Refraction, Dispersion, and Densities for Methanol Solutions of Benzene, Toluene, Aniline, and Phenol

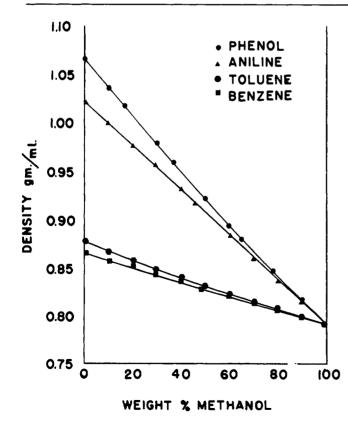
KEMAL M. SUMER and A. RALPH THOMPSON

Department of Chemical Engineering, University of Rhode Island, Kingston, R. I. 02881

The effect of chemical structure, composition, and temperature on refractive index, dispersion, and density measurements is presented using methanol solutions of benzene, toluene, aniline, and phenol. Refractive index measurements for sodium D and hydrogen F and C lines were determined along with the density measurements at 20° , 30° , and 40° C. The use of refractivity intercept plots, $n_{\rm D} - d/2$ vs. composition, is recommended as a possible means of indicating the presence, in the solution, of impurities with different structures and properties. The use of volume per cent composition in plotting refractivity intercept values gives closer to a linear correlation than weight per cent.

CONTINUING an investigation of the effect of molecular structure on density-refractive index relationships, the present study reports the effect of groups attached to the benzene ring. Furthermore the data presented can be used as an analytical tool in the analysis of the mixtures investigated. Dispersion $(n_{\rm F} - n_{\rm C})$ values are useful in determining the presence of impurities. In the case of phenol-methanol mixtures at 20° C., the presence of water in phenol is clearly shown.

EXPERIMENTAL


Purification and Preparation. The chemicals used in this research were obtained in their purest form, meeting ACS specifications, except phenol which contained 12% water. No further purification was necessary but extreme care was taken in handling these chemicals. Amber glass solution bottles were used for aniline and phenol solutions to avoid color change owing to light, and contact with air was kept

		100	ie i. Denzene-A	Nemunor Syste			
Methanol,	Composition,	Density, d, G./Ml.	Refractive In	dex Measureme	Dispersion,	Refractivity Intercept,	
Wt. %	Vol. %		$n_{\rm D}$	n _F	$n_{\rm C}$	$n_{\rm F} - n_{\rm C}$	$n_{\rm D} - d/2$
			At 2	0° C.			
0.00	0.00	0.8784	1.50192	1.51518	1.49607	0.01911	1.0627
10.06	11.04	0.8695	1.48281	1.49388	1.47847	0.01541	1.0481
20.33	22.08	0.8592	1.46251	1.47267	1.45862	0.01405	1.0329
29.62	31.85	0.8507	1.44447	1.45363	1.44099	0.01264	1.0191
39.98	42.51	0.8411	1.42553	1.43416	1.42253	0.01163	1.0050
49.72	52.33	0.8316	1.40771	1.41509	1.40490	0.01019	0.9919
60.78	63.24	0.8221	1.38924	1.39570	1.38658	0.00912	0.9782
70.23	72.37	0.8143	1.37433	1.38012	1.37185	0.00827	0.9672
80.09	81.71	0.8064	1.35876	1.36399	1.35675	0.00724	0.9556
90.01	90.91	0.7989	1.34408	1.34815	1.34170	0.00644	0.9446
100.00	100.00	0.7914		1.3334	•••	0.0054	0.9423
			At 3	0° C.			
0.00	0.00	0.8680	1.49450	1.50863	1.48929	0.01934	1.0614
10.06	11.03	0.8590	1.47694	1.49051	1.47504	0.01547	1.0475
20.33	22.06	0.8489	1.45686	1.46786	1.45420	0.01366	1.0324
29.62	31.82	0.8402	1.43923	1,44801	1.43572	0.01229	1.0191
39.98	42.48	0.8313	1.42078	1.42793	1.41681	0.01112	1.0051
49.72	52.30	0.8226	1.40260	1.40894	1.39915	0.00979	0.9913
60.78	63.22	0.8134	1.38481	1.38997	1.38099	0.00898	0.9781
70.23	72.34	0.8053	1.37002	1.37371	1.36608	0.00763	0.9674
80.09	81.69	0.7973	1.35453	1.35805	1.35763	0.00642	0.6559
90.01	90.90	0.7898	1.34027	1.34391	1.33781	0.00610	0.9454
100.00	100.00	0.7828			• • •	0.0053	0.9348
			At 4	0° C.			
0.00	0.00	0.8572	1.48937	1.50267	1.48304	0.01963	1.0607
10.06	11.03	0.8492	1.47373	1.48409	1.46874	0.01535	1.0491
20.33	22.05	0.8396	1.45270	1.46213	1.44840	0.01373	1.0329
29.62	31.82	0.8306	1.43402	1.44273	1.43016	0.01257	1.0187
39.98	42.48	0.8209	1.41498	1.42277	1.41156	0.01121	1.0045
49.72	52.30	0.8121	1.39759	1.40460	1.39444	0.01016	0.9915
60.78	63.21	0.8027	1.37939	1.38579	1.37716	0.00863	0.9780
70.23	72.34	0.7958	1.36453	1.36997	1.36192	0.00805	0.9666
80.09	81.69	0.7877	1.35041	1.35429	1.34661	0.00768	0.9566
90.01	90.90	0.7804	1.33583	1.3402	1.33324	0.00691	0.9456
100.00	100.00	0.7732			•••	0.0057	0.9348

Table I. Benzene-Methanol System

Table II. Toluene-Methanol System

Methanol,	Composition,	Density,	Refractive Inc	dex Measureme	Dispersion,	Refractivity Intercept.					
Wt. %	Vol. %	<i>d</i> , G./Ml.	n _D	n _F	n _C	$n_{\rm F} - n_{\rm C}$	$n_{\rm D} - d/2$				
At 20° C.											
$\begin{array}{c} 0.00\\ 10.07\\ 19.76\\ 30.06\\ 40.02\\ 48.63\\ 60.05\\ 70.15\\ 79.94\\ 90.21\\ 100.00\\ \end{array}$	$\begin{array}{c} 0.00\\ 10.92\\ 21.25\\ 32.01\\ 42.22\\ 50.91\\ 62.21\\ 72.02\\ 81.37\\ 90.99\\ 100.00\\ \end{array}$	$\begin{array}{c} 0.8666\\ 0.8586\\ 0.8512\\ 0.8445\\ 0.8361\\ 0.8292\\ 0.8292\\ 0.8205\\ 0.8134\\ 0.8058\\ 0.7990\\ 0.7914 \end{array}$	$\begin{array}{c} 1.49780\\ 1.47984\\ 1.46242\\ 1.44311\\ 1.42289\\ 1.40808\\ 1.38671\\ 1.37510\\ 1.35999\\ 1.34432\\ \ldots\end{array}$	$\begin{array}{c} 1.51127\\ 1.49019\\ 1.47223\\ 1.45234\\ 1.43412\\ 1.41850\\ 1.39856\\ 1.38118\\ 1.36509\\ 1.34900\\ 1.3334 \end{array}$	$\begin{array}{c} 1.49150\\ 1.47465\\ 1.45849\\ 1.43966\\ 1.42266\\ 1.40805\\ 1.38942\\ 1.37298\\ 1.35797\\ 1.354278\\ \ldots\end{array}$	$\begin{array}{c} 0.01977\\ 0.01554\\ 0.01374\\ 0.01268\\ 0.01146\\ 0.01045\\ 0.00914\\ 0.00820\\ 0.00712\\ 0.00622\\ \end{array}$	$\begin{array}{c} 1.0645\\ 1.0505\\ 1.0368\\ 1.0208\\ 1.0048\\ 0.9964\\ 0.9815\\ 0.9683\\ 0.9571\\ 0.9448\\ 0.9423\end{array}$				
			At 3								
$\begin{array}{c} 0.00\\ 10.07\\ 19.76\\ 30.06\\ 40.02\\ 48.63\\ 60.05\\ 70.15\\ 79.94\\ 90.21\\ 100.00\\ \end{array}$	$\begin{array}{c} 0.00\\ 10.92\\ 21.25\\ 32.01\\ 42.22\\ 50.91\\ 62.21\\ 72.02\\ 81.36\\ 90.99\\ 100.00\\ \end{array}$	0.8574 0.8495 0.8421 0.8344 0.8266 0.8203 0.8114 0.8039 0.7972 0.7893 0.7828	$\begin{array}{c} 1.49120\\ 1.47431\\ 1.45681\\ 1.43859\\ 1.43082\\ 1.40605\\ 1.38722\\ 1.37075\\ 1.37075\\ 1.35486\\ 1.34034\\ \ldots \end{array}$	$\begin{array}{c} 1.50559\\ 1.48481\\ 1.46655\\ 1.44727\\ 1.42918\\ 1.41366\\ 1.39366\\ 1.39366\\ 1.37648\\ 1.36000\\ 1.34500\\ \ldots \end{array}$	$\begin{array}{c} 1.48558\\ 1.47010\\ 1.45312\\ 1.43507\\ 1.41797\\ 1.40324\\ 1.38461\\ 1.36850\\ 1.35297\\ 1.33881\\ \ldots \end{array}$	$\begin{array}{c} 0.02001 \\ 0.01471 \\ 0.01343 \\ 0.01220 \\ 0.01121 \\ 0.01042 \\ 0.00905 \\ 0.00798 \\ 0.00703 \\ 0.00619 \\ \ldots \end{array}$	$\begin{array}{c} 1.0625\\ 1.0496\\ 1.0358\\ 1.0214\\ 1.0075\\ 0.9959\\ 0.9815\\ 0.9688\\ 0.9562\\ 0.9457\\ 0.9348\\ \end{array}$				
			At 4	0° C.							
$\begin{array}{c} 0.00\\ 10.07\\ 19.76\\ 30.06\\ 40.02\\ 48.63\\ 60.05\\ 70.15\\ 79.94\\ 90.21\\ 100.00\\ \end{array}$	$\begin{array}{c} 0.00\\ 10.94\\ 21.27\\ 32.04\\ 42.26\\ 50.94\\ 62.24\\ 72.05\\ 81.39\\ 91.00\\ 100.00\\ \end{array}$	$\begin{array}{c} 0.8480\\ 0.8405\\ 0.8330\\ 0.8259\\ 0.8175\\ 0.8108\\ 0.8022\\ 0.7947\\ 0.7874\\ 0.7870\\ 0.7732\end{array}$	$\begin{array}{c} 1.48676\\ 1.46955\\ 1.45178\\ 1.43293\\ 1.41565\\ 1.40128\\ 1.38233\\ 1.36620\\ 1.35129\\ 1.33630\\ \ldots \end{array}$	$\begin{array}{c} 1.50022\\ 1.48008\\ 1.46149\\ 1.44216\\ 1.42383\\ 1.40874\\ 1.38878\\ 1.37179\\ 1.35657\\ 1.34128\\ \ldots\end{array}$	$\begin{array}{c} 1.4800\\ 1.46560\\ 1.44814\\ 1.42979\\ 1.41285\\ 1.39855\\ 1.37986\\ 1.36414\\ 1.34932\\ 1.33495\\ \ldots \end{array}$	$\begin{array}{c} 1.02022\\ 0.01448\\ 0.01335\\ 0.01237\\ 0.01098\\ 0.01019\\ 0.00892\\ 0.00765\\ 0.00725\\ 0.00635\\ \ldots\end{array}$	$\begin{array}{c} 1.0627\\ 1.0493\\ 1.0353\\ 1.0200\\ 1.0069\\ 0.9958\\ 0.9812\\ 0.9689\\ 0.9576\\ 0.9463\\ 0.9348 \end{array}$				

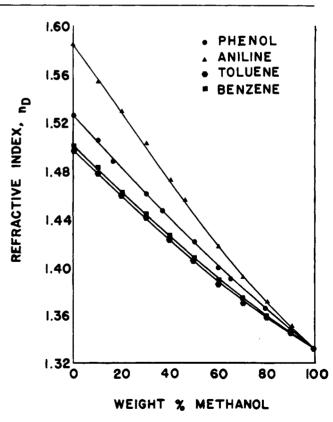


Figure 1. Densities for methanol solutions of benzene, toluene, aniline, and phenol at 20°C.

Figure 2. Refractive indices for methanol solutions of benzene, toluene, aniline, and phenol at 20° C.

Table III. Aniline-Methanol System

Methanol,	Composition,	Density,	Refractive Ind	ex Measuremer	Dispersion,	Refractivity Intercept,				
W t. %	Vol. %	<i>d</i> , G./Ml.	$n_{\rm D}$	$n_{ m F}$	n _C	$n_{\rm F} - n_{\rm C}$	$n_{\rm D}-d/2$			
			At 20)° C.						
0.00	0.00	1.0220	1.58660	1.60448	1.57991	0.02457	1.0756			
10.38	13.01	0.9999	1.55598	1.57880	1.55619	0.02261	1.0560			
$20.09 \\ 29.38$	$24.51 \\ 34.95$	$0.9768 \\ 0.9558$	$1.52961 \\ 1.50255$	$1.55375 \\ 1.52606$	$1.53417 \\ 1.50810$	$0.01958 \\ 0.01796$	$1.0412 \\ 1.0246$			
40.61	46.90	0.9336	1.30235 1.47246	1.49351	1.47800	0.01551				
45.74	52.13	0.9182	1.45727	1.47801	1.46388	0.01413	0.9982			
60.72	66.63	0.8840	1.41911	1.43837	1.42638	0.01199	0.9771			
70.13	75.20	0.8600	1.39209	1.41254	1.40210	0.01044	0.9621			
79.51	83.37	0.8381	1.37217	1.38448	1.37498	$0.00950 \\ 0.00669$	$0.9562 \\ 0.9434$			
$89.80 \\ 100.00$	$\begin{array}{c}91.92\\100.00\end{array}$	$0.8141 \\ 0.7914$	1.35041	$1.35976 \\ 1.3334$	1.35307	0.00669	0.9434			
100.00	100.00	0.7514	• • •	1.0004	•••		0.0420			
At 30° C.										
0.00	0.00	1.0125	1.58143	1.59950	1.57519	0.02431	1.0752			
10.38	13.02	0.9916	1.55229	1.57276	1.55045	0.02231	1.0565			
20.09	24.54	0.9702	1.52742	1.54884	1.52913	$0.01971 \\ 0.01799$	$1.0423 \\ 1.0256$			
$29.38 \\ 40.61$	$34.98 \\ 46.93$	$0.9482 \\ 0.9222$	$1.49974 \\ 1.47142$	$1.52479 \\ 1.48896$	$1.50680 \\ 1.47312$	0.01799 0.01584	1.0256			
45.74	$\frac{46.93}{52.17}$	0.9222	1.44886	1.47349	1.47512	0.01584	0.9925			
60.72	66.66	0.8780	1.11000	1.43238	1.42044	0.01194				
70.13	75.22	0.8550	1.39171	1.40609	1.39597	0.01012	0.9642			
79.51	83.39	0.8305	1.37448	1.38305	1.37426	0.00879	0.9592			
89.80	91.93	0.8061	1.34850	1.35593	1.34902	0.00691	0.9455			
100.00	100.00	0.7828	•••	•••		• • •	0.9348			
At 40° C.										
0.00	0.00	1.0045	1.58096	1.59431	1.56988	0.02443	1.0787			
10.38	13.08	0.9844	1.55115	1.56726	1.54501	0.02225	1.0596			
20.09	24.62	0.9641	1.52538	1.54243	1.52237	0.02006	1.0433			
29.38	35.08	0.9436	1.47142	1.53129	$1.51247 \\ 1.46737$	$0.01882 \\ 0.01579$	1.0125			
$40.61 \\ 45.74$	$47.04 \\ 52.28$	$0.9179 \\ 0.9051$		$1.48316 \\ 1.46777$	1.45303	0.01379 0.01474				
40.74 60.72	66.76	0.9031 0.8712	1.41845	1.42714	1.43503 1.41502	0.01208	0.9830			
70.13	75.31	0.8480		1.40386	1.39406	0.00980				
79.51	83.45	0.8243	1.37244	1.38071	1.37364	0.00708	0.9604			
89.80	91.96	0.8002	1.34496	1.35236	1.34587	0.00649	0.9448			
100.00	100.00	0.7732	•••	•••	•••		0.9348			

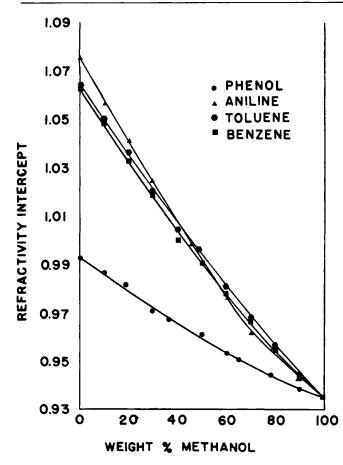
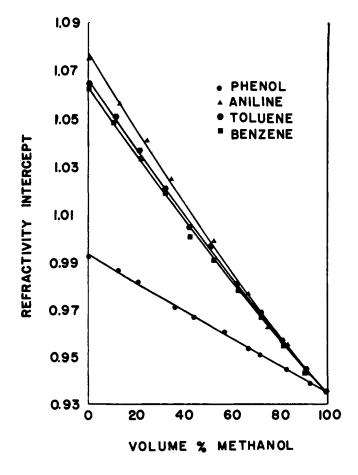


Figure 3. Refractivity intercepts for methanol solutions of benzene, toluene, aniline, and phenol at 20°C.—plotted vs. weight per cent

to a minimum. The densities and refractive indices of the pure compounds were compared with those reported in the literature (1, 4) and were in good agreement.

Solutions covering the entire composition range were prepared at approximately 10 weight % intervals using a Sartorius electronic balance.

Density Measurements. Densities of the prepared solutions were determined in duplicate at 20°, 30°, and 40° C. using 10-ml. calibrated Weld-type capped specific gravity bottles. Temperature control was provided by a Fisher Isotemp constant temperature bath which held temperatures to within $\pm 0.02^{\circ}$ C. Calibrations of the specific gravity bottles were performed at each temperature, using boiled demineralized water.


The density-composition plot at 20° C. is shown in Figure 1. Curves for all four organic solutions show slight curvature but absence of any maxima or minima (Tables I to IV).

Unlike some other systems (5, 7), density measurements may be used in analysis of these binary systems. Nevertheless, the smaller the density difference between the two compounds, the more the chance of an error.

Table IV. Phenol-Methanol System

Methanol,	Composition,	Density,	Refractive In	ndex Measurem	Dispersion,	Refractivity Intercept,					
Wt. %	Vol. %	d, G./Ml.	n _D	n _F	n _C	$n_{\rm F} - n_{\rm C}$	$n_{\rm D} - d/2$				
At 20° C.											
$\begin{array}{c} 0.00 \\ 10.00 \\ 19.70 \\ 29.92 \\ 36.86 \\ 49.98 \\ 60.47 \\ 65.36 \\ 78.32 \end{array}$	$\begin{array}{c} 0.00\\ 13.02\\ 20.99\\ 36.54\\ 44.04\\ 57.39\\ 67.34\\ 71.78\\ 82.96\end{array}$	$\begin{array}{c} 1.0666\\ 1.0358\\ 1.0070\\ 0.9795\\ 0.9590\\ 0.9201\\ 0.8938\\ 0.8808\\ 0.8474 \end{array}$	1.52623 1.50471 1.48795 1.46158 1.44737 1.42198 1.40088 1.39148 1.36651	1.53530 1.51472 1.49404 1.47125 1.45633 1.42948 1.40834 1.39802 1.37368	$\begin{array}{c} 1.52159 \\ 1.50006 \\ 1.47888 \\ 1.45799 \\ 1.44379 \\ 1.41854 \\ 1.39863 \\ 1.38938 \\ 1.36601 \end{array}$	$\begin{array}{c} 0.01371\\ 0.01466\\ 0.01516\\ 0.01326\\ 0.01254\\ 0.01094\\ 0.00971\\ 0.00864\\ 0.00767\end{array}$	0.9930 0.9868 0.9845 0.9718 0.9679 0.9619 0.9540 0.9511 0.9444				
90.53 100.00	$92.80 \\ 100.00$	$0.8165 \\ 0.7914$	1.34688	$1.35158 \\ 1.3334$	1.34457	0.00701	$0.9387 \\ 0.9423$				
100.00	100.00	0.1014			•••	•••	0.9420				
At 30° C.											
$\begin{array}{c} 0.00 \\ 10.00 \\ 19.70 \\ 29.92 \\ 36.86 \\ 49.98 \\ 60.47 \\ 65.36 \\ 78.32 \\ 90.53 \\ 100.00 \end{array}$	$\begin{array}{c} 0.00\\ 13.06\\ 21.04\\ 36.63\\ 44.13\\ 57.48\\ 67.42\\ 71.85\\ 83.01\\ 92.82\\ 100.00\\ \end{array}$	$\begin{array}{c} 1.0590\\ 1.0280\\ 1.0067\\ 0.9707\\ 0.9512\\ 0.9148\\ 0.8865\\ 0.8724\\ 0.8390\\ 0.8094\\ 0.7828\\ \end{array}$	$\begin{array}{c} 1.52216\\ 1.50110\\ 1.47979\\ 1.45942\\ 1.4423\\ 1.41891\\ 1.39831\\ 1.38878\\ 1.36620\\ 1.34419\\ \ldots\end{array}$	$\begin{array}{c} 1.53357\\ 1.51249\\ 1.49024\\ 1.46963\\ 1.45428\\ 1.42739\\ 1.40505\\ 1.39539\\ 1.37040\\ 1.34951\\ \ldots\end{array}$	$\begin{array}{c} 1.51778\\ 1.49651\\ 1.47528\\ 1.45582\\ 1.44165\\ 1.44165\\ 1.49615\\ 1.38666\\ 1.38666\\ 1.386401\\ 1.34444\\ \ldots\end{array}$	0.01579 0.01598 0.01496 0.01381 0.01263 0.01078 0.00890 0.00873 0.00639 0.00507	0.9927 0.9871 0.9764 0.9741 0.9686 0.9615 0.9551 0.9526 0.9467 0.9395 0.9348				
At 40° C.											
$\begin{array}{c} 0.00 \\ 10.00 \\ 19.70 \\ 29.92 \\ 36.86 \\ 49.98 \\ 60.47 \\ 65.36 \\ 78.32 \\ 90.53 \\ 100.00 \end{array}$	$\begin{array}{c} 0.00\\ 13.12\\ 21.12\\ 36.73\\ 44.24\\ 57.60\\ 67.52\\ 71.95\\ 83.08\\ 92.85\\ 100.00\\ \end{array}$	$\begin{array}{c} 1.0510\\ 1.0200\\ 0.9982\\ 0.9626\\ 0.9431\\ 0.9061\\ 0.8793\\ 0.8651\\ 0.8331\\ 0.8000\\ 0.7732 \end{array}$	$\begin{array}{c} 1.51968\\ 1.49775\\ 1.47538\\ 1.45564\\ 1.44035\\ 1.41416\\ 1.39421\\ 1.38417\\ 1.36073\\ 1.34163\\ \ldots\end{array}$	$\begin{array}{c} 1.53164\\ 1.50938\\ 1.48675\\ 1.46464\\ 1.44919\\ 1.42206\\ 1.40120\\ 1.39005\\ 1.36642\\ 1.34515\\ \ldots\end{array}$	$\begin{array}{c} 1.51507\\ 1.49312\\ 1.47158\\ 1.45150\\ 1.43698\\ 1.41141\\ 1.39177\\ 1.38187\\ 1.35913\\ 1.33848\\ \ldots \end{array}$	0.01657 0.01626 0.01517 0.01314 0.01221 0.01065 0.00943 0.00818 0.00729 0.00667	$\begin{array}{c} 0.9942\\ 0.9878\\ 0.9763\\ 0.9743\\ 0.9688\\ 0.9611\\ 0.9546\\ 0.9516\\ 0.9542\\ 0.9442\\ 0.9416\\ 0.9348\\ \end{array}$				

Figure 4. Refractivity intercepts for methanol solutions of benzene, toluene, aniline, and phenol at 20° C.—plotted vs. volume per cent

Refractive Index Measurements. Refractive index values were observed at 20°, 30°, and 40° C. using a Bausch & Lomb precision refractometer fitted with a thermometer calibrated to 0.1° C. Sodium and hydrogen lamps were used as the light sources. Temperature was controlled by a Fisher Isotemp constant temperature bath which was used to circulate water around the prisms. The tubing for the water was insulated to reduce temperature drop between the constant temperature bath and the refractometer. The red (c) and blue (F) lines obtained from the hydrogen lamp (2) were relatively brighter than that of the yellow line of the sodium lamp.

Data obtained for the systems are presented in Tables I to IV along with the calculated dispersions. A plot of refractive index (n_D) vs., composition is presented in Figure 2.

Refractive index readings can be used effectively in the analysis of these binary systems. The refractive index technique is faster, safer, and requires less handling of the solutions.

	Table V. Constants for Pure Compounds							
Equation	Temp., °C.	Benzene	Toluene	Aniline	Phenol	Methano		
Eykman	20	0.7516	0.7560	0.7473	0.6471	0.5639		
-	30	0.7514	0.7547	0.7481	0.6470	0.5653		
	40	0.7521	0.7565	0.7535	0.6490	0.5664		
Gladstone-Dale	20	0.5714	0.5744	0.5740	0.4934	0.4186		
	30	0.5708	0.5724	0.5742	0.4931	0.4197		
	40	0.5709	0.5740	0.5783	0.4944	0.4203		
Lorentz-Lorenz	20	0.3360	0.3381	0.3286	0.2879	0.2586		
	30	0.3362	0.3379	0.3294	0.2881	0.2595		
	40	0.3368	0.3390	0.3317	0.2891	0.2602		
Newton	20	1.4296	1.4348	1.4846	1.2464	0.9758		
	30	1.4242	1.4272	1.4824	1.2436	0.9772		
	40	1.4211	1.4274	1.4927	1.2459	0.9773		
Kurtz refractivity intercept	20	1.0627	1.0645	1.0756	0.9930	0.9359		
	30	1.0614	1.0625	1.0752	0.9927	0.9372		
	40	1.0607	1.0627	1.0787	0.9942	0.9384		

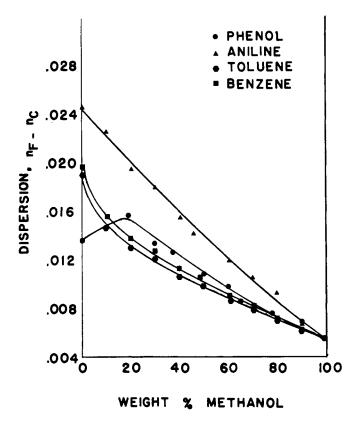


Figure 5. Dispersions for methanol solutions of benzene, toluene, aniline, and phenol at 20°C.

DISCUSSION

Using an IBM 1410 computer and 14 point accuracy, equations suggested by Newton, $n^2 - 1/d$, Gladstone-Dale, n - 1/d, Lorentz-Lorenz, $(n^2 + 1)/(n^2 + 2) \times 1/d$, Eykman $(n^2 + 1)/(n + 0.4) \times 1/d$, and Kurtz, refractivity intercept, n - d/2, were checked over the temperature range used. Of the five relationships tested, that of Eykman seemed to give the best constancy with change in temperature. Table V shows the results for the pure compounds. These relationships are useful in calculating refractive indices especially for light sensitive and toxic solutions.

Refractivity intercept values were determined as suggested by Kurtz and Ward (3) and presented by Rouleau and Thompson (5) at the temperatures used. When plotted vs. composition (Figure 3), phenol shows unusual deviation from the rest of the systems. This could be attributed to the water content of phenol, 12%, necessary to liquefy it. This might imply that refractivity intercept plots can be used effectively to indicate the presence of impurities with different molecular structures.

Refractivity intercepts are plotted *vs.* weight and volume per cent as shown in Figures 3 and 4, respectively. Although weight per cent would have a better practical application, volume per cent is more useful from a theoretical standpoint. The change from weight to volume per cent seems to smooth the data and avoids any intersection of curves.

Dispersion data $(n_{\rm F} - n_{\rm C})$ obtained from hydrogen F and c lines can be used not only as a criterion of purity but also as an indication of structure. The use of specific dispersion in detecting aromatics in hydrocarbon mixtures (8) and in the purification of alkylbenzenes (6) has been advocated among other applications.

Since dispersion is a differential value, it is reasonably independent of errors in calibration, etc. For small temperature ranges, dispersion is relatively constant. These properties would indicate that the use of dispersion as a physical constant should find a wide variety of applications.

In the systems analyzed, $(n_{\rm F} - n_{\rm C})$ dispersion increased slightly with the temperature while the ratio of the two indices $(n_{\rm F}/n_{\rm C})$ remained constant. Specific dispersion, on the other hand, is more sensitive to temperature change.

Dispersion is plotted vs. composition in Figure 5. The phenol-methanol system shows a behavior different from the rest of the curves at 20° C. The maximum present at 20° C. is reduced at 30° C. and disappears at 40° C. This can be observed in Table IV.

LITERATURE CITED

- (1) American Petroleum Institute Research Project 44, April 30, 1962.
- (2) Campanile, V.A., Lantz, V., Anal. Chem. 26, 1394 (1954).
- (3) Kurtz, S.S., Jr., Ward, A.L., J. Franklin Inst. 222, 563 (1936).
- (4) Manufacturing Chemists' Association Research Project, June 30, 1965.
- (5) Rouleau, D.J., Thompson, A.R., J. CHEM. ENG. DATA 7, 356 (1962).
- (6) Thorpe, R.E., Larsen, R.G., Ind. Eng. Chem. 34, 853 (1942).
- (7) Tseng, Y.M., Thompson, A.R., J. CHEM. ENG. DATA 9, 264 (1964).
- (8) Von Fochs, G.H., Anderson, A.P., Ind. Eng. Chem. 29, 319 (1937).

RECEIVED for review December 6, 1966. Accepted April 28, 1967.