Subscripts

- av = average
- e = experimental
- r = reference
- s = smooth

LITERATURE CITED

- Abas-Zade, A. K., *Zh. Eksperim. i. Teor. Fiz.* 23, 60 (1952).
 Carmichael, L. T., Berry, Virginia, Sage, B. H., J. CHEM.
- (2) Carmichael, L. T., Berry, Virginia, Sage, B. H., J. СНЕМ. ENG. DATA 8, 281 (1963).
- (3) Carmichael, L. T., Sage, B. H., Ibid., 9, 511 (1964).
- (4) Galloway, T. R., Sage, B. H., Ibid., 12, 59 (1967).
- (5) Hilsenrath, J., Beckett, C.W., et al., Natl. Bur. Std. (U. S.) Circ. No. 564 (1955).
- (6) Hilsenrath, J., Touloukian, Y.S., Trans. Am. Soc. Mech. Engrs. 76, 967 (1954).
- (7) Keyes, F.G., Proc. Am. Acad. Arts Sci. 68, 505 (1933).
- (8) Keyes, F.G., Trans. Am. Soc. Mech. Engrs. 73, 589 (1951).
 (9) Keyes, F.G., Brownlee, R.B., "Thermodynamic Properties of Ammonia" Wiley, New York, 1916.
- (10) Keyes, F. G., Dewey, Jane, J. Opt. Soc. Am. 14, 491 (1927).
- (11) Lambert, J. D., Cotton, K. J., et al., Proc. Roy. Soc. (London) 231A, 280 (1955).
- (12) Leng, D. E., Comings, E. W., Ind. Eng. Chem. 49, 2042 (1957).
- (13) Mann, W. B., Dickins, B. G., Proc. Roy. Soc. (London) 134A, 77 (1931).
- (14) Michels, A., Sengers, J. V., Van der Gulik, P. S., *Physica* 28, 1201 (1962).
- (15) Owens, E. J., Thodos, G. J., J. Am. Inst. Chem. Engrs. 3, 454 (1957).

- (16) Powell, R. W., Ho, C. Y., Liley, P. E., Natl. Bur. Std. (U.S.) Circ. No. 8 (1966).
- (17) Reamer, H. H., Sage, B. H., Rev. Sci. Instr. 26, 592 (1955).
 (18) Richter, G. N., Sage, B. H., CHEM. ENG. DATA SER. 2, 61 (1957).
- (19) Richter, G. N., Sage, B. H., J. CHEM. ENG. DATA 4, 36 (1959).
- (20) Ibid., 8, 221 (1963).
- (21) Sage, B. H., Lacey, W. N., Trans. Am. Inst. Mining Met. Engrs. 136, 136 (1940).
- (22) Schaefer, C.A., Thodos, G., Ind. Eng. Chem. 50, 1585 (1958).
- (23) Senftleben, Hermann, Z. Angew. Phys. 17, 86 (1964).
- (24) Senftleben, Hermann, Gladisch, Heinz, Z. Physik 125, 653 (1949).
- (25) Sengers, J.V., Intern. J. Heat Mass Transfer 8, 1103 (1965).
- (26) Sengers, J.V., Natl. Bur. Std. (U. S.) Misc. Publ. 273 (1966).
- (27) Sengers, J.V., "Transport Properties of Compressed Gases," Natl. Bur. Std. (U. S.), prepared for proceedings of 4th Tech. Mtg. of Soc. Engrng. Science, 1967.
- (28) Smith, W. J. S., Durbin, L. D., Kobayashi, Riki, J. CHEM. ENG. DATA 5, 316 (1960).
- (29) Svehla, R. A., NASA Tech. Rept. R-132 (1962).
- (30) Vines, R. G., Bennett, L. A., J. Chem. Phys. 22, 360 (1954).
 (31) Wilson, M. P., General Dynamics Corp., GA-1355, TID-4500, 15th Ed. January 1960.
- (32) Wirth, H., Klemenc, A., Monatsh 83, 879 (1952).

RECEIVED for review August 11, 1967. Accepted September 15, 1967. Work supported by the National Science Foundation under Grant GP-2357. This paper was accepted as a contribution to this journal by R.L. Pigford, Editor of *Ind. Eng. Chem. Fundamentals.*

Isopiestic Measurements on the System $H_2O-NaCl-Na_2SO_4$ at $25^{\circ}C$.

R. F. PLATFORD¹

Fisheries Research Board of Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada

The mean activity coefficients and the Harned coefficients for the system H₂O-NaCl-Na₂SO₄ have been calculated from isopiestic vapor pressure measurements for ionic strengths up to 6m. The results for NaCl in the system agree with those reported using e.m.f. measurements. Values for α_c in Harned's equation were -0.008, -0.010, -0.032, and -0.040 at i = 0.7, 1, 3, and 6, respectively.

'**L**'ERNARY systems consisting of aqueous NaCl and another salt are important sea water analogs; this paper presents activity coefficients for the system H_2O -NaCl-Na₂SO₄ for comparison with results from the systems H_2O -NaCl-MgSO₄ (5) and H_2O -NaCl-MgCl₂ (6).

Activity and osmotic coefficients of pure Na₂SO₄ solutions at 25° C. have been reported for concentrations up to 4m(7) although the solubility of this salt is reported (10) to be only 1.96m at 25° C. Anhydrous Na₂SO₄ liberates enough heat on solution in water so that the warm solution is unsaturated, and on cooling to room temperature the solution becomes supersaturated with respect to Na₂SO₄. 10H₂O, which is the stable solid phase at 25° C. The system H₂O-NaCl-Na₂SO₄ is the first ternary system supersaturated with one of its components that has been studied by the isopiestic method.

EXPERIMENTAL

Reagents. Sodium chloride was precipitated with HCl and fused in a platinum dish. Sodium sulfate was recrystallized twice from distilled water and dried at 100° C. to give the anhydrous salt. The solubility of Na₂SO₄·10H₂O was determined by evaporating to dryness solutions saturated at 25° C. The mean of seven runs was $1.9503 \pm 0.0020m$.

Method. Solutions were equilibrated in seven silver cups resting in depressions in a gold plated copper block (5). The block fitted snugly in a 10-cm. Dry Seal desiccator sealed with a rubber O-ring. The desiccator was evacuated with a water aspirator and rotated for from 4 to 7 days at an angle in a water bath kept at $25^{\circ} \pm 0.005^{\circ}$ C.

Solution concentrations were determined by weighing dry pure salts into the cups, adding water, and reweighing at the end of each run. One cup usually contained pure Nacl solution, another contained pure Na $_2SO_4$ solution, the rest were aqueous mixtures of the two salts.

Solutions were easily supersaturated with Na_2SO_4 by adding an appropriate amount of water to the anhydrous

¹Present address: Canada Centre for Inland Waters, Great Lakes Division, Inland Waters Branch, Department of Energy, Mines and Resources, Burlington, Ontario, Canada

salt contained in one of the isopiestic dishes. During solution the temperature increased enough to dissolve all the salt, and when the solution was cooled to 25° C., it became supersaturated and remained so for the duration of the run. Each of these solutions was tested for supersaturation by seeding with a crystal of Na₂SO₄·10H₂O.

Treatment of Data. The isopiestic ratio was computed as a power series in x_c (4) using a polynomial curve fitting program.

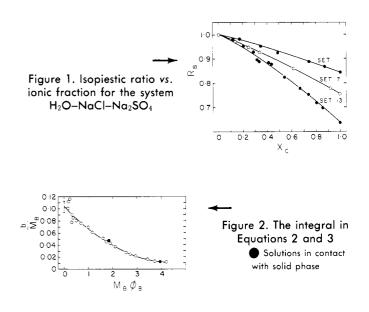
Robinson (8) has shown that if

$$R_B = 1 - ax_C - bx_C^2 \tag{1}$$

then

$$\log \gamma_B = \log \Gamma_B + \log R_B + \frac{x_C^2}{2.303} \int_0^{M_B \phi_B} \frac{b}{M_B} d(M_B \phi_B)$$
(2)

and


$$\log \gamma_{C} = \log \Gamma_{C} + \log R_{C} + \frac{(1 - x_{C})^{2}}{2.303} - \int_{0}^{M_{B}\phi_{B}} \frac{b}{M_{B}} d(M_{B}\phi_{B})$$
(3)

The integral was evaluated numerically and log γ_B and γ_C were evaluated at several values of I_B/I , where I is the ionic strength of the mixture.

RESULTS AND DISCUSSION

Typical plots of R_B vs. x_C are shown in Figure 1. The values of R_B at $x_C = 1$ and for $M_B > 2m$ are slightly higher (by less than 0.5%) than those calculated from literature (9) values. Using literature values would have changed the log γ by less than 0.002. The coefficients for Equation 1 are shown in Table I and the integral in Equations 2 and 3 is shown in Figure 2.

In Table I, set 13 is a combination of four runs with saturated Na_2SO_4 as the reference solution. The scatter (Table I and Figure 1) is quite large partly because two of the runs were done with dried A.R. grade chemicals instead of the purified reagents. More important was that temperature changes of 0.005° C. combined with the large temperature coefficient of solubility of sodium sulfate could

have caused concentration changes of 0.002m in the reference solution from run to run. Even so, set 13 is not out of line with the other sets. A solid phase was found in the Na₂SO₄ reference solution after two of the runs (set 21, Table I). Although enough of this solution was not available for analysis, the concentration of NaCl (about 3.62m) in isopiestic equilibrium with the Na₂SO₄ solution indicated that it was about 3.64m Na₂SO₄. The solid phase was probably the metastable hydrate Na₂SO₄. 7H₂O, which has a reported (10) solubility of 3.73m. Set 21 is included for interest's sake; it is not as reliable as the other sets as its solution compositions were probably continuously changing.

The uncertainty in the integral in Equations 2 and 3 was estimated from Figure 2 to be 0.005 or less, depending on the values of M_B and x_c ; the uncertainty in each of the log Γ and log R terms was about 0.001, so that the uncertainty in log γ was usually about 0.005.

A cubic equation gave a slightly better fit to the data in Table I than a binomial equation, but this would have

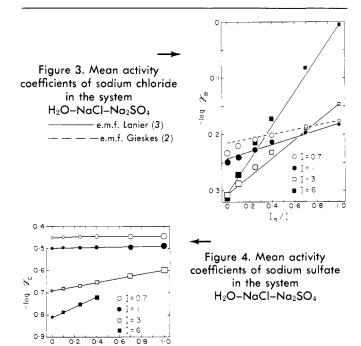

Tal	ble I. Coefficie	ents of Equa	tion 1 and I	ntegral Argu	uments of	Equations 2	2 and 3
Set	$M_{\scriptscriptstyle B}$	M_c	а	b	$\overline{\Delta}^{c}$	$M_B\phi_B$	b/M_B
1	0.1466	0.1156	0.1429	0.0148	0.20	0.136	0.101
2	0.2012	0.1626	0.1500	0.0225	0.09	0.186	0.112
3	0.2552	0.2102	0.1580	0.0296	0.12	0.235	0.116
4	0.3288	0.2753	0.1782	0.0257	0.02	0.302	0.078
5	0.3378	0.2826	0.1740	0.0303	0.05	0.311	0.090
6	0.4035	0.3446	0.1844	0.0343	0.04	0.371	0.085
7	0.5399	0.4770	0.2017	0.0430	0.03	0.498	0.080
8	0.7669	0.7100	0.2201	0.0590	0.05	0.711	0.077
9	1.0625	1.0356	0.2403	0.0743	0.05	0.995	0.070
10	1.2286	1.2210	0.2539	0.0753	0.08	1.059	0.061
11	1.6562	1.7105	0.2697	0.0837	0.04	1.598	0.0505
12	1.7858	1.8536	0.2752	0.0813	0.04	1.736	0.0455
13	1.8704	1.9503^{a}	0.2770	0.0885	0.47	1.826	0.0475
14	1.9066	1.9905	0.2775	0.0828	0.04	1.865	0.0435
15	2.1096	2.2075	0.2844	0.0778	0.05	2.088	0.037
16	2.5080	2.6256	0.2938	0.0690	0.03	2.543	0.0275
17	2.6451	2.7588	0.2949	0.0655	0.03	2.703	0.025
18	2.8402	2.9472	0.2971	0.0606	0.04	2.940	0.0215
19	3.2348	3.3163	0.2962	0.0535	0.04	3.429	0.0165
20	3.4534	3.5109	0.3015	0.0425	0.02	3.712	0.0123
21	3.62	3.64°	0.2986	0.0405	0.60	3.910	0.0112
22	3.8147	3.8140	0.2926	0.0413	0.06	4.200	0.0108
^a Na ₂ SO ₄ ·10H ₂ O. ^b Na ₂ SO ₄ ·7H ₂ O. ^c $\overline{\Delta}$ = Average of $[R_B (calcd.) - R_b (obsd.)] \times 100$.							

Table II. Mean Activity Coefficients in the System $H_2O-NaCl(B)-Na_2SO_4(C)$ at 25° C.

	-le	$-\log \gamma_B$		
$m_B + m_C$	E.m.f.	Isopiestic	$-\log \gamma_{C}$, Isopiestic	
0.70	0.176	0.176	0.447	
0.49 + 0.07		0.186	0.447	
0.28 + 0.14		0.201	0.444	
0.175 ± 0.175		0.209	0.446	
0.07 + 0.21		0.220	0.447	
0.233	0.215^{a}	0.233	0.452	
1.0	0.182	0.182	0.491	
0.7 + 0.1		0.196	0.496	
0.4 + 0.2		0.214	0.495	
0.25 + 0.25		0.227	0.495	
0.1 + 0.3		0.240	0.497	
0.33	0.243°	0.250	0.500	
3.0	0.146	0.146	0.594	
2.1 + 0.3		0.189	0.628	
1.2 + 0.6		0.232	0.655	
0.75 + 0.75		0.257	0.669	
0.3 + 0.9		0.287	0.682	
1.0	0.307^{b}	0.308	0.692	
6.0	0.006	0.006		
4.2 + 0.6		0.082		
2.4 + 1.2		0.172	0.720	
1.5 + 1.5		0.217	0.752	
0.6 + 1.8		0.270	0.789	
2.0	0.306°	0.314	0.811	
^a From Gieskes (2).	From Lanier (3).		

Table III. Coefficients in Harned's Equation

	I = 0.7	I = 1	I = 3	I = 6	Ref.
α _B	Not constant	This work			
	0.0557	0.0605	0.0537	0.0500	(3) (2)
α ₍ ·	-0.008	$0.0453 \\ -0.010 \\ -0.0141 \\ -0.0431$	0.0490 -0.032 -0.0205 -0.0319	-0.040 -0.0333	(1) This work (3) (1)

complicated the treatment of the data and would probably have not increased the reliability of the results.

The calculated activity coefficients are shown in Table II and are plotted in Figures 3 and 4. The values for γ_B as derived from e.m.f. measurements (1-3) are shown in Figure 3 and Table III for comparison. The isopiestic results agree with the e.m.f. results within 0.01 in log γ_B , although curvature in the plots of isopiestic log γ_B vs. I_B/I at low I_B lead to slightly different values of log γ_B at $I_B = 0$ between the two methods.

Values for α_B and α_C in Harned's equation (log γ_C = log $\gamma_{C}^{0} - \alpha_{C} I_{B}$) are compared with literature values in Table III. There are large differences between these $\alpha_{\rm C}$ values and those reported by Lanier (3) and Butler et al. (1) all of whom calculated their values by assuming Harned's rule applied to both salts in the system. Part of this difference is due to the rather large uncertainities in α_{C} and also to the present author's observation that Harned's rule is not exactly obeyed for NaCl at the higher ionic strengths.

At I = 0.7 (the ionic strength of normal sea water) both salts in the system follow Harned's rule, while in the system (5) $H_2O-NaCl-MgSO_4$, neither salt does. The ion pair $MgSO_4^\circ$ in the later system must account for part of this difference.

ACKNOWLEDGMENT

The author thanks Iver W. Duedall for helpful discussions during the work.

NOMENCLATURE

- = activity coefficient of NaCl in a mixed solution of m_B molal γ_B $NaCl and m_C molal Na_2 SO_4$
- activity coefficient of Na₂SO₄ in the same mixed solution = γ_{C} activity coefficient of NaCl in M_B molal NaCl solution which Γ_B =
- is in isopiestic equilibrium with the mixed solution activity coefficient of Na_2SO_4 in M_C molal Na_2SO_4 solution Γc
- which is in isopiestic equilibrium with the mixed solution (and also with the M_B molal NaCl solution)
- isopiestic ratio $M_B/(m_B + 1.5m_C)$ $R_B =$
- $R_{\rm C} = 1.5 M_{\rm C} / (m_B + 1.5 m_{\rm C})$
- $x_{C} = 1.5 m_{C} / (m_{B} + 1.5 m_{C})$
- = osmotic coefficient of M_B molal NaCl solution. ϕ_B

LITERATURE CITED

- Butler, J. N., Hsu, P.T., Synnott, J.C., J. Phys. Chem. 71, (1)910 (1967).
- Gieskes, J.M.T.M., Z. Phys. Chem. n.f. 50, 78 (1966). (2)
- (3)
- Lanier, R.D., J. Phys. Chem. 69, 3992 (1965). McKay, H.A.C., Perring, J.K., Trans. Faraday Soc. 49, 163 (4)(1953).
- Platford, R.F., Can. J. Chem. 45, 821 (1967). (5)
- Platford, R.F., Canada Centre for Inland Waters, Department (6)of Energy, Mines and Resources, Burlington, Ontario, Canada, unpublished data, 1967.
- Robinson, R.A., Wilson, J.M., Stokes, R.H., J. Am. Chem. (7)Soc. 63, 1011 (1941).
- (8)
- Robinson, R.A., J. Phys. Chem. 65, 662 (1961). Robinson, R.A., Stokes, R.H., "Electrolyte Solutions," 2nd (9)ed., Appendix 8.10, Butterworths Scientific Publications, New York, 1959.
- Stephen, H., Stephen, T., "Solubilities of Inorganic and (10)Organic Compounds," Vol. I, Part I, p. 127, MacMillan, New York, 1963.

RECEIVED for review August 17, 1967. Accepted October 30, 1967.

I₈/1