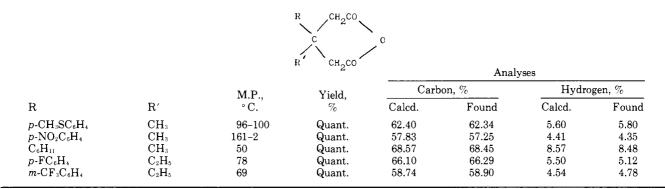
Synthesis of 3,3-Disubstituted Glutarimides

I. LALEZARI, N. SHARGHI, and P. ZIAIAN

Faculty of Pharmacy, University of Tehran, Iran


The following 3,3-disubstituted glutarimides have been synthesized, and their intermediate compounds prepared: 3-p-methylmercaptophenyl-3-methylglutarimide, 3-p-nitrophenyl-3-methyl glutarimide, 3-cyclohexyl-3-methylglutarimide, 3-p-fluoro-phenyl-3-ethylglutarimide, and 3-m-trifluoromethylphenyl-3-ethylglutarimide. The infrared and NMR spectra of 3,3-disubstituted glutarimides were recorded and assignments have been given.

To STUDY their pharmacological effects, several 3,3disubstituted glutarimides, summarized in Table V, were prepared. 3,3-Disubstituted glutaric acids (Table III) were synthesized by the method of McElvain and coworkers (1). Alkylidene derivatives (Table I) were obtained by treating appropriate ketones with ethyl cyanoacetate, which, after reaction with cyanoacetamide in sodium ethoxide solution gave corresponding dicyanoglutarimides (Table II), which were hydrolyzed to 3,3-disubstituted glutaric acids (Table III).

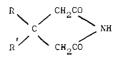

These acids, when boiled with acetic anhydride, gave 3,3disubstituted glutaric anhydrides (Table IV). Related glutarimides were prepared by reaction of glutaric anhydrides with urea (Table V). The infrared spectra of glutarimides, recorded on a Leitz Model III Spectrograph (KBr wafer), include two strong bands at 5.9 and 6.0μ due to carbonyl groups. The characteristic skeletal absorption is two strong bands at 11.5 and 11.6μ . Imide group absorption is a strong band near 7.8μ . The infrared spectra of deuterated glutarimides do not show appreciable shifts of imide absorption.

		Table I. Ethy	yl Alkylidened	cyonoacetates				
		Ŕ	CN					
			C=C					
		R		2 ^H 5				
					Analy	ses		
		B.P., ° C.	Yield,	Carbon, %		Hydrogen, $\%$		
R	\mathbf{R}'	(Mm. of Hg)	%	Calcd.	Found	Calcd.	Found	
p-CH ₃ SC ₆ H₄	CH_3	210(2.2)	57	64.36	64.55	5.74	5.90	
$p-NO_2C_6H_4$	CH ⁵		78	59.77	60.20	4.98	4.81	
$C_{6}H_{11}$	CH_3	154(4.6)	88	70.58	70.30	8.59	8.35	
$p - FC_6H_4$	C_2H_5	156(2.5)	64	68.01	68.26	5.66	5.78	
m-CF ₃ C ₆ H ₄	C_2H_5	167(5.5)	67	60.60	60.34	4.71	4.50	
° M.P. 156° C.								
		Table II. 3,3-Disub	ostituted 2,4-	Dicyanoglutarir	nides			
		R	,CH(CN)CO					
		\sim	~	NH				
		R	CH(CN)CO					
					Analy			
		B.P.,	Yield,	Carbon, %		Hydrogen, %		
R	R′	° C.	%	Calcd.	Found	Calcd.	Found	
$p-CH_3SC_6H_4$	CH_3	262	80	60.20	59.98	4.34	4.30	
$p-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	CH_3	290 - 3	70	56.38	56.18	3.38	3.46	
$C_{6}H_{11}$	CH_3	270	65	64.86	65.22	6.56	6.60	
	C_2H_5	234 - 5	99	63.15	63.10	4.21	4.02	
$p-\mathrm{FC}_6\mathrm{H}_4$								
p-FC ₆ H ₄ m-CF ₃ C ₆ H ₄	C_2H_5	282	69	57.31	57.12	3.58	3.43	
				57.31 Glutaric Acid	· · · · · · · · · · · · · · · · · · ·	3.58	3.43	
				Glutaric Acid	· · · · · · · · · · · · · · · · · · ·	3.58	3.43	
			-Disubstituted	l Glutaric Acid	· · · · · · · · · · · · · · · · · · ·	3.58	3.43	
			-Disubstituted	l Glutaric Acid	· · · · · · · · · · · · · · · · · · ·	3.58	3.43	
			-Disubstituted	l Glutaric Acid	· · · · · · · · · · · · · · · · · · ·		3.43	
		Table III. 3,3	-Disubstituted	l Glutaric Acid	s Analy			
			-Disubstituted	I Glutaric Acid	s Analy	'ses		
m-CF ₃ C ₆ H ₄	C ₂ H ₅	Table III. 3,3 M.P.,	-Disubstituted R CH2COC R CH2COC Yield,	I Glutoric Acid	s Analy on, %	/sesHydroa	gen, %	
R p-CH ₃ SC ₆ H ₄	C ₂ H ₅	Table III. 3,3 M.P., °C.	-Disubstituted R CH ₂ COC R CH ₂ COC Vield, %	I Glutaric Acid	s Analy on, % Found	rses Hydrog Calcd.	gen, % Found	
R p-CH ₃ SC ₆ H ₄ p-CH ₃ SC ₆ H ₄ p-NO ₂ C ₆ H ₄ C ₆ H ₁₁	C ₂ H ₅ R' CH ₃ CH ₃ CH ₃ CH ₃	Table III. 3,3 M.P., °C. 110 148 156	-Disubstituted R CH2COC R CH2COC Yield, % 15 48 45	Carbo Calcd. 53.93 63.15	S Analy on, % Found 58.66 53.85 63.08	7ses Hydrog Calcd. 5.97 4.86 8.77	gen, % Found 5.59 4.92 8.72	
R p-CH ₃ SC ₆ H ₄ p-CH ₃ SC ₆ H ₄ p-NO ₂ C ₆ H ₄	C ₂ H ₅ R' CH ₃ CH ₃	Table III. 3,3 M.P., °C. 110 148	-Disubstituted R CH ₂ COC R CH ₂ COC Vield, % 15 48	Carbo 58.20 53.93	S Analy on, % Found 58.66 53.85	rses Hydrog Calcd. 5.97 4.86	gen, % Found 5.59 4.92	

Table IV. 3,3-Disubstituted Glutaric Anhydrides

Table V. 3,3-Disubstituted Glutarimides

				Analyses							
		M.P.,	Yield,	Carbon, %		Hydrogen, %		IR, $\lambda_{\text{Max.}}$ KBr, μ^a			NMR, τ^{a}
R	\mathbf{R}'	° C.	%	Calcd.	Found	Calcd.	Found	C=0	NH	Skeletal	NH
p-CH ₃ SC ₆ H ₄	CH_3	189-90	40	62.65	62.44	6.02	6.06	5.8, 6.0	7.8	11.55	1.5
$p-NO_2C_6H_4$	CH_3	189-90	45	58.06	58.23	4.83	5.09	5.8,5.95	7.9	11.65	1.5
C_6H_{11}	CH_3	186	52	68.89	70.21	9.09	9.58	5.8, 5.95	7.8	11.70	1.65
m-FC ₆ H ₄	C_2H_5	156 - 9	62	66.38	68.33	5.95	6.09	5.8, 5.95	7.85	11.55	1.45
m-CF ₃ C ₆ H ₄	C_2H_5	148 - 9	50	58.94	60.64	4.91	5.42	5.8, 5.90	7.9	11.60	1.58
^e Refer to the text	for details o	on IR and NM	AR.								

The NMR spectra of glutarimides in $CDCl_3$ solution were recorded on a Varian A60A Spectrometer using TMS as internal standard. The NH proton absorption of the imide group, for which not many examples can be found in literature, was studied carefully. Deuteration was accomplished by adding D₂O to samples dissolved in $CDCl_3$. The imide proton absorption disappeared rapidly. After evaporation of solvent, pure deuterated glutarimides were obtained. The NH proton absorption in all cases, including the case of 3,3-methylethyl
glutarimide, is a very broad band at τ 1.45–1.65.

LITERATURE CITED

(1) McElvain, S.M., Clemens, D.H., J. Am. Chem. Soc. 80, 3915 (1958).

RECEIVED for review July 20, 1967. Accepted December 5, 1967.