data points unless 
extremely high precision of measurement was maintained. 
Fortunately, the second residual plot will possess less 
curvature than the first, so that the loss of the low-density 
data points is not generally serious. 

From Equations 23 and 24, the following observations are 
easily made: 

[ (e - - Bpd]I,pi3 = c 

Equations 25 and 27 show that plotting the left side of 
Equation 23 against T,’ will give a graph with an intercept 
of Cp,” and a slope a t  the intercept of Dpfi. For the same gas 
a t  the same temperature, the data from each run with a 
different initial density would give a different intercept and 
a different slope a t  the intercept. On the other hand, Equa- 
tions 26 and 28 indicate that plotting the left side of Equa- 
tion 24 us. T;’ will, for runs a t  the same temperature but 
with different initial densities, give the same intercept but 
different slopes a t  the intercept (Figure 5) .  

0.  I I 

.. 
0.0 0.2 0.4 0.6 0.8 1.0 

n;’ 
Figure 5 .  Determination of the virial coef- 
ficients of isopentane by the second residual 

method 
Data of Silberberg ( I  I )  Equation 23 may also be written as 
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APPLICATIONS 

lsopentane. Twenty of the Bumett apparatus runs with 
isopentane reported by Silberberg, McKetta, and Kobe (11) 
were analyzed by this new method. The temperature range 
of these runs was from 50" to 200" C. and included two runs 
a t  188.5" C., slightly above the critical temperature. The 
results of the first residual treatment are shown in Table I ;  
the apparatus constant used was that reported by Silber- 
berg. Because of the trial-and-error procedure with respect 
to PO, it  was more convenient to analyze each run separately 
according to Equation 17 (Figure 2 ) .  Therefore, some minor 
differences exist in Table I between second virial coefficients, 
determined according to Equation 19, reported for runs a t  
the same temperature. Agreement of the third virial coef- 
ficient.values from runs a t  the same temperature, deter- 
mined according to Equation 21, is also very good. 

Arithmetic average values of the second and third virial 
coefficients at  each temperature are plotted in Figure 6. 
Also shown in that same figure are the values of B derived 
from the same data by Silberberg, McKetta, and Kobe ( I I ) ,  
using extrapolations of isothermal residual volumes, 
R T / p  - V, to zero pressure, as well as the few values 
reported by Scott et al. (9). The results of the new method 
of analysis for B differ from those of the earlier treatment 
by from 2 to 16 ml. per gram mole. Consistency with the 
values reported by Scott and coworkers (9) is excellent. 

Also in Table I is a comparison between values of the 
initial density pa  determined in this work with those 
reported by Silberberg, McKetta, and Kobe ( I I ) ,  which 
were determined as intercepts from large-scale Berlin-type 
plots (Figure 1) of the low-pressure data. Deviations 
between the two sets of results do not exceed 0.07%, the 

values of p o  from a new method of analysis being consist- 
ently smaller than those reported by Silberberg. The 
average deviation is about 0.04%. Therefore, compress- 
ibility factors reported in the earlier paper would appear 
to be slightly too great, but the error is well within the 
estimated uncertainties of that work. 

Thirteen of the isopentane runs were analyzed by the 
second residual treatment according to Equation 24 (Figure 
5) .  Because of the greater sensitivity of the second residual 
to random errors, all runs a t  50" and 75" C., as well as one 
run each a t  125", 150°, and 175" C., had to be rejected. In  
theory, B could possibly have been determined by trial- 
and-error procedures, as outlined earlier. However, the 
precision of the data did'not warrant this technique. There- 
fore, the values of B employed were those (Table 11) which 
were read from the smoothed graph of B us. temperature 
(Figure 6). Severe scattering of low-pressure data necessi- 
tated disregarding all points below approximately 5 atm. 
The value of the third virial coefficient, C, was obtained a t  
each temperature from the common intercept of the second 
residual curves (Equation 28). Third and fourth virial 
coefficients so obtained are tahulated in Table I .  The third 
vinal coefficients are plotted in Figure 6, and the arithmetic 
average fourth virial coefficients in Figure 7 ,  as functions of 
temperature. Significant differences exist in the values of 
C determined by the two treatments, and the smoothed 
curve in Figure 6 compromises between the two sets of 
values. The final values of B ,  C, and D, smoothed with 
respect to temperature (Figures 6 and 7) are presented in 
Table 11. Uncertainties associated with these values are 
discussed in a later section. 

Neopentane. Twenty of the Burnett apparatus runs with 
neopentane reported by Heichelheim and coworkers (8) 

Table I. Results of Analysis of the lsopentane Data of Silberberg, McKetta, and Kobe ( I  I )  

First Residual Analysis Second Residual Analysis 

Temp., 
O C .  

50 
50 
75 
75 

100 
100 
100 
125 
125 
125 
150 
150 
150 
175 
175 
175 
188.5 
188.5 
200 
200 
200 

Run 
No. 
20 
21 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
41 
42 
37 
38 
38A" 

pa (MoleiLitei) -B ,  (liter/ C, (liter( C, (liter( D, (liter/ 
(11) This work g. mole) g. mole) g. mole) g. 

0.07815 0.07812 0.9581 0.5059 . . .  . . .  
0.05810 0.05809 0.9579 0.5059 . . .  . . .  
0.13696 0.13687 0.7715 0.3647 . . .  . . .  
0.12286 0.12285 0.7715 0.3645 
0.26148 0.26138 0.6427 0.2389 0.2320 -0.i20 
0.22226 0.22216 0.6427 0.2389 0.2320 -0.801 
0.27488 0.27488 0.6427 0.2388 0.2320 -0.724 
0.46926 0.46891 0.5579 0.1557 0.1496 -0.198 
0.42392 0.42392 0.5579 0.1557 . . .  
0.38357 0.38342 0.5579 0.1557 0.i496 -0.220 
0.78640 0.78620 0.4799 0.0959 
0.68553 0.68533 0.4800 0.0959 0.0983 -0.0545 
0.61674 0.61634 0.4800 0.0960 0.0983 -0.0534 
1.4348 1.4340 0.4208 0.0705 
1.2434 1.2430 0.4208 0.0706 O.06i5 -0.0ii3 
1.4739 1.4731 0.4209 0.0706 0.0675 -0.0147 
4.8399 4.8379 0.3882 0.0555 0.0525 0.00054 
4.6168 4.6148 0.3882 0.0555 0.0525 0.00054 
5.2308 5.2298 0.3663 0.0508 0.0507 0.00056 
4.6584 4.6564 0.3662 0.0508 0.0507 0.00056 
0.82101 0.82066 0.3661 0.0508 . . .  . . .  

'Run No. 38A consists of the last nine points of run No. 38, treated as a separate run. 

Table II. Smoothed Virial 

Temp., -B, (Liter/ 
c. G. Mole) 
0 (1.3706) 

25 (1.1497) 
50 0.9540 
75 0.7752 
100 0.6429 
125 0.5557 
150 0.4825 
175 0.4191 
188.5 0.3884 
200 0.3664 

Coefficients of lsopentane 

C, (Liter/ D, (Liter/ 
G. Mole)' G. Mole)3 

. . .  . .  
. . .  

0:506 . . .  
0.364 
0.239 -0:+48 
0.151 -0.209 
0.097 -0.054 
0.067 -0.015 
0.056 0.001 
0.049 0.002 

0 SCOT- d L/ 

0 20  40 6 0  80 I00 I20 140 160 I80 200  
TEMPERATLIRE I'C) 

Figure 6. Second and third virial coefficients 
of isopenta ne 

230 JOURNAL OF CHEMICAL AND ENGINEERING DATA 



were also analyzed. The temperature range of these runs 
was from 30" to 200" C. and included two runs a t  161.5" C., 
slightly greater than the critical temperature. As with the 
isopentane, the data were analyzed according to Equation 
17 (Figure 3). The apparatus constants used were those 
reported by Heichelheim (Table 111). Results for the 
second and third virial coefficients from runs a t  the same 
temperature were less consistent than for isopentane (Table 
IV),  and in general, scattering of the data points on the 
residual plots was more severe. Arithmetic average values 
of the second and third virial coefficients of neopentane are 
shown as functions of temperature (Figure 8), from which 
were read the smoothed values (Table V) .  Uncertainties 
associated with the values in Table V are discussed in the 
next section. 

.=0,0;1 p ' -0  2 

$ 0 4  

- 
-0 6 + 

90 , I O  M ,50 I70 190 210 
TECPERATLRE ?Cl 

-0 a 

Figure 7. The fourth virial coefficient 
of isopentane 

~ 

Table Ill. Burnett Apparatus: The University of Texas Helium Calibration Data of Heichelheim 
Run No. 2 

Nov. 60 
R P(RI" 
0 63.090 
1 55.975 
2 49.676 

Run No. 7 
Dec. 60 Cont. 

Run No. 9 Run No. 13 Run No. 16 
Mar. 61 

P(R) 

Run No. 18 
July 61 Cont. 

R 
Dec. 60 Cont. 

R P( R)  
Dec. 60 Cont. 

R P(RI R 
6 
7 
8 
9 

10 
11 
12  
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

P(RI 
484.086 
429.000 
380.332 
337.155 
298.928 
265.060 
235.091 
208.482 
184.922 
164.005 
145.516 
129.113 
114.517 
101.602 
90.216 
80.000 
70.988 
62.985 
55.905 
49.61.6 
44.017 
39.059 
34.660 
30.758 
27.298 
24.226 
21.504 
19.082 
16.930 

R 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Run 
R 
0 
1 
2 
3 
4 
5 
6 
7 
8 

7 51.496 
8 45.706 
9 40.551 

10 35.981 
11 31.930 
12 28.330 
13 25.144 
14 22.316 
15 19.797 
16 17.570 

1 650.299 
2 456.966 

740.165 
519.708 
365.559 
257.422 
181.380 
127.902 
90.218 
63.659 
44.922 
31.714 
22.381 

~. ... . . 

3 321.558 
4 226.491 
5 159.638 
6 11 2.568 

3 44.076 
4 39.110 
5 34.713 
6 30.809 
7 27.334 

7 79.386 
8 56.052 
9 39.566 

10 27.912 

33 27.062 
34 24.167 

8 24.260 
9 21.526 

10 19.100 
11 16.952 

Run No. 3 Nov. 60 
R P(RI 
0 59.079 
1 52.389 
2 46.485 
3 41.243 
4 36.588 
5 32.482 
6 28.815 
7 25.583 
8 22.699 
9 20.150 

10 17.878 
11 15.869 

35 21.585 
36 19.276 
37 17.217 

Run No. 10 Dec. 60 Run No. 14 Dec. 60 
R P(RI R P f R )  
0 1003.799 0 779.753 No. 17 Mar. 61 

P(W 
1245.182 
871.260 
611.230 
429.658 
302.433 
213.034 
150.152 
105.884 
74.668 

Run No. 19 July 61 
1 703.538 
2 494.166 

1 547.374 R P( Rj 
0 102 1.400 
1 717.879 
2 505.376 
3 356.213 

2 384.920 
3 271.019 

190.968 4 
5 134.638 

3 347.628 
4 244.828 
5 172.518 
6 12 1.696 
7 85.825 

6 94.964 4 251.268 
5 177.327 
6 125.193 
7 88.396 
8 62.498 

Run No. 15 Mar. 
R PfRI 

61 8 60.574 
9 42.751 

10 30.164 
11 21.287 

0 931.969 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

827.127 
734.323 
652.054 
579.144 
514.526 
457.184 
406.294 
361.123 
320.997 
285.333 
253.698 
225.617 
200.623 
178.455 
158.664 
141.126 
125.519 
111.655 
99.315 
88.385 
78.595 
69.916 
62.223 

9 52.731 9 44.166 
10 37.213 10 31.202 
11 26.255 11 22.048 Run No. 

R 
0 
1 
2 
3 

11 Dec. 60 
P(W 
861.591 
604.459 
424.885 
299.076 

Run No. 4 Dec. 60 
R P(R)  
0 61.407 
1 43.332 
2 30.581 

Run Na. 18 July 61 
R PIR)  R PIKI 

Run No. 20 July 61 
Run 
R 

No. 8 Dec. 
P f R )  

60 .. 
0 1154.490 0 914.477 

0 746.953 4 210.663 
1 661.470 5 148.491 

1 1028.690 1 643.073 
2 916.580 2 452.912 
3 817.029 3 319.321 
4 728.519 4 225.268 
5 649.616 5 159.011 

3 21.578 

Run No. 5 Dec. 60 
R P(RI 
0 56.699 
1 39.980 

- 2  28.237 
3 19.924 

585.941 
519.129 
460.036 
407.7 10 
361.484 
320.469 
284.122 
251.967 

6 579.388 6 112.288 
7 516.749 7 79.288 
8 461.034 8 56.035 

Run No. 12 Dec. 60 
R P f R )  

9 411.321 9 39.593 
10 367.035 10 27.987 
11 327.501 
12 292.341 
13 
14 232.881 R 
15 207.874 0 817.743 

260.924 Run No. 21 Jul 61 
d R )  

Run No. 6 Dec. 60 
R P(RI 
0 60.141 

10 223.468 0 958.373 
11 198.213 1 958.373 . . ~ -  - 
12  175.869 2 472.026 
13 156.001 3 332.118 
14 138.372 4 233.920 

1 42.436 
2 29.941 
3 21.134 5 164.858 24 55.373 16 185.556 1 575.402 

Run No. 9 Dec. 60 6 116.241 25 49.267 17 165.611 2 405.495 
285.905 7 82.001 26 43.826 18 147.866 3 

8 57.877 27 38.986 19 132.001 4 201.780 
Run No. 7 Dec. 60 R P f R )  

0 118.866 
1 105.479 9 40.849 28 34.688 20 117.889 5 142.409 0 1003.628 

1 888.264 2 93.580 10 28.819 29 30.852 21 6 100.547 105.229 
2 786.314 3 83.038 30 27.456 22 93.959 7 71.041 
3 696.289 4 73.678 Run No. 13 Dec. 60 31 24.429 23 83.888 8 50.204 
4 616.687 5 65.401 R P( R)  32 21.730 24 74.932 9 35.487 
5 566.329 6 58.017 0 927.395 33 19.342 25 66.922 10 25.074 

R P f R )  

34 17.203 26 59.791 
P(R)  = pressure in pounds per square inch after rth expansion. 

~ 
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Table IV. Results of First Residual Analysis for Neopentane" 

Temp 
'C. 
30 
30 
50 
50 
75 
75 
75 
75 

100 
100 
125 
125 ~ - .  

150 
150 
161.5 
161.5 
175 
175. 
200 
200 

., Run 
NO. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

po (G. Mole/Liter) 

(8)  
0.07050 
0.08108 
0.14473 
0.13902 
0.15125 
0.09414 
0.26310 
0.26447 
0.45727 
0.43695 
0.79978 
0.76587 
1.4476 
1.4808 
4.4470 
5.7693 
5.4212 
4.4885 
1.6599 
1.6673 

This work 
0.07045 
0.08104 
0.14463 
0.13882 
0.15095 
0.09406 
0.26275 
0.26417 
0.45727 
0.43675 
0.79918 
0.76457 
1.4447 
1.4776 .. 

4.4347 
5.7603 
5.4152 
4.4810 
1.6509 
1.6563 

-B, (Liter/ 
G .  Mole) 
0.9003 
0.9004 
0.7672 
0.7613 
0.6320 
0.6444 
0.6314 
0.6410 
0.5499 
0.5496 
0.4783 
0.4781 
0.4168 
0.4167 
0.3845 
0.3844 
0.3577 
0.3577 
0.3185 
0.3175 

"Based on the data of Heichelheim and coworkers (8).  

C, (Liter/' 
G .  Mole) 

0.2817 
0.2818 
0.1491 
0.1518 
0.1087 
0.1057 
0.1043 
0.1060 
0.0918 
0.0920 
0.0821 
0.0823 
0.0690 
0.0690 
0.0542 
0.0543 
0.0510 
0.0511 
0.0463 
0.0463 

IO 0.75 I I I I I  0 THS WORK 

0 20 40 60 80 100 120 140 160 180 200 
TEWERATURE CC) 

Figure 8. The virial coefficients of neopentane 

Table V. Smoothed Virial Coefficients of Neopentane 
Temp., -B, (Liter/ C, (Liter/ 

O C .  G. Mole) G. Mole)' 
30 0.9004 0.282 
50 0.7640 0.151 
75 0.6372 0.108 

100 0.5487 0.091 
125 0.4775 0.077 
150 0.4135 0.065 
161.5 0.3864 0.059 
175 0.3577 0.054 
200 0.3180 0.044 

Also shown in Figure 8 are the values of B derived from 
the same data by Heichelheim et al. (8), using extrapolations 
ofisothermal graphs of z - l / p  us. pressure. The smoothed 
results of the new method of analysis for B are consistently 
lower than those from the earlier treatment by from 18 to 
42 ml. per gram mole and are in much better agreement 
with the values reported by Hamann and Lambert (7) and 
by Beattie, Douslin, and Levine ( I )  (Figure 8). 

Table IV also presents a comparison of the values of 
initial density po  determined in this work with those re- 
ported by Heichelheim and coworkers @), which were deter- 
mined as intercepts from large-scale Berlin-type plots of the 
low-pressure data. Deviations between the two sets of data, 
excluding the 200°C. runs, are less than 0.3%, with an 
average deviation of 0.13%. Values of PO from the new 
analysis are consistently lower. The two runs a t  200" C., 
which could be treated by the first residual method, gave 
values of p o  lower by 0.54 and 0.66%, respectively, than 

those reported by Heichelheim. Apparently, the most 
probable reason for this discrepancy is a systematic error in 
the low-pressure measurements a t  this temperature, possibly 
resulting indirectly from an accident with the apparatus 
which required recalibration of the apparatus constants 
with helium. Compressibility factors reported in the earlier 
paper would therefore seem to be too high by as much as 
0.3% and at  200" C. by as much as 0.6%. 

An attempt was made to analyze the neopentane data by 
the second residual method to  yield values of the fourth 
virial coefficient. Unfortunately, the precision of the data 
did not warrant this treatment. 

SOURCES OF ERROR 
Because of the graphical smoothing performed for each 

run and the averaging and subsequent smoothing of virial 
coefficients with respect to temperature, random errors in 
pressure and temperature measurements would seem to 
have little effect upon the 6nal smoothed values of the 
virial coefficients. Therefore, only systematic errors would 
be likely to affect the results in this new method of analysis. 
The following are the sources of such errors: systematic 
temperature errors-negligible because of the relatively 
small effect of temperature on B ,  C, and D; systematic 
pressure errors-believed to be less than 0.04% of the 
pressure; and apparatus constant errors-believed to be less 
than 0.01%. 

Because of the nature of the residuals used here, the 
effect of s@tematic errors in pressure may be considerably 
cancelled by adjustment of the value of initial density p o  to 
result in a more linear graph at  low densities, an adjustment 
which is of course intrinsic in the method. I t  is therefore 
conceivable that such errors may result in erroneous values 
of initial density but nonetheless relatively accurate values 
of B ,  C, and possibly even D. The effect df systematic errors 
in pressure was not studied in detail in this investigation, 
but a preliminary analysis indicated that the estimated 
maximum error of 0.04% in pressure should not introduce 
an error greater than 0.4% in B or 1% in C. The effect on D 
cannot be realistically evaluated because of the lack of 
precision in the data. A detailed analysis of the effect of 
this source of error is planned, using a computer program 
presently under development. 

The effect of a systematic error in the apparatus constant 
was studied for run No. 38 with isopentane at  200" C. (11) 
(Table VI). This run was selected because of the precision 
of pressure measurements, including the lower pressure 
points. Values of N, reported by the original investigators 
(IO) to be 1.41507, were varied from 1.41460 to 1.41580, 
a change from -0.033% to +0.052%. Values of PO, B, and C 
were graphically determined by the first residual method 
for each value of N. Extreme errors in N caused a curva- 
ture too great to be corrected by adjustment of PO. The 
limits over which N could be varied without clearly re- 
vealing the presence of systematic error were from 1.41490 

TableVI. .Effect of Apparatus Constants on Virial Coefficients" 
Second 

First Residual Analvsis Residual Analvsis 
PO, -4 C ,  C,  D, 

(g. mole/ (liter/ (liter/ (liter/ (liter/ 
N liter) g. mole) g. mole)' g. mole)' g. 

1.41460 4.6384 0.3615 0.0485 . . . . . *  
1.41490 4.6494 0.3638 0.0494 0.0482 0.00110 
1.41507 4.6564 0.3662 0.0508 0.0607 0.00056 
1.41560 4.6764 0.3690 0.0523 0.0519 O.ooOo6 
1.41580 4.6844 0.3712 0.0538 . . . ... 

"Ieopentane at 2 W C . ,  run No. 38, data of Silberberg, McKetta, 
and Kobe (11). 
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Figure 9. The effect of the apparatus constant 
on the virial coefficients of isopentane 

at  200" c. 
Run No. 38, data of Silberberg ( I  I )  

to 1.41560. The first residual plots, with the curves dis- 
placed for clarity, for these two values as well as for the 
assumed correct value (1.41507) are shown in Figure 9. 

The effect of the variation in N on the results of the 
second residual method was also explored for run No. 38 
(Table VI). Values of P O  and B determined from the first 
residual plot for each value of N were used. For this set 
of data, the second residual plot gave greater errors in the 
third virial coefficient when N was too low and the first 
residual plot gave the greater errors in C when N was too 
high. The fourth virial coefficient of isopentane is so small 
a t  200°C. that it is tremendously sensitive to such errors 
in N ,  varying in this case by an order of magnitude. The 
absolute variation in D, however, was relatively small. 

Silberberg, Kobe, and McKetta (IO) stated a 95% 
probability that the apparatus constant determined by 
them was accurate to 0.01%. Heichelheim and coworkers (8) 
made no estimate of apparatus constant accuracies, but 
they are believed to be comparable. On the basis of this 
admittedly incomplete analysis, the authors estimated that 
apparatus constant uncertainties do not introduce errors in 
B greater than 1% and errors in C greater than 0.001 (liter 
per gram mole)', or about 2%. The effect on D of errors in 
N could not be generalized from this brief analysis. 

Over-all accuracies in virial coefficients are always 
difficult to estimate realistically. Certainly the temptation 
must be avoided to base such an estimate on reprodncibility 
a t  a given temperature, as subsequent smoothing with 
respect to temperature may indicate that the reproducible 
value at that temperature was probably in error. Although 
the effects of systematic errors in pressure and in apparatus 
constant are believed to be greatly minimized in the Burnett 
data as analyzed here, the complicated interaction of the 
parameters in the first and second residuals, along with the 
fact that the vinal coefficients are evaluated as limits, make 
virtually impossible any absolute statements in regard to 
accuracies of the virial coefficients. The errors in the 
second virial coefficient B at  the experimental temperatures 
reported in Tables I1 and V are believed not to  exceed 2%. 
Values reported a t  the higher temperatures are probably 
more accurate than this estimate. Errors in the third virial 
Coefficient C are believed to be less than 5% or 0.002 (liter 
per gram mole)', whichever is the greater. Ertors in the 
fourth vinal coefficient D probably do not exceed 10% or 
0.002 (liter per gram moleI3, whichever is the larger. 

APPENDIX 

Evaluation of Apparatus Constant. The singular importance 
of the Burnett apparatus constant is readily apparent from 
the relations developed here. When the number of expan- 
sions to low pressure is ten or more, an apparatus constant 
error no greater than 0.01% will introduce a maximum error 
in the compressibility factor data of 0.1% or more. For 

over-all accuracies of 0.05%, the uncertainty in N must be 
reduced to only a few parts in 100,000. Modem high-speed 
digital computers make it possible to process the experi- 
mental data from a single run according to Equation 12 to 
yield least-squares values of the zero-pressure apparatus 
constant N ,  as well as P O  and the vinal coe5cients. Un- 
fortunately, the results from such an analysis will be 
dependent upon the point of truncation of the equation. 
A residual type of graphical analysis which could eliminate 
the truncation problem and at  the same time provide high 
sensitivity to small changes in N (or N,) would have an 
obvious advantage, even though it might suffer from less 
objectivity than the impersonal least-squares procedures. 

Such a residual method was developed by Butcher and 
Dadson (3)  and is the basis of Equations 14 through 16 pre- 
sented here. This method has the advantage of operating 
directly on the experimental pressures and temperatures. 
Another residual method for testing the apparatus constant, 
similarly based upon the Leiden vinal equation of state, was 
presented by Canfield and coworkers (4 ,  5 ). This method is 
based upon the graph of the residual function V(z - 1) us. 
1/V.  To prepare such a graph for each trial value of N ,  
requires that a value of P O  be obtained from the data for 
each N,, the value of 2, calculated from the rearrangement 
of Equation 5, V, calculated for each point, and the graph 
of V,(z, - 1) us. l / V ,  be prepared. Since theory predicts 
this graph to approach linearity as 11 V,  approaches zero, 
the error in the assumed value of N, is revealed in excessive 
curvature at low densities. 

The authors desired to test the sensitivity of the residual 
method for determining N e  represented by Equation 15 and 
at  the same time compare the method with the more 
laborious graphical technique of Canfield and coworkers 
( 4 , 5 ) .  Consequently, the same data set was chosen as was 
used by Canfield et al. to illustrate their method. The data 
were obtained with helium at  -90" C. and extended from 
about 524 atm. to slightly less than 3 atm., involving a total 
of 13 experimental points (12 expansions). For convenience, 
Equation 15 was rewritten in a pressure-ratio form. As 
experimental temperatures were controlled to within 
f 0.002O C., the temperature ratio has been omitted. 

The residual graphs are shown in Figure 10 for four 
equally spaced values of N m  from 1.49900 to 1.49930; the 
curves are displaced by arbitrary amounts for the sake of 
clarity. The apparatus constant applicable to each expan- 
sion (N,) was calculated from N, using the equation 
presented by references ( 4 , 5 )  and employed in the ordinate 

I80 

160 
I' + < 
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I 140 

a 
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Figure 10. Residual test of apparatus constant 
Helium at -w" C., data of Canfield (4) 
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of Figure 10. The effect of this nonconstant apparatus 
“constant” in these graphs is to introduce slightly greater 
curvature a t  the high density end than would exist if N ,  
were truly constant. After the first three points, however, 
the effect is entirely negligible. 

Figure 10 shows readily that the value 1.49930 is too 
great. I t  is less obvious that the value 1.49900 is too small, 
but the tendency toward upward curvature of the low- 
density data points is clearly in evidence. On a large-scale 
plot, the curve for 1.49920 exhibits greater linearity a t  low 
densities than does that for 1.49910, but to prefer one over 
the other presumes knowledge of how rapidly the graph 
should approach linearity as the density decreases. On the 
basis of this figure, one might choose the value N ,  = 1.49915 
as best. In  Figure 10, the lowest-density point, which 
deviates markedly from the data trend except when N ,  is 
too great, actually represents a deviation in the pressure 
ratio p r / p ,  - of less than 0.01%. 

In their analysis of the same data, Canfield and coworkers 
( 4 , 5 )  apparently omitted from consideration the four low- 
pressure points (less than 14 atm.) and did not plot the 
three high-pressure points (above 190 atm.), although they 
stated that the variation of V ( t  - 1) with 1 /  V “is essentially 
linear” between 50 and 500 atm. (5). From their graphs, 
they were able to determine that the value of 1.49910 was 
too small and that 1.49920 was too large, selecting N ,  = 
1.49918 as the best value. This  value agrees within 0.002% 
with the value estimated above from the curves of Figure 10. 

In conclusion, with sufficiently precise helium calibration 
data, the residual method illustrated in Figure 10 should be 
capable of determining the apparatus constant within 
*0.005%. The method of Canfield et al. ( 4 ,  5) apparently 
is more sensitive and inherently will involve less data 
scatter, as each point is based upon a single pressure 
measurement rather than two, but requires considerably 
more data processing. Probably the most sensitive criterion 
for determining the apparatus constant would be the low- 
density linearity of the graph of V,(z, - 1) us.  1/  V,, with p o  
being determined for each trial value of N ,  by the trial- 
and-error first-residual procedure described earlier in this 
paper. 

NOMENCLATURE 

B = second virial coefficient, liter per gram mole 
B’ = coefficient of p in Berlin Equation 8, atm. 
C = third virial coe5cient, (liter per gram mole)’ 

C‘ = coe5cient of p z  in Berlin Equation 8, atm. 

D =  
D ’ =  
N =  

N,  = 
N ,  = 

P =  
R =  
T =  
v =  
z =  

fourth virial coe5cient, (liter per gram molela 
coe5cient o f p ’  in Berlin Equation 8, atm.-’ 
apparatus constant; ratio of system volumes after and 

before expansion 
apparatus constant applicable to r th  expansion 
apparatus constant a t  zero pressure 
absolute pressure, atm. 
gas constant, 0.0820544 (liter) (atrn.) / (gram mole) (” K.) 
absolute temperature, K. 
molal volume, liter per gram mole 
compressibility factor = p V /  RT 

7 ,  = n N,= .N,Nz .  . . N ,  
4 = 1  

p = molal density, gram mole per liter 
p o  = initial molal density, gram mole per liter 

Subscripts 

f = state of system after final expansion 
r = state of system after r th  expansion 

r - 1 = state of system before rth expansion 
0 = initial state of system 
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