LITERATURE CITED

(1) Ackermann, Th., Cruickshank, A.J.B., Giguère, P.A., "Experimental Thermodynamics Vol. 1, Calorimetry of NonReacting Systems," Chapter 12, J.P. McCullough, D.W. Scott, Eds., Butterworths, London, 1967.
(2) Allen, P.W., Everett, D.H., Penney, M.F., Proc. Roy. Soc. (London) Ser. A 212, 149 (1952).
(3) Anantaraman, A.V., Bhattacharyya, S.N., Palit, S.R., Trans Faraday Soc. 59 (5), 1101 (1963).
(4) Antoine, C., Compt, rend. 107, 681, 836 (1888).
(5) Aston, J.G., Szasz, G.J., Fink, H.L., J. Am. Chem. Soc. 65, 1135 (1943).
(6) Bottomley, G.A., Coopes, I.H., Nature 193 (4812), 268 (1962).
(7) Brown, I., Ewald, A.H., Australian J. Sci. 3, 306 (1950).
(8) Clarke, E.C.W., Glew, D.N., Trans. Faraday Soc. 62 (3), 539 (1966).
(9) Darmois, R., Darmois, J., J. Chim. Phys. 61 (6), 830 (1964).
(10) Dickinson, J.D., Eaborn, C., Chem. \& Ind. (London) 34, 959 (1956).
(11) Gomez-Ibañez, J.D., Shieh, J.J.C., J. Phys. Chem. 69 (5), 1660 (1965).
(12) Haggenmacher, J.E., Ind. Eng. Chem. 40, 436 (1948).
(13) Johnson, Matthey \& Co., Ltd., "Platinum for Resistance Thermometry," p. 8, 1958.
(14) McCullough, J.P., Person, W.B., Spitzer, R., J. Am. Chem. Soc. 73, 4069 (1951).
(15) McGlashan, M.L., Potter, D.J.B., Proc. Roy. Soc. (London) Ser. A 267, 478 (1962).
(16) Osborne, N.S., Ginnings, D.C., J. Res. Natl. Bur. Std. 39, 453 (1947).
(17) Scatchard, G., Wood, S.E., Mochel, J.M., J. Am. Chem. Soc. 61, 3206 (1939).
(18) Scatchard, G., Wood, S.E., Mochel, J.M., J. Phys. Chem 43 (1), 119 (1939).
(19) Smith, F.E., Phil. Mag. 24, 541 (1912).
(20) Spitzer, R., Pitzer, K.S., J. Am. Chem. Soc. 68 (12), 2537 (1946).
(21) Willingham, C.B., Taylor, W.J., Pignocco, J.M., Rossini, F.D., J. Res. Natl. Bur. Std. 35, 219 (1945).

Received for review November 28, 1966. Accepted March 20, 1967.

Compressibility Factors and Virial Coefficients of 2-Propanol

M. P. MORELAND ${ }^{1}$, J. J. McKetta, and I. H. Silberberg
Department of Chemical Engineering and Texas Petroleum Research Committee, University of Texas, Austin, Tex.

Abstract

The compressibility factor isotherms of gaseous 2 -propanol were determined by the Burnett method at $100^{\circ}, 125^{\circ}, 150^{\circ}, 175^{\circ}$, and $200^{\circ} \mathrm{C}$. At each temperature, vapor pressures were measured, and the second and third virial coefficients were determined by graphical methods.

The buRnett method (3) essentially consists of measuring a series of pressures obtained by making repetitive expansions of a gas from one chamber into a previously evacuated second chamber under isothermal conditions. The method and apparatus have been thoroughly discussed by Silberberg, Kobe, and McKetta (8). The basic equation relating the compressibility factor of the gas to the pressure and temperature of the gas after the r th expansion is

$$
\begin{equation*}
Z_{r}=\frac{P_{r} N^{\prime} / T_{r}}{P_{0} / Z_{0} T_{0}}=\frac{P_{r} N^{r}}{\rho_{0} R T} \tag{1}
\end{equation*}
$$

In Equation 1, the quantity N is the apparatus constant, defined as

$$
\begin{equation*}
N=\frac{V_{\mathrm{I}}+V_{\mathrm{II}}}{V_{\mathrm{I}}} \tag{2}
\end{equation*}
$$

where V_{I} is the volume of the first chamber and $V_{I I}$ is the volume of the second chamber into which the expansions are made. The zero-subscripted quantities refer to the condition of the gas before the first expansion in a particular run. The details of determining the values of

[^0]N and $P_{0} / Z_{0} T_{0}$ (or ρ_{0}) have been discussed by Silberberg and coworkers $(8,9)$.
The experimental apparatus employed in this work was that used by Heichelheim and coworkers (6), with the inclusion of a platinum resistance thermometer for more accurate temperature measurement and a fused quartz Bourdon tube pressure gage for low pressure determinations. The apparatus was a modified Burnett apparatus utilizing a third chamber of small volume into which expansions could be made in order to provide closer spacing of data points within a run. During any particular run, expansions could be made into either of the two expansion chambers in any order. Equation 1 then becomes
\[

$$
\begin{equation*}
Z_{r}=\frac{P_{r} \Pi_{r} / T_{r}}{P_{0} / Z_{0} T_{0}}=\frac{P_{r} \Pi_{r}}{\rho_{0} R T_{r}} \tag{3}
\end{equation*}
$$

\]

where

$$
\Pi_{r}=\prod_{i=1}^{r} N_{i}
$$

and N_{i} is the value of the apparatus constant applicable to the i th expansion.

The compressibility factor can be expressed in terms of molal density by the Leiden virial expansion

$$
\begin{equation*}
Z=1+B \rho+C_{\rho}^{2}+D_{\rho}^{3}+\ldots \tag{4}
\end{equation*}
$$

The coefficients B, C, and D are the second, third, and fourth virial coefficients, respectively, and are functions
of temperature only. The basic relationship of the Burnett method, Equation 3, may also be written as

$$
\begin{equation*}
\rho_{r}=\rho_{0} \Pi_{r}^{-1} \tag{5}
\end{equation*}
$$

Applying Equations 3 and 5 to Equation 4 yields the relation

$$
\begin{equation*}
P_{r} \Pi_{r} / R T_{r}=\rho_{0}+B \rho_{0}^{2} \Pi_{r}^{-1}+C_{\rho}^{0} \Pi_{r}^{-2}+D_{\rho}^{4} \Pi_{r}^{-3}+\ldots \tag{6}
\end{equation*}
$$

A residual type of function can be obtained by rearranging Equation 6 into

$$
\begin{equation*}
\left[P_{r} \Pi_{r} / R T_{r}-\rho_{0}\right] \Pi_{r}=B \rho_{0}^{2}+C \rho_{0}^{3} \Pi_{r}^{-1}+D \rho_{0}^{4} \Pi_{r}^{-2}+\ldots \tag{7}
\end{equation*}
$$

When the left side of Equation 7 is plotted as ordinate vs. Π_{r}^{-1} as abscissa for the data of a particular run, the resulting graph approaches linearity quite rapidly as the value of Π_{r}^{-1} approaches zero, that is, as the density approaches zero. Silberberg, Lin, and McKetta (9) have shown how this criterion of approach to linearity at low densities affords a means of determining the value of ρ_{0} very accurately. The use of the correct value of ρ_{0} in Equation 7 will result in linearity of the graph at low densities, whereas a value of ρ_{0} slightly too large or too small will result in a graph curving sharply upward or downward as Π_{r}^{-1} approaches zero. This is a very sensitive trial-anderror test, and the value of ρ_{0} so obtained is used in Equation 3 to calculate the compressibility factors at each pressure of the run.

When the correct value of ρ_{0} has been determined in this manner, the zero-abscissa intercept of the resulting graph will be $B \rho_{0}^{2}$, and the slope at the intercept will be $C_{\rho}{ }_{0}^{3}$. From these values of the intercept and slope at the intercept, the second and third virial coefficients may be calculated.

MATERIAL

The 2-propanol used in this work was reagent grade material obtained from the J. T. Baker Chemical Co. The alcohol, analyzed by gas chromatography, contained 0.12% water and 0.003% of some lower-boiling compound. After the sample of alcohol used in the measurements was dried by being slowly dripped through a bed of Type 4A Linde molecular sieve,, no water peak could be seen in the chromatogram of the material. After completion of the experimental measurements, a sample of the material was once again analyzed and no change in purity or evidence of decompositon was observed.

EXPERIMENTAL

Compressibility factor isotherms and vapor pressures were determined at 25° intervals from 100° to $200^{\circ} \mathrm{C}$. No compressibility data could be taken at temperatures lower than

Figure 1. Vapor pressure residuals of 2 -propanol

Table I. Smoothed Compressibility Factors of 2-Propanol

Temp., ${ }^{\circ} \mathrm{C}$.	Pressure, Atm.	$Z=P V / R T$
100	0.2	0.9943
	0.4	0.9887
	0.6	0.9827
	0.8	0.9763
	1.0	0.9696
	1.2	0.9623
	1.4	0.9546
	1.6	0.9450
	1.7	0.9382
	1.8	0.9286
	1.971°	
125	0.5	0.9889
	1.0	0.9772
	1.5	0.9651
	2.0	0.9522
	2.5	0.9382
	3.0	0.9235
	3.5	0.9068
	3.8	0.8953
	4.0	0.8860
	4.1	0.8798
	4.2	0.8706
	4.3	0.8490
	$4.357^{\text {a }}$	
150	1.0	0.9836
	2.0	0.9663
	3.0	0.9481
	4.0	0.9292
	5.0	0.9090
	6.0	0.8870
	7.0	0.8626
	7.5	0.8491
	8.0	0.8339
	8.5	0.8150
	$8.580^{\text {a }}$	0.8113
175	1.0	0.9873
	2.0	0.9742
	3.0	0.9609
	4.0	0.9473
	5.0	0.9331
	6.0	0.9184
	7.0	0.9031
	8.0	0.8870
	9.0	0.8703
	10.0	0.8528
	11.0	0.8344
	12.0	0.8149
	13.0	0.7938
	14.0	0.7704
	15.0	0.7413
	15.317°	0.7291
200	2.0	0.9794
	4.0	0.9584
	6.0	0.9368
	8.0	0.9140
	10.0	0.8897
	12.0	0.8644
	14.0	0.8373
	16.0	0.8182
	18.0	0.7768
	20.0	0.7429
	22.0	0.7051
	24.0	0.6617
	$25.333^{\text {a }}$	0.6261

${ }^{a}$ Indicates saturated vapor.
$100^{\circ} \mathrm{C}$. because the vapor pressure of the alcohol was too low below this temperature to give a sufficient number of measurable points in a run. Above $200^{\circ} \mathrm{C}$., the vapor pressure of the mercury used in the apparatus becomes great enough to introduce possible errors in the measured pressures.

Vapor Pressures. At each experimental temperature, at least three separate vapor pressure measurements were made with different ratios of vapor to liquid-phase volumes. No significant change in the vapor pressure with this ratio was observed, attesting to the purity of the alcohol. The averages of the experimental vapor pressures are compared on a residual basis with values reported by other investigators (1, 2, 10) in Figure 1. The smoothed values of vapor pressure are reported in Table I. These values are estimated to be in error by no more than 0.1%.

Compressibility Factors. At least two complete runs were made for each isotherm, and partial runs to define the
high-pressure regions better were made for the $100^{\circ}, 125^{\circ}$, 175°, and $200^{\circ} \mathrm{C}$. isotherms. The maximum pressure of each run was slightly below the vapor pressure of the 2 -propanol at that temperature. For each complete compressibility run, the value of ρ_{0} was determined graphically as described earlier, and the compressibility factor Z_{r} was calculated at each pressure P_{r} according to Equation 3. Values of the apparatus constants at $100^{\circ}, 150^{\circ}$, and $200^{\circ} \mathrm{C}$. were determined with helium using the graphical pressure-ratio technique described by Silberberg, Kobe, and McKetta (8).

The experimental compressibility data for 2-propanol are presented in Table II and shown graphically in Figure 2. None of the data points deviates from a smooth curve drawn through the points by more than 0.15%, and the average deviation is less than 0.05%. The smoothed values of the compressibility factors at the saturation point are also listed in Table I for the $150^{\circ}, 175^{\circ}$, and $200^{\circ} \mathrm{C}$. isotherms. Because of the excessive curvature of the 100°

Table II. Experimental Compressibility Factors of 2-Propanol

Isotherm		Expansion				Isotherm		Expansion			
Temp., ${ }^{\circ} \mathrm{C}$.	r	Chamber Used	$P_{r},$ Atm.	T	Z	Temp., ${ }^{\circ} \mathrm{C}$	r	Chamber Used	$\begin{gathered} P_{r} \\ \text { Atm. } \end{gathered}$	T_{r}	Z
100	0		1.7840	373.15	0.9330	150	6	II	1.9590	423.15	0.9670
	1	III	1.6134	373.15	0.9452		7	II	1.3983	423.16	0.9770
	2	III	1.4515	373.14	0.9527		0	.	8.0431	423.16	0.8327
	3	III	1.3037	373.15	0.9586		1	II	6.0420	423.16	0.8854
	4	III	1.1696	373.15	0.9635		2	II	4.4368	423.16	0.9204
	5	III	1.0482	373.15	0.9674		3	II	3.2158	423.16	0.9443
	0	. .	1.8382	373.15	0.9250		4	II	2.3114	423.15	0.9608
	1	III	1.6700	373.14	0.9415		5	II	1.6530	423.15	0.9727
	2	III	1.5046	373.15	0.9503		6	II	1.1770	423.15	0.9804
	3	III	1.3519	373.15	0.9566	175	0	. .	14.8493	448.16	0.7465
	4	III	1.2135	373.15	0.9620		1	II	11.5558	448.15	0.8224
	5	III	1.0878	373.15	0.9660		2	II	8.6861	448.15	0.8750
	6	III	0.9752	373.15	0.9702		3	II	6.3948	448.15	0.9119
	0		1.8504	373.16	0.9177		4	II	4.6448	448.15	0.9376
	1	III	1.6891	373.16	0.9386		5	II	3.3460	448.14	0.9561
	2	III	1.5247	373.16	0.9491		6	II	2.3968	448.15	0.9695
	0		1.8800	373.14	0.9060		7	II	1.7088	448.15	0.9784
	1	III	1.7328	373.15	0.9355		8	II	1.2161	448.15	0.9857
	2	III	1.5652	373.15	0.9466		0	...	13.0527	448.15	0.7922
	3	III	1.4085	373.15	0.9544		1	II	9.9406	448.15	0.8541
125	0		4.2171	398.17	0.8645		2	II	7.3800	448.16	0.8975
	1	II	3.1624	398.17	0.9176		3	II	5.3893	448.15	0.9278
	2	II	2.2976	398.16	0.9436		4	II	3.8946	448.15	0.9491
	3	II	1.6532	398.17	0.9610		5	II	2.7945	448.16	0.9640
	4	II	1.1821	398.18	0.9725		6	II	1.9962	448.15	0.9748
	0	. . .	4.1376	398.17	0.8773		7	II	1.4213	448.15	0.9825
	1	III	3.7731	398.17	0.8962		0		15.1248	448.19	0.7360
	2	II	2.7684	398.18	0.9307		1	III	14.1012	448.17	0.7686
	3	II	2.0012	398.18	0.9522		2	III	13.0013	448.17	0.7937
	4	II	1.4354	398.17	0.9668		3	III	11.9340	448.17	0.8160
	5	II	1.0250	398.17	0.9771		4	III	10.9155	448.17	0.8360
	0		4.2496	398.15	0.8614	200	0		23.8631	473.14	0.6645
	1	III	3.9220	398.15	0.8906		1	II	19.2024	473.15	0.7569
	2	III	3.5559	398.15	0.9047		2	II	14.7969	473.15	0.8256
	3	II	2.5986	398.15	0.9357		3	II	11.0840	473.15	0.8754
	4	II	1.8750	398.15	0.9556		4	II	8.1520	473.15	0.9114
	5	II	1.3434	398.15	0.9690		5	II	5.9208	473.15	0.9370
	0		4.1986	398.15	0.8722		6	II	4.2648	473.15	0.9554
	1	III	3.8441	398.16	0.8946		0		17.0564	473.15	0.7932
	2	III	3.4792	398.15	0.9072		1	II	12.9494	473.15	0.8524
	0		4.2341	398.16	0.8654		2	II	9.6044	473.15	0.8950
	1	III	3.8947	398.16	0.8918		3	II	7.0154	473.14	0.9254
	2	III	3.5289	398.16	0.9052		4	II	5.0710	473.15	0.9468
150	0		8.3770	423.16	0.8209		5	II	3.6417	473.15	0.9625
	1	III	7.6895	423.16	0.8440		0		24.6401	473.14	0.6456
	2	III	7.0102	423.16	0.8618		1	III	23.1879	473.15	0.6805
	3	II	5.1992	423.17	0.9047		2	III	21.6629	473.16	0.7120
	4	II	3.7899	423.15	0.9336		3	III	20.1237	473.15	0.7409
	5	II	2.7340	423.16	0.9534		4	II	15.6199	473.16	0.8140

Figure 2. 2-Propanol compressibility factors

Figure 3. Second virial coefficients of 2-propanol

Figure 4. Third virial coefficients of 2-propanol

and 125° isotherms near the saturation point, it was not possible to extrapolate these curves to obtain values of the saturated vapor compressibility factors. This abnormal deviation of the compressibility factors, which becomes much more pronounced near the saturation point, is attributed to the formation of dimers and other higher alcohol polymers through hydrogen bonding.

Virial Coefficients. Second and third virial coefficients of 2 -propanol were determined at each experimental temperature from the intercepts and limiting slopes of the residual function plots according to Equation 7. Table III lists these experimental values. The dependency of the virial coefficients upon temperature is shown in Figures 3 and 4. Figure 3 also shows values of the second virial coefficient reported by other investigators (4, 5, 7). Agreement among the sets of values is fairly good. A search of the literature revealed no values of the third virial coefficient with which the results reported here might be compared. Below about $180^{\circ} \mathrm{C}$., the third virial coefficient has negative values, a further indication of the strong associative forces existing between the 2 -propanol molecules. Smoothed values of the virial coefficients are given in Table IV.

Table III. Experimental Virial Coefficients of 2-Propanol Temp., ${ }^{\circ} \mathrm{C} . \quad-B, \mathrm{~L} . / \mathrm{G}$. Mole $-C,(\mathrm{~L} . / \mathrm{G} . \mathrm{Mole})^{2}$

100	0.8708	0.702
	0.8742	0.669
125	0.7160	0.439
	0.7145	0.312
	0.7145	0.264
150	0.5584	0.083
	0.5578	0.076
175	0.4599	0.009
	0.4541	0.017
200	0.3900	-0.024
	0.3875	-0.028

Table IV. Smoothed Virial Coefficients of 2-Propanol
Temp., ${ }^{\circ} \mathrm{C} . \quad-B, \mathrm{~L} . / \mathrm{G}$. Mole $-\mathrm{C},(\mathrm{L} . / \mathrm{G} . \text { Mole })^{2}$

100	0.889	0.68
125	0.697	0.27
150	0.557	0.082
175	0.457	0.011
200	0.388	-0.026

ACCURACIES

Because of the large number of data points taken, the values of the smoothed compressibility factors are assumed to be free of random errors. The maximum systematic errors in the smoothed compressibility factor isotherms are estimated to be as follows: 0.19% at $100^{\circ}, 0.14 \%$ at 125°, 0.12% at $150^{\circ}, 0.10 \%$ at 175°, and 0.09% at $200^{\circ} \mathrm{C}$.

Accuracy of virial coefficients obtained from Burnett data in the manner described here is difficult to evaluate. The effect of systematic errors in the temperature scale is entirely negligible. The effect of systematic errors in pressure would also be negligible, provided that they were uniform over the entire pressure scale used in this investigation. Errors in the values of the apparatus constants can introduce systematic errors into the calculations, but the nature of the graphical methods is such that these errors are selfcancelling to some extent. In view of these facts, the error analysis made by Silberberg, Lin, and McKetta (9) is equally applicable to the results of this study. Therefore, the error in the second virial coefficients is estimated to be less than 2% and in the third virial coefficients is estimated to be less than 5% or 0.002 liter $^{2} / \mathrm{gram} \mathrm{mole}^{2}$, whichever is the greater.

NOMENCLATURE

$B=$ second virial coefficient, $1 . /$ gram-mole
$C=$ third virial coefficient, (1./gram-mole) ${ }^{2}$
$D=$ fourth virial coefficient, (l./gram-mole) ${ }^{3}$
$N=$ apparatus constant; ratio of system volumes after and before expansion
$P=$ absolute pressure, atm.
$R=$ gas constant, 0.0820544 (1.) (atm.)/(gram-mole) $\left({ }^{\circ} \mathrm{K}.\right)$
$T=$ absolute temperature, ${ }^{\circ} \mathrm{K}$.
$V=$ molal volume, $\mathrm{l} . / \mathrm{gram}-\mathrm{mole}$
$Z=$ compressibility factor, $P V / R T$
$\Pi_{r}=\Pi N_{1}=N_{1} \cdot N_{2} \ldots N$,
$\rho=$ molal density, gram-moles/liter

Subscripts

r = state of system after r th expansion

- = initial state of system

literature Cited

(1) Ambrose, D., Townsend, R., J. Chem. Soc. 1963, pp. 361425.
(2) Barr-David, F., Dodge, B.F., J. Chem. Eng. Data 4, 10721 (1959).
(3) Burnett, E.S., J. Appl. Mech. 58, A136-40 (1963).
(4) Cox, J.D., Trans. Faraday Soc. 57, 1674-8 (1961).
(5) Foz, O.R., Morcillo, J., Mendez, A., Anales Real Soc. Espan. Fis. Quim. (Madrid) 50B, 17-34 (1954).
(6) Heichelheim, H.R., Kobe, K.A., Silberberg, I.H., McKetta, J.J., J. Chem. Eng. Data 7, 507-9 (1962).
(7) Kretschmer, C.B., Wiebe, R., J. Am. Chem. Soc. 76, 257983 (1954).
(8) Silberberg, I.H., Kobe, K.A., McKetta, J.J., J. Сhem. Eng. Data 4, 314-23 (1959).
(9) Silberberg, I.H., Lin, David C.K., McKetta, J.J., Ibid., 12, 226-34 (1967).
(10) Wilson, A., Simons, E.L., Ind. Eng. Chem. 44, 2214-19 (1952).

Received for review December 12, 1966. Accepted April 3, 1967.
Research supported in part by the National Science Foundation.

Vapor Pressures of Trialkyl Borates

PHOEBUS M. CHRISTOPHER
Department of Chemical Engineering, University of Louisville, Louisville, Ky. 40208
AVNER SHILMAN
Department of Chemistry, Newark College of Engineering, Newark, N. J. 07102

Abstract

Vapor pressure-temperature measurements have been observed for the following trialkyl borates: methyl, ethyl, propyl, isopropyl, butyl, and isobutyl. The data were fitted into the equation, $\log _{11} P_{m m}=A / T+B \log _{10} T+C$, and the constants A, B, and C, evaluated from a least-squares calculation on the IBM 1620 computer, were employed for finding the normal boiling point, latent heat, and entropy of vaporization for each of the borates.

ALIMITED amount of physical data for trialkyl borates is scattered throughout the literature (1.4), and apparently only a very few systematic experimental investigations offer such information for this class of compounds. A search of published data revealed one work that involved vapor pressure-temperature measurements for methyl and ethyl borate (8), and another (1) concerned with the calculation of the latent heats and entropies of vaporization for 17 organoboron compounds, the calculations having been made on the basis of almost fragmentary experimental data. In the present instance, vapor pressures have been observed for the following trialkyl borates: methyl, ethyl, propyl,
isopropyl, butyl, and isobutyl. The resulting data were fitted into an appropriate equation, and the constants evaluated from that equation were employed in the calculation of the normal boiling point, latent heat, and entropy of vaporization for each of the borates.

EXPERIMENTAL

The borates were distilled, then assayed by the standard mannitol-phenolphthalein method, and stored under nitrogen until ready for use; all samples showed a purity of better than 99.8%. The vapor pressure measurements were

[^0]: ${ }^{1}$ Present address: IBM Corp., Houston, Tex.

