Dew and Bubble Points of Simulated Natural Gases

MARIO H. GONZALEZ and ANTHONY L. LEE Institute of Gas Technology, Chicago, III. 60616

> Experimental dew and bubble points and densities of the saturated phase envelopes for 10 simulated natural gas samples are presented. The effect of helium on the phase behavior of natural gases is also illustrated.

1 HIS study was undertaken to obtain data on the physical properties of natural gases at cryogenic conditions. The gases tested are multicomponent mixtures representing one lean and one rich natural gas. To provide a means of isolating the effect of the various components on the physical properties of natural gas, each natural gas was investigated as a series of compositions. A mixture of nitrogen, methane, ethane, and propane was prepared initially in the same ratio as in the natural gas, from which a complete set of test results was obtained. Butane was then added, and its effect on the properties of natural gas was studied. The pentanes were then added and so on, up to heptane. In this way, the properties of the mixtures were studied.

APPARATUS

The apparatus used for this work is a modified version of a phase equilibria cell described before (1, 2). A schematic flow diagram is presented in Figure 1. The equilibrium cell is presented in Figure 2.

As shown in Figure 1, sample fluid is stored in a 3-liter reservoir (B) and compressed by two 250-cc. Jerguson gages (C, D). Mercury lines run from the bottom of the gages to a high-pressure mercury injection pump (G) and a 3-liter mercury reservior (E). To avoid stratification, multicomponent samples are mixed by a recirculation pump (F) (3).

The pressure measurements are obtained from a 2000p.s.i. Heise gage (H) to within ± 2 p.s.i. and from a 5000p.s.i. dead-weight tester (K) to within ± 0.1 p.s.i. The Heise gage was used to obtain approximate values of the experimental pressure, and the dead-weight tester was used to determine the exact value of this pressure. The measurements were made through the mercury separator (J) with a sensitivity exceeding the ± 0.1 p.s.i. sensitivity of the dead-weight tester. A correction was made for the hydrostatic head of the oil in the 2-foot line from the separator to the dead-weight tester.

Thermostatic conditions for the observations are achieved by placing the phase cell (L) inside a 2.5-gallon Dewar flask containing a fluid—usually isopentane or propane kept at a constant temperature. Temperature is controlled

Figure 1. Schematic of dew and bubble point apparatus

- A. Vacuum pump
- B. Sample fluid reservoir
- C. Jerguson gage
- D. Jerguson gage
- E. Mercury reservoir
- F. Magnetic pump
- G. Mercury injection pump
- H. Heise gage
- 1. Separatar
- J. Dead-weight tester
- K. Phase cell and thermostat

by a copper coil, through which a regulated amount of liquid nitrogen flows, and by a heating element regulated by a Bailey temperature controller. The thermostatic fluid is stirred with a squirrel-cage fan driven by an electric motor. The arrangement permits control of the temperature to within $\pm 0.05^{\circ}$ F. of the set point.

The temperature of the bath, assumed to be the same as that of the sample in the glass cell at equilibrium, is measured by a calibrated copper-constantan thermocouple. The thermocouple was calibrated against a platinum resistance thermometer at 50° F. intervals over the range of +100° to -320° F. The platinum resistance thermometer used is a Rosemount engineering temperature standard with calibration traceable to NBS. The e.m.f. produced by the thermocouple is balanced with a Leeds and Northrup K-2 potentiometer with a reference cold junction kept at 32° F. The state of balance is shown by a Leeds and Northrup Type E deflection galvanometer. Temperatures can be accurately read to within $\pm 0.04°$ F.

Dew and bubble points are determined visually in a borosilicate glass cell. The fluid inside the cell is agitated by raising and lowering an enclosed steel ball with a U magnet.

Densities of the dew and bubble point fluids are calculated from the calibrated volume of the glass cell and the amount

Figure 2. Equilibrium cell, low-temperature bath assembly

Components	Purity, Mole	Source	Grade
Nitrogen	99.99	Matheson	Prepurified
Methane	99.95	Matheson	Ultra-Pure
Ethane	99.97	Phillips 66	Research
Propane	99.90	Phillips 66	Research
<i>n</i> -Butane	99.91	Phillips 66	Research
<i>n</i> -Pentane	99.98	Phillips 66	Research
Hexane	99.0	Phillips 66	Pure
Heptane	99.0	Phillips 66	Pure

JOURNAL OF CHEMICAL AND ENGINEERING DATA

of gas displaced at the temperature and pressure of the Jerguson gage. The quality of the material used is presented in Table I.

EXPERIMENTAL

The mass spectrographic analysis of the gases studied in the dew and bubble point apparatus is shown in Table II. Figure 3 shows comparison of the envelopes of the

Figure 6. Saturated vapor-liquid densities for natural gas samples Nos. 7, 8, 9, and 10

Figure 7. Two-phase envelopes for samples Nos. 1 and 5

Figure 8. Dew and bubble points for natural gas samples Nos. 4 and 6

Table II. Analyses of Gas Samples Sample No.: Mole %

				Sample No.	; Mole %				
1	2	3	4	5	6	7	8	9	10
3.80	3.30	3.40	3.40	3.30	3.10	1.50	1.60	1.60	1.40
0.07	0.14	0.18	0.17						
91.70	88.70	86.80	86.20	91.00	81.40	95.90	95.00	94.50	94.30
4.30	6.60	6.50	6.40	5.60	11.10	2.60	2.60	2.60	2.70
0.04	1.30	2.50	2.40	0.12	1.80	0.01	0.78	0.81	0.74
		0.65	0.46		0.26			0.52	0.49
			0.09						0.10
			0.87		2.30		• • • •		0.27
			0.01						<u> </u>
99.91	100.04	100.03	100.00	100.02	99.96	100.01	99.98	100.03	100.00
	1 3.80 0.07 91.70 4.30 0.04 99.91	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sample No. 1 2 3 4 5 3.80 3.30 3.40 3.40 3.30 0.07 0.14 0.18 0.17 91.70 88.70 86.80 86.20 91.00 4.30 6.60 6.50 6.40 5.60 0.04 1.30 2.50 2.40 0.12 0.65 0.46 0.09 0.09 0.01 99.91 100.04 100.03 100.00 100.02	Sample No.; Mole $%$ 1 2 3 4 5 6 3.80 3.30 3.40 3.40 3.30 3.10 0.07 0.14 0.18 0.17 91.70 88.70 86.80 86.20 91.00 81.40 4.30 6.60 6.50 6.40 5.60 11.10 0.04 1.30 2.50 2.40 0.12 1.80 0.65 0.46 0.26 0.65 0.46 0.26 0.65 0.46 0.230 0.87 2.30 0.01 99.91 100.04 100.03 100.00 100.02 99.96	Sample No.; Mole $%_c$ 1 2 3 4 5 6 7 3.80 3.30 3.40 3.40 3.30 3.10 1.50 0.07 0.14 0.18 0.17 \dots \dots \dots 91.70 88.70 86.80 86.20 91.00 81.40 95.90 4.30 6.60 6.50 6.40 5.60 11.10 2.60 0.04 1.30 2.50 2.40 0.12 1.80 0.01 \dots \dots 0.65 0.46 \dots 0.26 \dots \dots \dots 0.09 \dots \dots \dots \dots \dots 0.01 \dots \dots \dots \dots \dots 0.01 \dots \dots \dots 99.91 100.04 100.03 100.00 100.02 99.96 100.01	Sample No.; Mole $%_c$ 1 2 3 4 5 6 7 8 3.80 3.30 3.40 3.40 3.30 3.10 1.50 1.60 0.07 0.14 0.18 0.17 91.70 88.70 86.80 86.20 91.00 81.40 95.90 95.00 4.30 6.60 6.50 6.40 5.60 11.10 2.60 2.60 0.04 1.30 2.50 2.40 0.12 1.80 0.01 0.78 0.65 0.46 0.26 0.87 2.30 0.01 99.91 100.04 100.03 100.00 100.02 99.96 100.01 99.98	Sample No.; Mole $%_c$ 123456789 3.80 3.30 3.40 3.40 3.30 3.10 1.50 1.60 1.60 0.07 0.14 0.18 0.17 \dots \dots \dots \dots \dots 91.70 88.70 86.80 86.20 91.00 81.40 95.90 95.00 94.50 4.30 6.60 6.50 6.40 5.60 11.10 2.60 2.60 2.60 0.04 1.30 2.50 2.40 0.12 1.80 0.01 0.78 0.81 \dots \dots 0.65 0.46 \dots 0.26 \dots \dots 0.52 \dots \dots \dots 0.09 \dots \dots \dots \dots \dots \dots \dots \dots 0.87 \dots 2.30 \dots \dots \dots \dots \dots \dots 0.01 \dots </td

Table III. Experimental Dew and Bubble Points for Natural Gas Samples

	Dew Points	s	I	Bubble Poir	nts		Dew Points		Bubble Points		
Press.,	Temp.,	Density,	Press.,	Temp.,	Density,	Press.,	Temp.,	Density,	Press.,	Temp.,	Density,
p.s.i.a.	° F.	g./cc.	p.s.i.a.	° F.	g./cc.	p.s.i.a.	° F.	g./cc.	p.s.i.a.	°F.	g./cc.
Sample 1							Sample 3				
14.0	-200.0	0.004	738.0	-110.0	0.249	190.1	-60.0	0.010	507.3	-140.0	0.325
55.1	-180.0	0.026	656.5	-125.0	0.282	436.9	-40.0	0.022	510.3	-140.0	0.318
98.1	-160.0	0.050	608.8	-130.0	0.289	439.9	-40.0	0.033	315.4	-180.0	0.366
151.3	-150.0	0.068	512.5	-140.0	0.301	628.6	-36.0	0.051	269.6	-200.0	0.386
158.8	-147.5	0.068	445.0	-150.0	0.316	703.3	-36.1	0.058	282.4	-200.0	0.383
159.8	-146.0	0.063	337.5	-170.0	0.345	830.6	-38.8	0.070	276.4	-220.0	0,404
165.0	-145.0	0.067	245.0	-200.0	0.387	903.4	-42.0	0.088	368.9	-240.0	0.421
211.6	-140.0	0.083	236.5	-210.0	0.397	962.9	-47.0	0.106	473.8	-260.0	0.439
299.6	-130.0	0.098	231.0	-220.0	0.408	980.9	-49.0	0.114			
455.5	-114.0	0.142	240.2	-230.0	0.414	994.9	-52.0	0.122			
635.5	-104.3	0.186	251.2	-240.0	0.424	1006.1	-55.0	0.132			
738.0	-103.2	0.200	348.0	-280.0	0.442	1005.4	-55.0	0.124			
747.0	-103.8	0.206				1008.0	-56.0	0.129			
751.2	-103.9	0.210				1008.4	-56.0	0.128			
769.7	-104.7	0.222				1007.4	-60.0	0.138			
763.8^{a}	-106.0	0.234				1000.9	-64.0	0.147			
		C	* 5 0			995.6	-68.0	0.155			
		SAMP	LE Z			988.4	-72.0	0.159			
54.2	-120.0	0.008	801.9	-100.0	0.324	957.4	-76.0	0.175			
150.0	-100.0	0.018	732.9	-110.0	0.366	938.4	-78.9	0.182			
342.3	-80.0	0.050	733.9	-110.0	0.362	934.6	-81.1	0.187			
421.4	-81.2	0.067	582.1	-130.0	0.426	930.9°	-81.3	0.191			
487.7	-78.3	0.111	442.9	-150.0	0.471						
534.7	-76.0	0.121	303.1	-180.0	0.522			Sampl	.Е 4		
571.7	-75.0	0.129	303.1	-180.0	0.537	46.4	-70.0	0.002	962.9	-80.0	0 191
630.4	-73.5	0.145	241.4	-210.0	0.579	57.4	-50.0	0.002	895.9		0.151
782.2	-73.4	0.194	270.9	-240.0	0.614	74.6	-20.0	0.003	747.9	-110.0	0.200
804.7	-75.0	0.206	450.9	-270.0	0.652	192.6	20.0	0.002	747.0	-110.0	0.010
810.7	-75.0	0.177	689.9	-280.0	0.666	346.9	+16.1	0.000	589.9	-130.0	0.343
859.2	-77.0	0.208				373.1	+18.0	0.018	444.6	-150.0	0.371
892.2	-80.0	0.246				447.9	+20.0	0.025	350.9	-170.0	0.397
884.2	-81.0	0.253				429.6	+21.4	0.028	279.3	-200.0	0.428
878.4	-81.7	0.255				476.6	+22.5	0.030	302.6	-230.0	0.455
877.6	-81.9	0.260				523.6	+24.0	0.033	0.0211	_0010	0.100
877.2	-81.9	0.140				660.4	+23.5	0.044			
873.2	-83.0	0.205				784.3	+20.0	0.054			
871.7	-85.0	0.223				962.6	+10.0	0.074			
873.2	-85.6	0.226				1076.4	0.0	0.090			
867.2	-80.0	0.216				1104.4	-60.0	0.159			
868.4	-81.0	0.220				1042.3	-67.0	0.167			
864.4	-82.0	0.228				999.4°	-75.2	0.17			
871.7	-83.0	0.236						S. MO	. D. 5		
019.1	-83.0	0.260						SAMP	LEO		
070.7 970.0	-84.0	0.207				67.4	-170.0	0.006	760.1	-104.4	0.209
869.7	-85.0	0.278				123.6	-150.0	0.009	721.6	-110.0	0.235
860.2	-89.0	0.294				215.9	-130.0	0.016	747.4	-110.0	0.235
849.7	-09.0	0.307				241.6	-130.0	0.023	644.9	-120.0	0.258
840.7°	_92.0 _93.9	0.325				434.9	-110.0	0.043	475.9	-140.0	0.302
010.1	00.0	0.020				643.9	-100.0	0.074	337.6	-160.0	0.329
Sample 3					804.6	-98.0	0.141	233.6	-180.0	0.348	
	100.0	0.000	0.55.0	00.0	0.000	781.9	-99.0	0.147	152.4	-200.0	0.348
45.4	-100.0	0.002	875.9	-90.0	0.223	776.4	-100.0	0.154			
82.6	-80.0	0.005	726.4	-110.0	0.272	114.0	-101.0	0.101			

"Critical point.

	Dew Point	s	Bu	ıbble Point	s	Dew Points			Bubble Points			
Press., p.s.i.a.	Temp., °F.	Density, g./cc.	Press., p.s.i.a.	Temp., °F.	Density, g./cc.	Press., p.s.i.a.	Temp., °F.	Density, g./cc.	Press., p.s.i.a.	Temp., °F.	Density, g./cc.	
	SAMPLE 6							Sampi	.е 8			
$\begin{array}{c} 45.4\\ 61.4\\ 69.6\\ 112.6\\ 190.4\\ 244.6\\ 277.4\\ 333.4\\ 378.4\\ 419.6\\ 521.9\\ 609.4\\ 649.9\end{array}$	$\begin{array}{c} -70.0 \\ -50.0 \\ -20.0 \\ 0.0 \\ 20.0 \\ 30.0 \\ 35.0 \\ 40.0 \\ 44.0 \\ 47.0 \\ 51.0 \\ 51.7 \\ 51.0 \end{array}$	$\begin{array}{c} 0.006\\ 0.007\\ 0.005\\ 0.008\\ 0.010\\ 0.053\\ 0.054\\ 0.058\\ 0.061\\ 0.063\\ 0.070\\ 0.077\\ 0.081 \end{array}$	913.9 745.1 582.9 433.6 313.4 186.4 121.6	-80.0 -100.0 -120.0 -140.0 -160.0 -190.0 -220.0	$\begin{array}{c} 0.275 \\ 0.316 \\ 0.350 \\ 0.375 \\ 0.394 \\ 0.432 \\ 0.455 \end{array}$	$\begin{array}{c} 747.1 \\ 764.5 \\ 765.5 \\ 757.6 \\ 751.4^{a} \\ 751.2^{a} \\ \end{array}$	$\begin{array}{c} -99.0 \\ -100.5 \\ -102.0 \\ -103.2 \\ -105.9 \\ -105.9 \\ \end{array}$ $\begin{array}{c} -160.0 \\ -140.0 \\ -120.0 \\ -100.0 \\ -85.0 \end{array}$	0.119 0.177 0.182 0.190 0.212 0.208 SAMP 0.011 0.013 0.017 0.020 0.023	LE 9 753.8 713.0 533.7 375.9 261.1	-105.0 -110.0 -130.0 -150.0 -170.0	0.179 0.205 0.226 0.240 0.268	
732.9 816.9 816.6 1143.4	49.0 45.0 45.0 35.0	0.082 0.083 0.082 0.090				323.8 421.7 414.6 516.9	-75.0 -70.0 -70.0 -65.0	$\begin{array}{c} 0.027 \\ 0.032 \\ 0.032 \\ 0.043 \end{array}$	$169.6 \\ 106.4 \\ 37.2$	-190.0 -210.0 -250.0	$\begin{array}{c} 0.272 \\ 0.300 \\ 0.322 \end{array}$	
		SAMP	le 7			$688.4 \\ 685.8$	-63.0 -63.0	$0.060 \\ 0.069$				
$\begin{array}{c} 41.4\\ 84.6\\ 161.6\\ 305.5\\ 306.4\\ 407.1\\ 483.4\\ 542.6\\ 610.9\\ 596.8\\ 648.6\\ 654.4\end{array}$	$\begin{array}{c} -200.0 \\ -180.0 \\ -160.0 \\ -140.0 \\ -140.0 \\ -130.0 \\ -124.0 \\ -119.8 \\ -115.0 \\ -115.5 \\ -113.0 \\ -113.1 \\ 0 \end{array}$	$\begin{array}{c} 0.005\\ 0.009\\ 0.017\\ 0.033\\ 0.034\\ 0.052\\ 0.064\\ 0.075\\ 0.088\\ 0.085\\ 0.099\\ 0.104\end{array}$	683.1 598.6 457.3 315.5 210.1 129.6 81.8 37.4	-115.0 -125.0 -140.0 -160.0 -180.0 -200.0 -220.0 -250.0	$\begin{array}{c} 0.216 \\ 0.244 \\ 0.285 \\ 0.318 \\ 0.346 \\ 0.372 \\ 0.396 \\ 0.425 \end{array}$	800.14 720.6 780.9 830.9 839.9 841.4 815.0 791.6° 790.9°	$\begin{array}{c} -64.0 \\ -65.0 \\ -70.0 \\ -75.0 \\ -83.0 \\ -86.8 \\ -95.0 \\ -100.5 \\ -100.5 \end{array}$	$\begin{array}{c} 0.070\\ 0.071\\ 0.093\\ 0.107\\ 0.124\\ 0.137\\ 0.171\\ 0.199\\ 0.198\\ \end{array}$				
678.9	-110.0	$0.104 \\ 0.090$										
714.4 710.9 715.6 714.9 715.0° 715.7°	-109.0 -109.1 -109.6 -110.2 -110.7 -110.7	0.109 0.116 0.126 0.133 0.142 0.142 SAMP	LE 8	1.0.0	0.010	30.4 62.4 114.1 178.8 277.3 378.9 604.4	-140.0 -100.0 -80.0 -60.0 -50.0 -40.0 -30.0	SAMP 0.003 0.006 0.009 0.013 0.020 0.027 0.051	LE 10 768.4 720.4 536.0 311.4 163.4 105.4	-105.0 -110.0 -130.0 -160.0 -190.0 -210.0	$\begin{array}{c} 0.171 \\ 0.200 \\ 0.252 \\ 0.289 \\ 0.321 \\ 0.343 \end{array}$	
35.4 55.4 101.6 217.0 331.7 592.6 590.5 526.7 526.7 577.6 582.3 670.9 714.5	$\begin{array}{c} -190.0 \\ -160.0 \\ -140.0 \\ -120.0 \\ -110.0 \\ -100.0 \\ -99.8 \\ -99.8 \\ -99.8 \\ -99.0 \\ -99.0 \\ -97.6 \\ -98.0 \end{array}$	$\begin{array}{c} 0.006\\ 0.006\\ 0.009\\ 0.019\\ 0.012\\ 0.049\\ 0.050\\ 0.053\\ 0.056\\ 0.056\\ 0.064\\ 0.058\\ 0.080\\ 0.096\end{array}$	715.8 672.8 626.2 537.2 378.2 269.9 170.1 106.1 37.4	-110.0 -115.0 -120.0 -130.0 -150.0 -170.0 -190.0 -210.0 -250.0	$\begin{array}{c} 0.219\\ 0.239\\ 0.253\\ 0.275\\ 0.318\\ 0.348\\ 0.370\\ 0.397\\ 0.433\end{array}$	604.4 431.2 473.8 831.7 940.4 941.2 1028.4 1029.6 1010.4 948.6 840.0 822.4 809.1°	$\begin{array}{c} -30.0 \\ -35.0 \\ -30.0 \\ -31.0 \\ -35.0 \\ -40.0 \\ -50.0 \\ -60.0 \\ -70.0 \\ -80.0 \\ -93.9 \\ -95.7 \\ -97.7 \end{array}$	$\begin{array}{c} 0.031\\ 0.044\\ 0.073\\ 0.089\\ 0.097\\ 0.118\\ 0.127\\ 0.142\\ 0.146\\ 0.158\\ 0.169\\ 0.171\\ \end{array}$	103.4	-210.0	0,0*0	

Table III. Experimental Dew and Bubble Points for Natural Gas Samples (Continued)

first four mixtures, and Figure 4 compares the saturated vapor-liquid densities for the same mixtures.

Figure 5 shows the envelopes of mixtures Nos. 7 to 10, and Figure 6 compares their saturated vapor-liquid densities.

The peculiar effect of helium on the behavior of the first four mixtures was analyzed by experimental determination on two helium-free mixtures (samples 5 and 6) with compositions similar to the first and fourth samples. Figure 7 compares the behavior of sample 5 with that of sample 1. Similar results were obtained with sample 6 (Figure 8). The displacement of the envelope of mixture 6 was caused by its high ethane content.

The helium content of the four gases previously

investigated caused the increase of the bubble point pressure at temperatures below -200° F. The process which causes this increase appears to be the preferential condensation of the hydrocarbons with an increase in the percentage of helium in the gaseous phase.

Experimental data are presented in Table III. Because of the scarcity of comparable literature data, the data reported must be judged by its internal consistency and by the magnitude of the errors inherent to the equipment used. Based on these considerations, it is concluded that the dew-and-bubble point data is accurate to $\pm 0.1^{\circ}$ F. and ± 0.3 p.s.i. The saturated vapor densities are believed to be accurate to $\pm 1.5^{\circ}i$ while the saturated liquid densities are accurate to $\pm 1.0^{\circ}i$.

Valuable discussions were provided by Jack Huebler, A. R. Khan, J. P. Dolan, and B. E. Eakin. Jim Francis assisted in the experimental work and Richard Kao in the data analysis.

LITERATURE CITED

(1) Bloomer, O.T., Parent, J.D., Inst. Gas Technol. Res. Bull. No. 7 (1952).

Thermodynamic Functions of Thionyl Bromide

ARTHUR FINCH, P. J. GARDNER, and K. RADCLIFFE Royal Holloway College, Englefield Green, Surrey, U. K.

The thermochemistry of thionyl bromide was investigated at 25° C. in a conventional reaction calorimeter. The standard enthalpy of formation of the liquid is -40.2 \pm 0.3 kcal. per mole and statistical thermodynamic functions are calculated for the gas.

THE CHEMISTRY of the thionyl halides (SOX_2) has been included in a recent review (2). The thermal stability of these compounds decreases with increasing molecular weight, and this fact is reflected in the thermodynamic and structural data available.

Experiments on the photodecomposition of thionyl bromide by Hussain and Samuel (5) give two estimates (14) for $\Delta H_i^2[\text{SOBr}_2, g]$, -21.8 and -27.2 kcal. per mole. The updated version (15) of the National Bureau of Standards Circular 500 (10) reports the datum $\Delta H_i^2[\text{SOBr}_2, g] = -17.7$ kcal. per mole. The source of this latter figure is not clear. The value reported here diverges widely from the above. A conventional reaction calorimeter has been utilized to investigate the aqueous hydrolysis of thionyl bromide at 25° C. and molecular structure and spectroscopic data were used to calculate thermodynamic functions in the gas phase.

EXPERIMENTAL

Materials. Thionyl bromide was prepared by the method of Hibbert and Pullman (4) which involved passing dry hydrogen bromide gas through thionyl chloride. The product distilled at 39° C./15 mm. of Hg as an orange-yellow liquid. It was redistilled at 0.1 mm. of Hg as a clear yellow liquid and stored at -20° C. Found: Br, 76.6; Calculated for SOBr₂: Br, 76.9%.

Calorimeter. This was of the constant-temperatureenvironment type fully immersed in a thermostat maintained at 25.0 \pm 0.01°C. Details of construction may be found elsewhere (1). Thermal leakage corrections were made by the equal areas method, which is satisfactory (8) when a net precision of $\pm 0.5\%$ is required. The precision and accuracy of the equipment were assessed by two standard reactions, one exothermic and the other endothermic. For the enthalpy of neutralization of tris(hydroxymethyl)aminomethane (THAM) in excess 0.1M hydrochloric acid, the mean of seven determinations was -7.15 ± 0.03 kcal. per mole at 25°C. and n = 600 [lit. (3), -7.107 \pm 0.004 kcal. per mole at 25° C. and n = 1350]. The enthalpy of dilution of THAM is negligible. For the enthalpy of solution of potassium chloride in water, the mean of five determinations was +4.23 \pm 0.02 kcal. per mole at 25° and n = 200 [lit. (3), 4.200 \pm 0.009 kcal. per mole at 25° C. and n = 200]. *n* is the mole ratio of water to solute. The precision of the electrical calibration was $\pm 0.1\%$. This error was an order of magnitude smaller than the

restigated at 25 $^\circ$ C. in a conventional

error in the observed heats of hydrolysis and, hence, was ignored. The limiting feature on the accuracy of the results reported here is the purity of the thionyl bromide at reaction time. Further details of the electrical calibration procedure are given in Reference (1). Enthalpies are reported in terms of the defined thermochemical calorie—1 cal. = 4.1840 abs. joule.

RESULTS

Development.

Thionyl bromide hydrolyzed rapidly and quantitatively, but without undue violence, according to the following equation:

$$SOBr_2(liq.) + (n + 1)H_2O(liq.) = |SO_2 + 2HBr|nH_2O|$$

Hence,

 $\Delta H_{i}^{\alpha}[\mathrm{SOBr}_{2}, \mathrm{liq}_{2}] = 2\Delta H_{i}^{\alpha}[\mathrm{HBr}, \frac{n}{2}\mathrm{H}_{2}\mathrm{O}] + \Delta H_{i}^{\alpha}[\mathrm{SO}_{2}n\mathrm{H}_{2}\mathrm{O}] -$

 $\Delta H_{7}^{a} H_{2} O(liq) + \Delta H_{mix} - \Delta H_{obsd}$

where $\Delta H_{\rm obsd}$ is the observed enthalpy of hydrolysis and $\Delta H_{\rm mix}$ is the enthalpy of mixing of the products of hydrolysis (Table I). This latter term is small and may be estimated from the data of Johnson and Sunner (7). These workers measure the heat of mixing of aqueous hydrobromic acid with an aqueous sulfuric acid-sulfur dioxide solution. Selecting n = 1240 and ignoring the effect of the sulfuric acid, Sunner and Johnson's Equation 5 may be combined with:

 $[HBr 5.59H_2O] + 614.4H_2O = [HBr 620H_2O] \Delta H(25^\circ) =$

-1.97 kcal. per mole

Table I. Heat of Hydrolysis ($\Delta {\it H}_{\rm obsd})$ of SOBr2 in Deoxygenated Water

$T = 25.0 \pm 0.1^{\circ} \text{ C}.$								
Wt. of Sample, G.	n	$\Delta H_{ m obsd}$, Kcal. Per Mole	ΔH? SOBr ₂ (Liq.), Kcal. Per Mole					
1.2546	1381	-29.0	-40.2					
1.9447	891	-29.0_{1}	-40.1					
1.3087	1322	-28.7_{2}	-40.5					
1.2891	1344	-29.1	-40.1					
	· · · ·							

 ΔH (SOBr₂, liq. | = -40.2 \pm 0.3" kcal. per mole

^a The error for four observations is taken as the range of the observed data plus the errors on the ancillary data combined as the root of the sum of the squares.

 (3) Lee, A.L., "Viscosity of Light Hydrocarbons," American Petroleum Institute, New York, 1965.

RECEIVED for review May 8, 1967. Accepted October 26, 1967.

Work sponsored by the American Gas Association, Research and