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This paper deals with the extrapolation of thermal functions and subsequent entropy 
calculation in the temperature region below experimental measurement capability. 
The problem involves the use of nonlinear optimization to express experimental 
heat capacity-temperature data as a linear combination of nonlinear Debye and 
Einstein heat capacity functions. The optimization technique used, a combination 
of conjugate gradient and steepest descent methods, is briefly described. Examples 
of application are illustrated for a variety of compounds. 

THE GIBBS free energy of a reaction is used to  determine 
if a reaction is possible and to what extent it will proceed 
under equilibrium conditions. Thus: 

IG' j  = AH? - T I S ?  (1) 

where AG? is the free energy, AH? the heat of reaction, 
T the temperature of reaction in O K., and A S ?  the entropy 
of reaction. The entropy of reaction is obtained from the 
third law entropies of the reactants and products which 
for a liquid is: 

where C, is the molar heat capacity and AH,, the heat 
of melting. Each quantity but the first may be ex- 
perimentally determined in a low temperature calorimeter. 
Approximation of the first integral is not difficult if TI 
is low enough (say 4 O  K.) but becomes increasingly difficult 
and less accurate a t  higher temperatures depending upon 
the particular material being studied. 

This paper illustrates a mathematical representation of 
the experimental heat capacities with a linear combination 
of theoretically based Debye and Einstein heat capacity 
functions. With these analytical functions, dependable 
extrapolations to 0" K. are obtained, and the first integral 
of Equation 2 can be evaluated. The use of empirical 
approximating curves, such as least squares and orthogonal 
polynomials, is not applicable to this problem because of 
the great uncertainty involved when these equation forms 
are used for extrapolation. The Debye and Einstein func- 
tions for a particular set of experimental heat capacity 
data are characterized by various nonlinear parameters, 
H's. The determination of these 0's and the optimal linear 
combination of the Debye and Einstein functions is formu- 
lated as a problem in unconstrained nonlinear optimization. 
The particular optimization procedure used, a combination 
of steepest descent and conjugate gradient techniques, is 
discussed with some results achieved with its use. 

PROBLEM FORMULATION 

The problem of selecting Debye and Einstein thetas for 
a set of experimental heat capacity measurements over 
a selected temperature range requires an unrestricted mini- 
mum of a complicated function: 

( 3 )  B E , ,  b , ,  c )  for 1 = 1,2,  . . . ,p 

where p ,  in this study, has a maximum value of 3. Using 
a least squares criteria, the function F may be written 
as the sum of squared absolute or relative differences 
between observed and calculated heat capacity values of 
m experimental measurements: 

m 

F =  C (calcd. Ci - obsd. Ch)' (4) 
h = l  

or 
m 

(5) F =  [l - (obsd. Cb/calcd. CJ] '  
k = 1  

The calculated Ci value for each T ,  is the resultant of 
an analytical function consisting of a prescribed linear com- 
bination of Debye and Einstein functions. 

The physical and mathematical features of the Debye 
heat capacity theory are described in detail elsewhere (4)  
as well as complete tables (8) listing heat capacity as a 
function of temperature and OD. The single degree Debye 
contribution (Dh) to the molar heat capacity of a material 
is expressed as: 

(7) 

where n = (0ii/Ti,) and R is the universal gas constant. 
The integral portion of Equation 7 can not be analytically 

integrated but may be estimated by the formula of Debye 
( 4 ) :  

In  the selected optimization procedure, a simpler analytical 
representation of the Debye function is desirable. Therefore, 
an empirical polynomial curve of the form: 

In Dh = a,, + a l x  + . . , + ann" 

was determined using the Debye function tables (8). The 
technique for this orthogonal polynomial type of curve 
fitting is described (12). The form and coefficients of the 
equation are given in Table I. For a system of 100 points 
of x where 0 n 5 60 and using a 12th degree polynomial, 
the resulting agreement between the calculated table and 
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Table I. Transformed Polynomial Determination 
of Debye Function 

ai, = -2.962260 
ai = -3.175212 
~r = 1.482403 
ai = -0.481934 
a, = 4.035179 
ai = -5.728326 

= -19.803321 

a; = 13.745102 
a8 = 59.402574 
UY = -18.722584 
U i o  = -74.543524 
ail = 10.716087 
air = 31.522597 

polynomial values was =tO.05':, which is well within the 
range of the allowable experimental error of heat capacity 
measurements. For use with the optimization procedure 
described later this polynomial description could be consid- 
ered uniformly monotonic. Thus the analytical Debye func- 
tion is expressed in F as: 

The theory and development of the Einstein function 
and its contribution t o  the total heat capacity is described 
(5) and tabular values are available (11). The value of 
the function for a single degree of freedom is: 

d e '  
E ! = R -  

(e' - 1)' 
(10) 

where 

Bo 

Ta 
X =  - 

Here, the total calculated heat capacity corresponding to 
each experimental temperature comprises a linear combina- 
tion of Debye and Einstein functions so that: 

total calcd. Cb = b, l ) ( f lo , ,  T,)  + b D(B!,., T,) + bD(fl i i l ,  Th) + 
~lE(Bbi ,  T,)  + c E(Oi., T- )  + c ! E ( B ~  , T ! )  (11) 

The linear constants b,  and c, are greater than or equal 
to zero and integral in value. Using either Equation 4 
or Equation 5 ,  it is possible to select the linear coefficients 
and corresponding Debye and Einstein thetas for a given 
set of temperature-heat capacity measurements. The 
algorithmic procedure is presented below. Having made 
the optimal selection, the determination of the low tem- 
perature entropy of Equation 2:  

becomes the simple problem of evaluating the integral using 
the analytical form of Equation 11 from zero to a specified 
temperature T I ,  which represents the temperature of the 
lowest measured heat capacity. The accuracy of the cal- 
culated S$ is directly dependent on the extrapolation of 
Equation 11 which is a function of the goodness of fit 
indicated by the final value of Equation 4 or 5 after 
optimization. 

TECHNIQUE DESCRIPTION 

The function given by Equation 11 for each Th is continu- 
ous for the various thetas and linear constants. Thus the 
total summed function F,  given by Equation 4 or 5 ,  over 

m measurements can be evaluated a t  all points. The total 
derivatives of F with respect to the various parameters 
are analytically defined consisting of a summation of m 
individual point derivatives. These characteristics make the 
optimization problem suitable for sequential optimization 
techniques, such as the gradient methods. The procedure 
used in this study is a combination of one of the recent 
conjugate gradient methods and the classical steepest de- 
scent technique. 

The optimization procedure follows a brief discussion of 
the particular gradient methods. Consider a general function 
F of n variables whose value F ( z )  and gradient vector 
g ( z )  can be evaluated a t  any n dimensional point z. Using 
a Taylor series, the function F may be expanded near 
the required minimum point a and approximated by the 
quadratic form: 

F ( z )  = F(T) + I i (Z - T ) ' G ( z  - a) (13) 

where G is a symmetric and positive definite matrix of 
second-order partial derivatives. I t  is desired to generate 
the minimum point a as the limit of a sequence of points 
a,, z I ,  . . . , z , ,  . . . , a where zil is the initial estimate of 
the minimum. Thus, a systematic procedure is needed to 
indicate the directions and amounts of change to each of 
the n components of a current z .  vector to arrive a t  a 
new vector z ,  I where F ( z ,  < F ( z , ) .  These directions 
from z ,  form an n dimensional vector d ,  so that a general 
step is given by the recursive relationship: 

Z.  1 = Z. + a , d ,  (14) 

where cyI is a positive scaler quantity. To  be efficient F ( z , .  I )  

should not only be less than F ( z , )  but be a minimum 
with respect t o  N )  along the line z, + i d , .  The manner 
of determination of d,  gives rise to the several different 
classes of gradient methods. 

The classical steepest descent techniques, based on the 
calculus, demonstrate that  the negative gradient of a func- 
tion F ( z J  evaluated a t  z, indicates the best local (infinitesi- 
mal) direction of change of z that  will decrease the value 
of F ( z ) .  Thus: 

d ,  = -g, (15) 

which is the basis of one part of the two stage optimization 
procedure used in this paper. However, this determination 
of d, ,  while appealing in its simplicity, slowly converges 
for the second and most time consuming part of the 
optimization procedure of this study. Thus, a more efficient 
method was needed, and a recent conjugate gradient method 
was chosen. 

Convergence with the gradient directions of Equation 
15 is uncertain and difficult to estimate, even for so-called 
well behaved functions. With the conjugate gradient 
methods, the convergence pattern to a solution a is much 
more rapid and is convergent in n steps if F ( z )  of Equation 
13 is an exact quadratic function in n dimensions. The 
above pattern, as well as the nature of the conjugate gra- 
dient techniques, has been demonstrated (6, 11 ) . 

Most of the earlier gradient techniques do not provide 
for such a guaranteed convergence pattern. For the usual 
case of more general functions that are not quadratic- 
for example, the Debye and Einstein functions of this 
study-the quadratic Taylor series representation becomes 
increasingly descriptive during the final stages in the 
optimization process. An efficient approximation of quadrat- 
ic convergence is thus provided. Even in regions far re- 
moved from a minimum of a general function, the quadrat- 
ic representation improves convergence by using directional 
moves based on knowledge of the rate of curvature of 
the function as compared with gradient directions alone. 
Of course, all the gradient techniques are only applicable 
for finding a local optimum of a function. If a function 
has a number of optimal solutions, the particular solution 
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generated depends on the initial estimate of the variables 
involved. 

The problem with using the conjugate gradient method 
is the generation of a set of G-conjugate directions. Several 
approaches have been proposed and tested (1, 6, 7, 9, 
15, 17) with the algorithm developed by Fletcher and Powell 
(6) being the most powerful and used in this study. Their 
work consists, in part, of a reformulation of a technique 
originated by Davidon (3) .  In the Fletcher and Powell 
algorithm, the G-conjugate directions d ,  are given by: 

d ,  = -Hy,  (16) 

where H,, ,  HI, . . . is a sequence of symmetric positive 
definite matrices corresponding to the points z,,,  zl,  . . . . 
In this study H o  is initially taken to be the unit matrix, 
so that the first directional change is taken along the line 
of steepest descent. Later H, . I matrices are recursively 
generated as functions of d, ,  H ! ,  g,, and g: . :. Thus, informa- 
tion on the function curvature gained in the previous steps 
is included in the direction determination d ,  from a point 
zl. As z ,  approximates a, the matrix H ,  tends to G so 
that the method completely describes the curvature of the 
function F ( z )  at its minimum (6). 

The relationship for determining H ,  . I is: 

where s, = m,d, and c1 = g, + - g,. The derivation of 
Equation 17 and the proof that Equation 16 does indeed 
generate G-conjugate directions are presented by Fletcher 
and Powell (6). An important characteristic of the method 
is that it uses the gradient of F t o  estimate second order 
information of the function. The ability to use this pseudo 
second order information in the d ,  determination accounts 
for the speed of the procedure. However, from the nature 
of Equation 17, the advantage is gained only when an 
accurate evaluation of the function gradient a t  any z is 
possible. This effectively leads to the requirement of 
supplying analytical derivatives as part of the solution pro- 
cedure. 

The optimal determination of the Debye and Einstein 
thetas with corresponding integer constants (Equation 11) 
is essentially a repetitive two stage problem. The function 
F to be optimized is given by either Equation 4 or Equation 
5 with variables b, ,  e , ,  oi,,, H g  for i = 1, 2 ,  3. For reasons 
explained below, the choices of the various constants b, 
and c1 in Equation 11 are not usually known a priori 
for any given set of experimental temperature-heat capacity 
data and must be integral in value. The problem of 
optimally selecting the thetas for a given set of b’s and 
c’s can be handled by the use of the continuous variable 
conjugate gradient technique described earlier. However, 
the additional requirement that the various b ,  and e ,  con- 
stants also be optimally chosen poses an interesting problem 
because of the integral requirement. Changing the value 
of these constants presents problems of continuity and fur- 
ther depends on the selection of thetas corresponding to 
each set of b’s and c’s. Thus the need for a repetitive 
two stage procedure is apparent. The first is necessary 
for optimally changing the current b’s and e’s, while the 
second stage determines the optimal theta values for the 
current set of linear constants. 

The criterion for changes in either stage is a decreased 
value of the F of Equation 4 or 5 .  The general step in 
the optimization procedure consists of changing one b ,  or 
c, a t  a time, and following this change, the set of associated 
optimal thetas for a minimal F is found (assuming the 
current set of b’s and e ’s to be temporarily constant). 
The particular linear constant b ,  or e ,  to be changed, always 
either increased or decreased by one, is that constant having 
the largest gradient in magnitude using Equation 4 or 5 ,  

This criterion for selecting the direction of change in the 
linear constants is essentially a univariate form of the classi- 
cal gradient directions method and is sufficient. The above 
two stage process of changing one of the linear constants 
and then finding the corresponding minimal value of F 
by optimally changing the thetas is repeated until no further 
reduction in F is possible. 

The use of the function gradient to change the linear 
constants indicates only the “best” infinitesimal change 
of any constant. Since these constants are not changed 
in a continuous manner, a new set with one changed b, 
or e ,  might give an F higher in value after selecting the 
new thetas than the previous set of constants with its 
thetas. In this case, the procedure returns to the previous 
set of b’s ,  c’s, and thetas and changes that constant having 
the next largest gradient component. This situation occurs 
only in the final stages of the optimization procedure or 
where a change in a constant will violate the imposed 
nonnegativity constraints. The procedure is terminated a t  
the point where no integral change in the linear constants 
leads to an improved value of F.  Any one or more of 
the linear constants can be fixed during the entire procedure. 

The selection of the thetas for any given set of linear 
combinations by the conjugate gradient method seldom 
requires more iterations than the number of thetas in Equa- 
tion 11. This indicates the value of the quadratic approxima- 
tion and convergence pattern discussed earlier. 

The entire procedure has been programmed in Algol- 
60 for the Burroughs B-5500 computer system. The program 
provides for many various input-output and calculating 
options. The data to be supplied consist of the specified 
number and starting estimates of the various linear con- 
stants and thetas, the set of temperature-heat capacity 
measurements, and control cards. The program has an 
option, discussed in the next section, which will auto- 
matically estimate a starting set of constants and thetas. 

EXPERIMENTAL EXAMPLES 

Historically, the problem of analyzing low temperature 
heat capacity data has required a combination of the knowl- 
edge of a skilled investigator with tedious trial and error 
calculations. Analyses involving the study of translational, 
rotational, and vibrational degrees of freedom with other 
contributions such as C, - C, corrections are usually too 
difficult t o  make purely theoretical predictions practical. 
Most investigators simply use Debye and Einstein tables 
(8, 2 2 )  and a trial and error procedure of matching heat 
capacity data with Debye and Einstein thetas. Another 
procedure is the graphical method of Kelley and King (1.S). 
In this section, the use of an efficient and direct algorithmic 
approach to the problem will be illustrated for a number 
of examples. 

Equation 11 shows that up to three separate Debye 
and three separate Einstein functions can be used for fitting. 
The linear constants preceding each function are degrees 
of freedom which thus lead to  the integral requirement 
discussed earlier. For the Debye portion, either the conven- 
tional three degree Debye function or three single degree 
Debye contributions can be used. The limit of three Einstein 
parameters was established for computational economy rea- 
sons. While it may be advisable to use up to 3 x (number 
of atoms -1) Einstein degrees of freedom, the curve fitting 
flexibility resulting from using the complete number of 
degrees of freedom available andlor from using more than 
three Einstein functions has not been necessary in the 
low temperature range. 

There are a number of ways in which the optimization 
procedure may be used by an investigator. One way would 
be to supply initial estimates of the thetas and linear con- 
stants and optimally select the thetas for the data set 
holding all the linear constants fixed. A second way could 
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Table II. Heat Capacity Data' 

T! Obsd. C, Calcd. C, Error, % T,  Obsd. C, Calcd. C, Error, 

11.28 
12.79 
14.05 
15.67 
16.62 
18.34 
18.84 
20.42 
20.91 
22.54 
23.17 
24.59 
25.30 
26.83 
27.78 
29.63 
31.49 
33.48 
35.68 

DIETHYL ETHER (14)O 

0.800 
1.018 
1.309 
1.601 
1.838 
2.269 
2.363 
2.802 
2.980 
3.355 
3.548 
3.850 
4.058 
4.502 
4.769 
5.248 
5.713 
6.218 
6.783 

0.760 -5.1 
1.044 2.5 
1.302 -0.6 
1.656 3.4 
1.872 1.8 
2.277 0.3 
2.399 1.5 
2.788 -0.5 
2.912 -2.3 
3.329 -0.8 
3.495 -1.5 
3.868 0.5 
4.058 0.0 
4.472 -0.7 
4.729 -0.8 
5.232 -0.3 
5.738 0.4 
6.273 0.9 
6.853 1.0 

METHYL ETHYL KETONE 

13.12 0.984 0.982 -0.2 
13.21 0.941 1.002 6.5 
14.33 1.344 1.275 -5.1 
14.56 1.349 1.335 -1.0 
15.58 1.620 1.613 -0.4 
16.20 1.745 1.791 2.6 

17.86 2.283 2.292 0.4 
18.53 2.566 2.501 -2.5 
19.59 2.833 2.835 0.1 
20.37 3.033 3.082 1.6 
21.37 3.412 3.398 -0.4 
22.36 3.567 3.707 3.9 
23.29 4.025 3.993 -0.8 
24.45 4.233 4.341 2.5 
25.27 4.592 4.580 -0.3 
26.53 4.772 4.936 3.4 

16.98 2.194 2.023 -7.8 

2,5-DIMETHYLTHIOPHENE (2)' 
12.05 1.281 1.281 0.0 
13.50 1.651 1.652 0.0 
15.04 2.072 2.067 -0.2 
16.67 2.528 2.525 -0.1 
18.36 3.009 3.013 0.1 
20.11 3.513 3.524 0.3 
21.99 4.067 4.075 0.2 
24.12 4.688 4.690 0.0 
26.52 5.370 5.362 -0.2 
29.16 6.089 6.064 -0.4 

13.19 
13.64 
15.48 
15.57 
17.72 
17.93 
20.06 
20.21 
22.15 
22.21 
24.38 
24.60 
26.85 
27.32 
29.66 

VINYL BROMIDE (14)' 

1.452 
1.620 
2.026 
2.076 
2.615 
2.604 
3.187 
3.197 
3.677 
3.739 
4.181 
4.203 
4.701 
4.797 
5.301 

1.482 
1.590 
2.040 
2.062 
2.591 
2.642 
3.161 
3.197 
3.659 
3.674 
4.177 
4.227 
4.728 
4.830 
5.321 

2.1 
-1.8 

0.7 
-0.7 
-0.9 

1.5 
-0.8 

0.0 
-0.5 
-1.7 
-0.1 

0.6 
0.6 
0.7 
0.4 

VINYLIDENE CHLORIDE (10)' 

12.67 1.043 1.053 0.9 
12.81 1.105 1.087 -1.6 
14.83 1.601 1.626 1.6 
14.90 1.687 1.646 -2.4 
16.77 2.196 2.199 0.1 
16.78 2.172 2.202 1.4 
18.70 2.768 2.786 0.7 
20.85 3.420 3.428 0.2 
20.90 2.432 3.442 0.3 
23.54 4.206 4.179 -0.7 
23.69 4.186 4.218 0.8 
26.48 4.923 4.910 -0.3 
26.60 4.948 4.938 -0.2 
29.60 5.708 5.580 -2.3 
29.68 4.744 5.595 -2.6 

1,2,4-TRIMETHYLBENZENE (16)h 

14.77 1.901 1.911 0.5 
15.80 2.188 2.188 -0.0 
16.96 2.518 2.506 -0.5 
18.40 2.914 2.910 -0.1 
20.36 3.472 3.468 -0.1 
22.82 4.165 4.169 0.1 
25.46 4.900 4.909 0.2 
28.16 5.626 5.636 0.2 
30.91 6.360 6.333 -0.4 

"Units are temperature in Final function 
value = 0.006175; standard error of estimate = 0.04312; starting variable vector = 30(101.81/T) + lE(83.661T) t 2E(83.66/T) + 36(83.66/ T ) ;  final variable vector = 30(93.20/ T )  + 3E(149.74/ 7') + 3E(186.12/ T ) ;  total entropy a t  15. K. = 0.5813. Final function 
value = 0.001671; standard error of estimate = 0,03335; starting variable vector = 30(94.21/T) + lE(86.851T) + 2E(86.85/T) + 
33(86.85/T);  final variable vector = 30(82.15/T) + 3E(142.69/T); total entropy at  15" K. = 0.7940. dThis work: Final function 
value = 0.01813; standard error of estimate = 0.09041; starting variable vector = 30(109.68/ T )  + 1E(93.65/ T )  + 2E(93.65/ T )  + 
3E(93.65/T) ;  final variable vector = 30(105.83/T) + 2E(93.53/T) + lE(127.96/T); total entropy at  15°K. = 0.4747. Sinke and 
Oetting (18): Function value = 0.03147; variable vector = 60(124.70/T); Total entropy a t  l5.K. = 0.5249. 'This work: Final function 
value = 0.002732; standard error of estimate = 0.06384; starting variable vector = 30(103.57/T) + lE(89.30iT) + 2E(89.30/T) 
+ 33(89.30/T); final variable vector = 30(98.69/T) + 2E(89,29/T); total entropy a t  15°K. = 0.5704. Hildenhrand et al. ( I O ) :  Function 
value = 0.01763; variable vector = 30(90.00/T) + 3E(118.00/T); total entropy a t  15°K. = 0.6617. 'This work: Final function value 
= 0.00004102; standard error of estimate = 0,01247; starting variable vector = 3D(90.63/T) + lE(81.61/T) + 2E(81.61/T) + 3E(81.61/ 
T ) ;  final variable vector = 30(80.64/T) + 2E(121,35/T) + 26(139.52/T); total entropy at  15. K. = 0.8398. Carlson and Westrum 
(2): Total experimental entropy a t  15°K. = 0.868. #This work: Final function value = 0.00007875; standard error of estimate = 
0.01562; starting variable vector = 30(93,44/T) + lE(91,60/T) + 2E(91.60/T) + 3E(91.60/T); final variable vector = 30(82.21/ 
T )  + lE(121.331T) + 3E(137,41/T); total entropy at  15°K. = 0.8000. Putnam and Kilpatrick ( 1 6 ) :  Function value = 0.005293; 
variable vector = 50(103.70/T); total entropy a t  15°K. = 0.7286. Stull, Westrum, Sinke (19): Function value = 0.002665; variable 
vector = 30(80.50/T) + 6E(l55.00/T);  total entropy a t  15" K. = 0.8327. 

K., heat capacity in calories per mole-degree, and entropy in calories per mole-degree. 
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be t o  estimate again initial values of the thetas and linear 
constants and let the optimization procedure optimally det- 
ermine the thetas and the best linear combination. Any 
particular constants may be fixed during optimization. A 
third and most convenient way is to let the procedure 
start with a standard set of linear constants, estimate the 
initial corresponding thetas, and then optimally determine 
the set of thetas and constants for the particular data 
set. This last option completely removes the burden of 
estimation from an investigator and, in the authors’ studies, 
has consistently given curve fits that  are a t  least as good, 
from a statistical point of view, as any fits resulting from 
trial and error procedures of a skilled investigator. All 
the examples given in this paper use this option. 

In this last use, the procedure generates a starting set 
of parameters of the form: 

cal. C, = 3D(S,],, T a )  + ~ E ( S F , ,  Ta) + 2E(8j2, T A )  

+ SE(S.55, Tk) (18) 

This estimate of the thetas is based upon the assignment 
of 7 5 7  Debye character to  the lowest observed Ck plus 
sufficient Einstein character split up among the specified 
degrees of freedom to make up the remaining 25% of the 
lowest Ci value. To accomplish this, a brief table of Debye 
and Einstein functions us. (e/?”) was included in the pro- 
cedure along with a table look-up scheme. This assignment 
of heat capacity, although strictly arbitrary, serves the 
purpose well as will be illustrated in the following six exam- 
ples. 

The criteria for judging the goodness of fit and compari- 
sons between investigations is the final value of the F 
in Equation 5 .  This function represents the sum of the 
squared deviations of relative differences between observed 
and calculated heat capacity values. The relative deviate 
basis is chosen since the variables determined are to be 
used for extrapolation purposes from the smaller valued 
end of the heat capacity-temperature data set. Also 
associated with each determination is the usual standard 
error of estimation. Once the optimal selection of parameters 
is made, the low temperature entropy, S?, is directly deter- 
mined from the integral of Equation 12 using the analytical 
form of Equation 11. 

Diethyl ether and vinyl bromide were recently measured 
( 2 . 1 )  by one of the authors in an adiabatic low temperature 
calorimeter. Table I1 lists the results of the optimization 
procedure and the subsequent entropy determination. 

Methyl ethyl ketone (18)  and vinylidene chloride (10)  
are examples of previous measurements taken in the Dow 
Chemical Thermal Laboratory. They were included as 
examples to test the optimization procedure against manual 
curve fitting of experienced investigators. The improvement 
in F over the original investigator’s parameter selection 
is not large, but the automatic technique used in this paper 
has the obvious advantages of having made its selection 
in a direct algorithmic manner. 

The compound 2 ,  5-dimethylthiophene was included ( 2 )  
to  test the optimization procedure on data from a laboratory 
with good quality 5’K. capabilities. The  original in- 
vestigators’ data in the range from 12” to 30’ K. was used 
to compare an entropy value a t  15°K. obtained by ex- 

trapolation with an entropy value a t  the same temperature 
determined essentially experimentally. The entropy values 
differ by approximately 3%,  which is considered good for 
this type of estimation. 

The data for 1,2,4-trimethylbenzene as measured by Put- 
nam and Kilpatrick (16) was chosen for inclusion in a 
new monograph by Stull, Sinke, and Westrum (19). This 
example illustrates the differences that can arise when expe- 
rienced investigators attempt to fit a difficult case. The 
range of the estimated total entropy is relatively large 
being from 0.73 to  0.83 cal. per mole-degree. The estimated 
entropy given by the procedure of this study (0.80) is 
obviously the most reliable figure considering the size of 
the various function values indicating goodness of fit. 

CONCLUSION 

The repetitive two stage optimization procedure described 
in this paper is an extremely useful and efficient technique 
for determining entropy in the temperature region below 
experimental capability. It is an automatic and direct 
algorithmic approach requiring little specialized effort by 
a potential user. The optimization procedure has a conver- 
gence pattern that leads to consistently better estimates 
of the unknown variables involved thus eliminating trial 
and error type calculation. The results achieved with its 
use are a t  least as good or better than those arrived a t  
by other means. 
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