Viscosity of 2,2-Dimethylpropane
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Experimental viscosity and density data for 2,2-dimethylpropane are presented for
temperatures from 100° to 340°F. and pressures from 100 to 8000 p.s.ia. The
method for correlating the data is discussed, and the data are compared with

literature values wherever possible.

THIS investigation is one of several recent efforts by
the authors to provide viscosity data for pure hydrocarbons
and mixtures (6, 9, 11-13).

APPARATUS AND MATERIAL

The instrument used, which has been described in detail
(8, 11), has an effective pressure range from 14.7 to 10,000
p.s.i.a. and a temperature range from room temperature
to 400°F. The design of the viscometer is based on the
establishment of a manometric head between two vessels
containing the test fluid and a volume of mercury. The
reservoirs are connected by a capillary tube through which
the test fluid flows and a tube through which mercury

flows. A pressure gradient is established by elevating one
of the vessels above the other; the resulting flow of mercury
displaces the fluid through the capillary.

The schematic diagram of the system (Figure 1) shows
the arrangement of the equipment auxiliary to the vis-
cometer. The density cells assembly (E, Figure 1), which
was not used in some of the previous work because of
the availability of reliable data (17), was tested with the
work reported by Sage and Lacey (17) on isobutane (9).
These density cells are used in this work because no density
data are found in the literature for the temperatures and
pressures reported here. The principle of these cells is the
same as that of a pycnometer. The cell weight and volume
are calibrated from time to time. The deviation from the
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Figure 1. Schematic diagram of the viscometer instrument
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mean of these two parameters is less than 0.7% over a
period of 2 years.

The accuracy of the viscometer has been established
in previous work (8, 18). Data obtained for nitrogen at
ambient temperature and 1000 p.s.i.a. did not differ
significantly from the accepted value of Michels and Gibson
(15) upon application of the t-test at the 95% confidence
level. The mean of the calculated values for 31 separate
measurements was 192.0 micropoises with a standard devia-
tion of +0.6 micropoise, well within the 95% confidence
range of 192.0 £1.2 micropoises.

A number of systems reported in the API monograph
on viscosity (I7) were compared with the data reported
by Giddings, Kao, and Kobayashi (7) and reported by
Carmichael, Berry, and Sage (3-5). In general, the agree-
ment has been excellent.

The precision of the viscosity measurements has also
been established (8, 11, 18). The errors possibly introduced
by errors in measurements of the characteristic dimensions
of the instrument were analyzed (I8). This analysis
indicated the maximum error of a calculated value due
to errors in these measurements to be near +0.5%.

Phillips Petroleum Co. research grade 2,2-dimethyl-
propane, certified 99.92 mole ¢ purity, was used. Mass
spectrometric analysis showed no impurities.

EXPERIMENTAL DATA

All of the experimental data reported in this paper are
for the liquid phase. They were obtained for pressures
up to 6000 p.s.i.a. at 100°F. and up to 8000 p.s.i.a. at
160°, 220°, 280°, and 340° F.

5000 POINTS- EXPERIMENTAL
i\ L\NES-CORRELAT‘ON[
i ‘
| | L
g 4000 \\ SRR
2 | | \
< ! I
s
2 3000 : :
kS i \
: C\\\\ o
> \\O\ i
& 2000 S % Boo
a — ‘ 8000 |
Q -~
IR SSSSoST
1600 : s 3000 —
100 2006
, \&\\QIOOO
| ESTIMATED PHASE BOUNDARY | -2~ 400 J
o AR — —— e _ 147

100 200 300 400
TEMPERATURE,°F

Figure 2. Viscosity of 2,2-dimethylpropane
vs. femperature
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Figure 3. Viscosity of 2,2-dimethylpropane vs. pressure
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Isobars of neopentane viscosity are presented in Figure
2; a cross plot of viscosity vs. pressure is presented in
Figure 3; and density vs. pressure is presented in Figure
4. Detailed tables of the experimental data have been pre-
pared and are available from the American Documentation
Institute (ADI).

Comparison with Literature. No investigation of the viscos-
ity behavior of 2,2-dimethylpropane has been reported for
the range of temperatures and pressures studied in this
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Figure 4. Comparison of density
values for 2,2-dimethylpropane

paper. Atmospheric viscosity values for  2,2-
dimethylpropane reported by McCoubrey and Singh (/4)
are used in the residual correlation below.

Concerning the density of 2,2-dimethylpropane,
Heichelheim et al. (10) reported the compressibility factor
for temperatures from 30° (86°F.) to 200°C. (392°F.) and
for pressures from 0.9434 to 73.157 atm. (1075 p.s.i.a.);
Beattie, Douslin, and Levine (I) reported the com-
pressibility for temperatures from 160° to 275°C. and for
pressures from 1 to 7 atm.; and Pitzer et al. (16) used
the data of Beattie, Douslin, and Levine in the comparison
of their correlation with the acentric factor of 2,2-
dimethylpropane.

Density values from various sources are presented in
Figure 4. Low pressure data from the literature are omitted
because they do not give a useful comparison. The solid
symbols are the values obtained from this study, the open
symbols are those calculated based on the work of Pitzer
et al., the dashed lines are those of Heichelhein et al.,
and the solid lines are those obtained from cross plotting
the experimental data of this investigation.

Data Treatment. The residual viscosity concept (2, &,
9) was used. Residual viscosity is defined as the difference
between the viscosity at a given pressure and temperature,
and u, — the viscosity at the dilute gas phase, which is
usually at 1 atm. pressure for most light hydrocarbons
and gases at the same temperature. The residual viscosity
is then plotted vs. density on linear coordinates; usually
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Thermodynamic Functions for Methyl Thiocyanate

BOBBY R. COOK' and G. A. CROWDER

Department of Chemistry, West Texas State University, Canyon, Tex.

79015

Thermodynamic functions of heat capacity, entropy, Gibbs energy function, and
enthalpy function have been calculated at selected temperatures between 273.15°
and 1000° K. for methyl thiocyanate in the ideal gas state at 1 atm. pressure.

THE recent availability of vapor state far infrared spec-
troscopic data and the barrier to internal rotation of the
methyl group have allowed the calculation of ideal gas
thermodynamic functions for methyl thiocyanate. The
vapor state frequencies for the low frequency vibrations
are necessary, because there is usually a thermodynamically
significant liquid-vapor frequency shift for the vibrations
below about 250 ¢m. . For example, the liquid state wave-
number for the lowest bending fundamental of methyl thio-
cyanate is 190.6 cm.”" (I), and the vapor state wavenumber
is 170 ecm. ' (2).

Rotational constants and the potential barrier hindering
internal rotation for methyl thiocyanate have been deter-
mined recently by Nakagawa et al. (3). The principal
moments of Inertia used in calculating the contribution
of over-all rotation are I. = 5.314 x 10°* I, = 20.20
x 10 ™ and I. = 25.03 x 10°® gram sq. cm. Nakagawa’s
value of 1592 cal. per mole for the barrier height was
used in calculating the contribution of restricted internal
rotation. The reduced moment of inertia for internal rota-
tion of the methyl group was calculated by the method
of Pitzer and Gwinn (4) to be 5.089 x 107* gram sq.
cm.
Thermodynamic functions for methyl thiocyanate in the
ideal gas state at 1 atm. pressure were calculated at selected

' Present address: Celanese Chemical Co., Pampa, Tex.
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temperatures (Table I). The contributions of translation,
over-all rotation, and vibration were made with standard
formulas of statistical thermodynamics (5). These calcula-
tions were based on the rigid rotator-harmonic oscillator
model. For methyl thiocyanate, the moments of inertia
for over-all rotation are independent of internal rotational
coordinates, so the treatment of Pitzer and Gwinn (4)
applies. The contributions of restricted internal rotation
were taken from their tables. Vibrational contributions were
calculated with the following wavenumbers for the funda-
mental vibrations: 170, 389, 460, 674, 705, 968, 989, 1328,

Table I. Molal Thermodynamic Properties of
Methyl Thiocyanate in the |deal Gas State

-(G-H3)/ (H° - Hy)/ Se Cs,

Temp., T, T, H-—H; Caly Cal./
° K. Cal./Deg.  Cal./Deg. Kecal. Deg. Deg.
273.15 57.88 12.24 3.344 70.12 16.70
298.15 58.97 12.64 3.770 71.61 17.37
300 59.05 12.67 3.802 71.72 17.42
400 62.90 14.17 5.669 77.07 19.85
500 66.22 15.51 7.768 81.73  21.92
600 69.15 16.73 10.04 85.88 23.69
700 71.82 17.83 12.48 89.65 25.22
800 74.26 18.85 15.08 93.11 26.54
900 76.54 19.77 17.79 96.31 27.70
1000 78.66 20.62 20.62 99.28 28.70
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