Vapor-Liquid Equilibrium Constants for the

Ethane-*n*-Butane-*n*-Heptane System at 300° and 350° F.

VINOD S. MEHRA and GEORGE THODOS Northwestern University, Evanston, III. 60201

Experimental studies concerned with the determination of vapor-liquid equilibrium constants have been extended for the ethane-*n*-butane-*n*-heptane system reported in a previous study for 150° , 200° , and 250° F., to include in this investigation the temperatures of 300° and 350° F. The pressures studied ranged from 450 p.s.i.a. up to the critical region. Values of critical pressure and composition have been obtained from these data and are presented for 300° and 350° F.

RECENTLY the vapor liquid equilibrium behavior of the ethane-*n*-butane-*n*-heptane system was reported in the literature (7) for 150° , 200° , and 250° F. In the present study, the vapor-liquid equilibrium behavior of this system has been extended to include the temperatures of 300° and 350° F. Because of the limiting properties of the rubber O-rings used in the equilibrium cell, it was not possible to obtain data for higher temperatures. The three binaries of this ternary system have been comprehensively studied by Kay (2-4). Furthermore, recent vapor-liquid equilibrium studies are reported by Mehra and Thodos for the ethane*n*-butane (6) and the ethane-*n*-heptane (5) systems and have been utilized in the analysis of the data of the present investigation.

APPARATUS AND PROCEDURE

The experimental equipment used in this study is the same as that used for obtaining data for the ethane-*n*-butane-*n*-heptane system at 150°, 200°, and 250° F. The descriptive details of the equilibrium cell and auxiliary equipment have been described (7, 8), and only the salient features of the experimental equipment will be presented here.

The equilibrium cell was constructed of stainless steel and was provided with a movable piston which could be actuated with mercury for varying the volume of the equilibrium chamber. The pressure of the system was measured by two calibrated Heise gages which were reproducible to within 3 p.s.i. for the pressure range of the present study. The cell was surrounded with a constant temperature air bath, capable of maintaining its over-all temperature to within 0.4° F. of the desired temperature. Agitation within the equilibrium chamber was provided with a stirrer, which was coupled magnetically to an external mechanical drive. Each component was introduced into the cell from individual charging reservoirs. After reaching equilibrium, micro-samples of the liquid and vapor phases in equilibrium were withdrawn and were analyzed in a gas chromatography unit. The analyses carried out in the gas chromatograph were reproducible in a series of several measurements to within one mole per cent of a component. The procedure used for the calibration of the gas chromatograph has been described (7).

MATERIALS

The hydrocarbons used were reagent grade and were supplied by the Phillips Petroleum Co. The purities of these hydrocarbons were claimed by the supplier to be: ethane, 99.91 mole %; *n*-butane, 99.90 mole %; and *n*-heptane, 99.78 mole %.

EXPERIMENTAL INVESTIGATION

For the temperatures of 300° and 350° F., charges were prepared with composition parameters, *C*, ranging from zero to unity. The charge mixtures were selected so their compositions corresponded to critical temperatures which were very close to 300° and 350° F. These compositions were established by the method described by Grieves and Thodos (1). Thus it became possible to obtain the vapor and liquid phases for a given charge for pressures ranging from approximately 450 p.s.i.a. up to the critical region. For each charge, the compositions of the vapor and liquid phases were determined at several pressures above 450 p.s.i.a. The experimental vapor and liquid compositions for all charges studied are presented in Table I for temperatures of 300° and 350° F.

For each charge, the experimental data were smoothed by plotting compositions against pressure as shown in Figure 1 for charge II at 350° F. For this charge, the vapor and liquid samples were obtained for pressures up to 1109 p.s.i.a., and the resulting bubble and dew point curves of each component were extended to their point of convergence, the critical pressure. For the charge, shown in Figure 1, the critical pressure was 1140 p.s.i.a. for a mole fraction composition of 0.559 ethane, 0.169 *n*-butane, and 0.272 *n*-heptane. For the remaining charges, plots similar to Figure 1 were prepared and the critical pressures and compositions were estimated. Equilibrium constants, K = y/x,

Figure 1. Vapor-liquid equilibrium behavior for a mixture of ethane, *n*-butane, and *n*-heptane at 350° F. (charge II)

	Table	e I. Experimer	ntal Vapor-Lio	quid Equilil	orium Data f	or the Ethan	thane-n-Butane-n-Heptane System				
Press.,	<u>у,</u>	Vapor Mole Fr	action	<i>x</i> , L	iquid Mole Fr	action		K = y/x		-	
P.S.I.A.	Ethane	<i>n</i> -Butane	<i>n-</i> Heptane	Ethane	n-Butane	<i>n</i> -Heptane	Ethane	<i>n</i> -Butane	<i>n</i> -Heptane	С	
					Ат 300° F. Charge I						
535	0.804	0.0615	0.134	0.319	0.0725	0.608	2.520	0.848	0.220	0.10	
690	0.814	0.0603	0.126	0.382	0.0740	0.544	2.131	0.815	0.232	0.12	
840	0.820	0.0588	0.121	0.460	0.0770	0.463	1.783	0.764	0.261	0.14	
983	0.816	0.0578	0.126	0.528	0.0716	0.400	1.545	0.807	0.315	0.15	
1102	0.803	0.0577	0.139	0.590	0.0730	0.337	1.361	0.790	0.412	0.178	
1206	0.772	0.0580	0.170	0.655	0.0755	0.269	1.179	0.768	0.632	0.21	
520	0.695	0.176	0.129	0.265	O 186	0.549	2 623	0.946	0.235	0.25	
664	0.711	0.173	0.116	0.325	0.202	0.473	2.188	0.856	0.245	0.29	
795	0.717	0.168	0.115	0.382	0.210	0.408	1.877	0.800	0.282	0.340	
903	0.718	0.167	0.115	0.430	0.208	0.362	1.670	0.803	0.318	0.36	
1000	0.694	0.173	0.133	0.489	0.200	0.311	1.419	0.865	0.428	0.39	
1087	0.682	0.171	0.147	0.544	0.192	0.264	1.254	0.891	0.557	0.42	
1133	0.675	0.170	0.155	0.584	0.187	0.229	1.156	0.909	0.677	0.45	
					Charge II						
554	0.604	0.287	0.109	0.251	0.317	0.432	2.406	0.905	0.252	0.423	
691	0.619	0.280	0.101	0.318	0.333	0.349	1.947	0.841	0.289	0.488	
830	0.624	0.276	0.100	0.371	0.330	0.299	1.682	0.836	0.334	0.525	
950	0.615	0.268	0.117	0.437	0.320	0.243	1.407	0.838	0.481	0.568	
1021	0.595	0.280	0.125	0.489	0.308	0.203	1.217	0.909	0.616	0.603	
1046	0.580	0.283	0.137	0.507	0.304 Charge III	0.189	1,144	0.931	0.725	0.61	
512	0.501	0.394	0.105	0.190	0.415	0.395	2 637	0.949	0.266	0.519	
627	0.501	0.383	0.100	0.239	0.436	0.325	2.007	0.343	0.286	0.512	
755	0.540	0.372	0.0520	0.200	0.450	0.320	1 806	0.842	0.200	0.631	
852	0.543	0.366	0.0910	0.354	0.433	0.203	1.534	0.845	0.427	0.001	
924	0.517	0.375	0.108	0.401	0.421	0.178	1 289	0.891	0.607	0.010	
962	0.513	0.375	0.112	0.426	0.410	0.164	1.204	0.915	0.683	0.714	
					Charge IV						
514	0.365	0.551	0.0837	0.143	0.569	0.288	2.552	0.968	0.291	0.664	
629	0.389	0.540	0.0712	0.193	0.595	0.212	2.016	0.908	0.336	0.737	
726	0.403	0.528	0.0693	0.238	0.598	0.164	1.693	0.883	0.423	0.785	
809	0.394	0.529	0.0770	0.287	0.585	0.128	1.373	0.904	0.602	0.820	
837	0.392	0.528	0.0800	0.304	0.575	0.121	1.289	0.918	0.661	0.826	
					Ат 350° F. Charge I						
542	0.698	0.0775	0.224	0.236	0.0682	0.696	2.958	1.136	0.322	0.089	
685	0.719	0.0745	0.206	0.304	0.0745	0.621	2.365	1.000	0.332	0.107	
832	0.732	0.0723	0.196	0.373	0.0780	0.549	1.962	0.927	0.357	0.124	
965°	0.725	0.0717	0.203								
970°	0.505	0.0500	0.000	0.443	0.0800	0.477	1 (10	0.001	0 505	0.150	
1080	0.705	0.0730	0.222	0.498	0.0793	0.423	1.416	0.921	0.525	0.158	
1153	0.683	0.0735	0.243	0.552	0.0788 Charge II	0.369	1.237	0.933	0.659	0.176	
509	0.622	0.166	0.919	0.214	0 1 4 4	0.642	2 907	1 153	0.330	0.183	
020 689	0.022	0.165	0.195	0.214 0.278	0.162	0.560	2.302	1.019	0.348	0.224	
81Q	0.649	0.169	0.189	0.347	0.171	0.482	1.870	0.947	0.392	0.262	
956	0.651	0.160	0.189	0.410	0.175	0.415	1.588	0.916	0.455	0.296	
1054	0.628	0.159	0.213	0.470	0.172	0.358	1.336	0.924	0.595	0.325	
1109	0.612	0.161	0.227	0.517	0.172	0.311	1.184	0.936	0.730	0.356	
					Charge III						
528	0.532	0.289	0.179	0.188	0.257	0.555	2.830	1.125	0.323	0.317	
669	0.540	0.286	0.174	0.243	0.284	0.473	1.000	1.007	0.308	0.378	
190	0.040	0.203	0.175	0.299	0.299	0.402	1.040	0.940 0 034	0.420	0.427	
090 975	0.545	0.262	0.170	0.303	0.304	0.308	1 349	0.534	0.407	0.407	
1021	0.516	0.282	0.202	0.416	0.297	0.287	1.240	0.949	0.703	0.509	
					Charge IV						
536	0.405	0,441	0.154	0.143	0.406	0.451	2.832	1.086	0.341	0.474	
643	0.410	0,439	0.151	0.179	0.427	0.394	2.291	1.028	0.383	0.520	
759	0.412	0.437	0.149	0.228	0.446	0.326	1.810	0.980	0.457	0.878	
004 923	0.415	0.430	0.152	0.277 0.317	0.456	0.208 0.227	1.491	0.961	0.692	0.629	
040 iau:-1		Vanos acresi-	only	0.011	0.400	0.441	1.210	5.001	0.002	0.000	
liquid sam	pie oniy.	vapor sample	omy.								

- Table II. Critical Pressures and Compositions for Each Temperature Investigation	Table II.	Critical Pressures	and Composition	s for Each	Temperature	Investigate
--	-----------	--------------------	-----------------	------------	-------------	-------------

	Critical Pressure.	Com			
	P.S.I.A.	Ethane	<i>n</i> -Butane	n-Heptane	С
		Crit			
Ethane– <i>n</i> -Heptane	1275	0.760	0.000	0.240	0.000
Charge I	1250	0.705	0.069	0.226	0.234
Charge V	1169	0.636	0.173	0.191	0.475
Charge II	1076	0.544	0.293	0.163	0.643
Charge III	995	0.474	0.390	0.136	0.741
Charge IV	877	0.356	0.547	0.097	0.849
Ethane $-n$ -Butane	591	0.075	0.925	0.000	1.000
		Crit	ical Temperature, 38	50° F .	
Ethane- <i>n</i> -Heptane	1219	0.681	0.000	0.319	0.000
Charge I	1195	0.625	0.077	0.298	0.205
Charge II	1140	0.559	0.169	0.272	0.383
Charge III	1066	0.466	0.290	0.244	0.543
Charge, IV	965	0.360	0.448	0.192	0.700
<i>n</i> -Butane- <i>n</i> -Heptane ^a	591	0.000	0.910	0.090	0.910

^a Obtained by extrapolation of data of this investigation; Kay (4) reports a value of 592 p.s.i.a. for the critical pressure of the binary composition $x_1 = 0.863$ and $x_7 = 0.137$.

were determined from the smoothed curves of each charge. The final value of the critical pressure for each charge was established as the pressure at which the curves for the three components converged at K = 1.00 in a plot of equilibrium constant vs. pressure. The resulting values of the critical pressure are presented in Table II with the corresponding temperatures and compositions and the critical values of the related binaries.

The resulting critical pressures are plotted against the corresponding compositions to produce the relationships for each temperature (Figure 2). The critical pressures of the charges and related binaries are also plotted against the composition parameter to obtain a single relationship for each temperature (Figure 3). In this figure, the 300° F. critical isotherm terminates at the ethane-*n*-butane binary system whose composition is $x_2 = 0.075$ and $x_4 = 0.925$ (C = 1.00) for which $P_c = 591$ p.s.i.a. On the other hand, the 350° F. critical isotherm terminates on the *n*-butane*n*-heptane binary system at a composition $x_4 = 0.910$ and $x_7 = 0.090$ (C = 0.910) for which the critical pressure also happens to be 591 p.s.i.a. Vapor-liquid equilibrium constants obtained from the smoothed curves of each charge, of the form of Figure 1, were plotted against the composition parameter, C, and were cross-plotted as K against pressure

Figure 2. Relationships between critical pressure and composition at 300° and 350° F. for the ethane-*n*-butane-*n*-heptane system

Figure 3. Relationships between critical pressure and composition parameter for the ethane-*n*-butane-*n*-heptane system at 300° and 350° F.

Figure 4. Vapor-liquid equilibrium constants for the ethane-n-butane-n-heptane system 300° F. 350° F.

Table III	Final K	Values for	the S	vstem	Ethane-a-F	Butane-a-He	ontane
Tuble In.	TINGEN	values ioi	me o	ysiem	Lindile-n-r	Joidile-n-ile	piune

Dross	Equili	Equilibrium Constant, $K = y/x$			Equilibrium Constant, $K = y/x$		
P.S.I.A.	Ethane	n-Butane	n-Heptane	P.S.I.A.	Ethane	n-Butane	n-Heptane
	Ат З	300° F.			<i>C</i> =	0.200	
	C =	0.000		450	3.065	0.966	0.230
450	3.118		0.220	400	2 785	0.905	0.200
500	2.861		0.217	550	2 579	0.893	0.229
550	2.644		0.216	600	2.010	0.865	0.230
600	2.478		0.215	650	2.400	0.843	0.235
650	2.314		0.219	700	2 113	0.823	0.242
700	2.165		0.223	750	1.984	0.809	0.250
750	2.030		0.232	800	1.872	0.796	0.262
800	1.914		0.243	850	1.772	0.787	0.276
850	1.810		0.259	900	1.680	0.781	0.291
900	1.718		0.274	950	1.596	0.777	0.315
950	1.633		0.292	1000	1.513	0.777	0.342
1000	1.555		0.313	1050	1.435	0.782	0.379
1050	1.484		0.336	1100	1.360	0.790	0.426
1100	1.414		0.369	1140	1.297	0.794	0.475
1150	1.338		0.415	1180	1.226	0.807	0.540
1200	1.255		0.489	1200	1.189	0.825	0.589
1230	1.188		0.581	1220	1.147	0.853	0.661
1250	1.136		0.671	1255°	1.000	1.000	1.000
1275"	1.000		1.000		<i>C</i> –	0.400	
					C	0.400	
				450	3.008	0.975	0.248
				500	2.701	0.935	0.247
				550	2.500	0.904	0.249
itical point.				600	2.329	0.876	0.252
P							(Continue

^aC

Press	Equili	brium Constant,	K = y/x	Press	Equilibrium Constant, $K = y/x$			
P.S.I.A.	Ethane	n-Butane	n-Heptane	P.S.I.A.	Ethane	n-Butane	n-Heptane	
	<i>C</i> =	0.400			C =	0.200		
050	0.100	0.054	0.077	150	0.051	1 0 1 0	0.225	
700	2.183	0.804	0.257	400	3.067	1.210	0.335	
700	2.031	0.834	0.265	550	2 827	1.107	0.331	
800	1.819	0.820	0.277	600	2.610	1.107	0.335	
850	1.720	0.807	0.315	650	2.420	1.025	0.340	
900	1.625	0.810	0.339	700	2.254	0.992	0.349	
950	1.533	0.818	0.373	750	2.110	0.964	0.358	
1000	1.441	0.832	0.417	800	1.982	0.941	0.370	
1050	1.349	0.846	0.473	850	1.863	0.925	0.385	
1100	1.257	0.862	0.550	900	1.752	0.914	0.405	
1140	1.187	0.881	0.632	950	1.648	0.906	0.430	
1160	1.150	0.898	0.696	1000	1.549	0.905	0.463	
1180	1.110	0.927	0.790	1050	1.448	0.910	0.508	
1198^{a}	1.000	1.000	1.000	1100	1.340	0.921	0.573	
	C	0.000		1120	1.297	0.927	0.607	
	C =	0.600		1140	1.248	0.935	0.647	
450	2.932	0.987	0.281	1160	1.192	0.945	0.702	
500	2.605	0.950	0.281	1180	1.117	0.958	0.802	
550	2.391	0.922	0.284	1195*	1.000	1.000	1.000	
600	2.220	0.897	0.290		C =	0.400		
650	2.070	0.874	0.297	450	2.241	1.004	0.041	
700	1.946	0.855	0.307	450	3.241	1.204	0.341	
750	1.829	0.841	0.323	500	2.965	1.145	0.341	
800	1.712	0.835	0.349	550	2.720	1.097	0.345	
850	1.600	0.837	0.384	600 650	2.494	1,000	0.333	
900	1.494	0.846	0.430	650 700	2.303	1.020	0.303	
900	1.387	0.865	0.490	700	2.137	0.992	0.380	
1000	1.277	0.891	0.568	800	1.964	0.908	0.335	
1020	1.232	0.904	0.606	850	1.724	0.940	0.420	
1040	1.192	0.910	0.650	900	1.611	0.923	0.445	
1080	1.100	0.955	0.708	950	1.503	0.920	0.514	
1102°	1.101	1 000	1,000	1000	1.396	0.922	0.565	
1102	1.000	1,000	1.000	1040	1.303	0.928	0.624	
	<i>C</i> =	0.800		1080	1.208	0.939	0.703	
450	2 810	1.010	0.334	1100	1.160	0.947	0.756	
500	2,010	0.975	0.337	1120	1.100	0.962	0.838	
550	2.210	0.948	0.350	1135^{a}	1.000	1.000	1.000	
600	2.014	0.926	0.368		0	0.000		
650	1.855	0.907	0.390		<i>C</i> =	0.600		
700	1.716	0.895	0.421	450	3.100	1.190	0.367	
750	1.585	0.890	0.468	500	2.819	1.135	0.372	
800	1.453	0.890	0.527	550	2.561	1.087	0.381	
840	1.347	0.899	0.589	600	2.326	1.046	0.395	
880	1.238	0.917	0.678	650	2.130	1.015	0.413	
900	1.175	0.933	0.746	700	1.961	0.992	0.435	
920	1.110	0.958	0.842	750	1.807	0.972	0.465	
935°	1.000	1.000	1.000	800	1.670	0.957	0.500	
	Δ.π. 3	50° F		850	1.542	0.948	0.545	
	C -	0.000		900	1,422	0.945	0.604	
	C =	0.000		940	1.327	0.947	0.665	
450	3.474		0.330	980	1.220	0.904	0.743	
500	3.182	,	0.325	1000	1.100	0.902	0.793	
550	2.931		0.322	1020	1,100	1.000	1.000	
600	2.721		0.321	1050	1.000	1.000	1.000	
650	2.529		0.319		<i>C</i> =	= 0.800		
700	2.376		0.322	450	2 807	1 177	0.405	
750	2.229		0.327	500	2.007	1.177	0.495	
850	2.093		U.336 0.246	550	2.000	1.120	0.505	
900	1.270		0.340	600	2.200	1 038	0.524	
950	1.007		0.301	650	1.792	1.009	0.584	
1000	1.651		0.001	700	1.618	0.992	0.629	
1050	1.549		0.440	740	1.487	0.984	0.677	
1100	1.448		0.487	780	1.350	0.980	0.738	
1150	1,336		0.563	800	1.280	0.979	0.776	
1170	1.288		0.602	820	1.207	0.980	0.821	
1190	1.218		0.673	840	1.127	0.983	0.891	
1219^{a}	1.000		1.000	855°	1.000	1.000	1.000	

Table III. Final K Values for the System Ethane-n-Butane-n-Heptane (Continued)

for constant composition parameters. The resulting curves are presented in Figure 4 for 300° and 350° F. Final K values for this ternary system obtained from Figure 4 are presented in Table III.

The vapor-liquid equilibrium behavior of this system is presented in the form of triangular plots for the two temperatures, 300° and 350° F., (Figure 5). These figures present the bubble point and dew point curves at convenient pressures and permit the establishment of the two phase region for pressures above 500 p.s.i.a. and temperatures of 300° and 350° F.

NOMENCLATURE

- $C = \text{composition parameter, } x_i / (x_i + x_h)$
- K = vapor-liquid equilibrium constant, y/x
- x = mole fraction of a component in liquid phase
- x_h = mole fraction in liquid phase of component of lowest volatility
- x_i = mole fraction in liquid phase of component of intermediate volatility
- y = mole fraction of a component in vapor phase

LITERATURE CITED

- (1) Grieves, R.B., Thodos, George, Ind. Eng. Chem. Fundamentals 1, 45 (1962).
- (2) Kay, W.B., Ind. Eng. Chem. 30, 459 (1938).
- (3) *Ibid.*, **32**, 353 (1940).
- (4) Ibid., 33, 590 (1941).
- (5) Mehra, V.S., Thodos, George, J. CHEM. ENG. DATA 10, 211 (1965).
- (6) Ibid., p. 307.
- (7) Ibid., 11, 365 (1966).
- (8) Rigas, T.J., Mason, D.F., Thodos, George, Ind. Eng. Chem. 50, 1297 (1958).

RECEIVED for review February 24, 1967. Accepted January 8, 1968. Work supported by the National Science Foundation Grant No. NSF-G9700.