droxide, ice being added to keep the temperature below 20° C. The resulting precipitate was dissolved in ether and the ethereal solution dried over anhydrous sodium sulfate. After removal of the ether, the residue, if solid, was crystallized from petroleum ether or purified by fractional distillation at reduced pressure (Table III), if liquid.

Preparation of 1,10-Phenanthrolines. To a well-stirred mixture of 0.1 mole of the appropriate 8-aminoquinoline, 18 ml. of 80% arsenic acid, and 100 ml. of 87% phosphoric acid heated to 100° C., 0.2 mole of the α,β -unsaturated ketone was slowly added. Stirring was continued for 3 hours while the temperature was slowly raised to 130°C. The mixture was cooled, made alkaline with concentrated potassium hydroxide and the resulting precipitate removed by filtration. The filtrate and residue were extracted with hot benzene. After removal of benzene, the product was purified by crystallization from a suitable solvent (Table IV).

LITERATURE CITED

- (1)Yale, H., Bernstein, J., J. Am. Chem. Soc. 70, 254 (1948).
- Green, M.B., Hickinbottom, W.J., J. Chem. Soc. 1957, p. 3262. Bergman, E.D., Resnick, C., J. Org. Chem. 17, 1291 (1957). (2)
- (3)
- (4)Esafov, V.I., Zhukova, L.P., J. Gen. Chem. (U.S.S.R.) 32, 2775 (1962).
 - (5)Newman, M.S., J. Am. Chem. Soc. 75, 4740 (1950).

RECEIVED for review December 18, 1967. Accepted March 7, 1968.

1,3-Bis(o-hydroxybenzyl)-2-Substituted Imidazolidines

DANIEL A. SCOLA¹ and HAROLD R. DiPIETRO

Boston Laboratories, Monsanto Research Corp., Everett, Mass. 02149

Several 1,3-bis(o-hydroxybenzyl)-2-substituted imidazolidines were synthesized and characterized. Yields, melting points, and elemental analyses are reported for the new compounds.

USING THE PROCEDURE of Billman and Dorman (1) several 1,3-bis(o-hydroxybenzyl)-2-substituted imidazolidines were synthesized and tested for herbicidal activity.

Table I summarizes yields, melting points, and elemental analyses of compounds prepared. A list of characteristic infrared absorption bands is shown in Table II. The infrared spectrum of each compound was consistent with the desired structure.

EXPERIMENTAL

N, N'-Bis(o-hydroxybenzyl)ethylenediamine was obtained from the Dow Chemical Co. Other reactants were also obtained comercially and used without further purification. Melting points were taken on a Hershberg melting point apparatus and are uncorrected. Infrared spectra were recorded on a Perkin-Elmer Model 21 spectrophotometer using potassium bromide as a matrix.

To a hot solution of N, N'-bis(o-hydroxybenzyl)ethylenediamine (0.1 mole) in 500 ml. of methanol was added 0.1 mole of the aldehyde dissolved in a minimum amount of methanol. The reaction mixture was refluxed for 1 hour

Compound		CH R	%	^{0⊢} M.P.,		Analyses			
No.	Compound	R	Yield	° C.		% C	% H	% Cl	% N
1	1,3-Bis(o-hydroxybenzyl)-2-(α-methy-10-	C ₆ H ₅ Ch = C- CH ₃	80	$115 - 16^{a}$	Calcd.	78.0	7.1		7.0
	styryl)imidazolidine				Found	78.0	6.9		7.1
2	1,3-Bis(o-hydroxybenzyl)-2-p-chloro-	cı –	85	$155 - 56^{\circ}$	Calcd.	70.0	5.9	9.0	7.1
	phenylimidazolidine				Found	70.0	5.8	8.9	7.1
3	2-(3,4-Dichlorophenyl)-1,3-bis(o-	ci-(88	$106-07^{\circ}$	Calcd.	64.3	5.2	16.5	6.5
	hydroxybenzyl)imidazolidine	I J			Found	64.5	5.3	16.5	6.8
4	1,3-Bis(o-hydroxybenzyl)-2-m-iodo-		87	$138 - 39^{\circ}$	Calcd.	56.8°	4.8		5.8
	phenylimidazolidine				Found	57.0	4.8		5.7
5	2-(p-Cyanophenyl)-1,3-bis(o-hydroxy-	NG-()-	65	$142-43^{\circ}$	Calcd.	74.8	6.0		10.9
	benzyl)imidazolidine				Found	74.6	6.1		10.8
6	1,3-Bis(o-hydroxybenzyl)-2-(2-thienyl)-	l l	90	$178-79^{d}$	Calcd.	68.8'	6.1	• • •	7.6
	imidazolidine	`s			Found	68.9	6.1		7.7
7	1,3-Bis(o-hydroxybenzyl)-2-(3-pyridyl)-	()	82	$182 - 83^{f}$	Calcd.	73.1	6.4		11.6
	imidazolidine	N/			Found	73.0	6.4		11.8

Table I. 1,3-Bis(o-hydroxybenzyl)-2-substituted Imidazolidines

^aRecrystallized from methanol. ^bRecrystallized from 2-propanol. ^cAnalyzed for iodine: Calcd. 26.1; found 25.8. ^dRecrystallized from pyridine. 'Analyzed for sulfur: Calcd. 8.8; found 8.7. 'Recrystallized from ethanol.

¹ Present address, United Aircraft Research Laboratories, East Hartford, Conn. 06108

Table II. Characteristic Infrared Absorption Bands of 1,3-Bis(o-hydroxybenzyl)-2-substituted Imidazolidines												
Compound No.	Aromatic CH Stretch, Cm. ⁻¹	Aliphatic C—H Stretch, Cm. ⁻¹	OH Stretch, Cm. ⁻¹	OH Deformations ^a and C—O Stretch, Cm. ⁻¹	C = C Stretch, Cm. ⁻¹	C—H Out of Plane Deformations, Cm. ⁻¹	Specific Absorptions, Cm. ⁻¹					
1	b	ò	b	1230 1335	$1590 \\ 1470 \\ 1400^{\circ}$	695 725 740	None					
2	3030	2860	3367	1250 1335	$1610 \\ 1590 \\ 1485 \\ 1410^{\circ}$	825 755	CCl 702					
3	3020	2773	3367	1240 1325	$1610 \\ 1590 \\ 1480 \\ 1460 \\ 1390^{\circ}$	759 821 870	C—Cl 652					
4	3040	2793	3333	1230 1345	1390 1613 1585 1560 1450 1410 $^{\circ}$	691 754 781 860	None					
5	3040	2809	3333	1235 1360	1410 1600 1470 1410 ^c	767 823	C = N 2221					
6	3030	2810	3330	1245 1325	1615 1590 1490 1400°	757	C—CS— 720					
7	3030	2790	3340	1230 1325	1590 1470 1400°	715 750 815	None					

^a Each compound showed multiple absorptions (7 to 10 bands) in 1180- to 1400-cm.⁻¹ region; bands assigned to OH deformations and C—O stretch were those having strongest absorption. ^bSpecific absorptions could not be assigned because of broad band in 3500- to 2500-cm.⁻¹ region. ^cThis absorption is also in region for —OH deformation or —C—O stretch.

(1). The cooled reaction mixture was filtered and the collected solid purified as indicated in Table I.

LITERATURE CITED

(1) Billman, J.H., Dorman, L.C., J. Med. Chem. 6, 701 (1963).

ACKNOWLEDGMENT

The authors are indebted to A. E. Bekebrede and J. Alm of these laboratories for the infrared work. Elemental analyses were performed by Carol K. Fitz, Needham Heights, Mass.

RECEIVED for review January 22, 1968. Accepted April 30, 1968. Work supported by the U.S. Army Biological Laboratories at Fort Detrick, Frederick, Md., under U.S. Army Contract No. DA-18-064-AMC-69(A).

N,N'-Disubstituted P-Phenylphosphonothioic Diamides

DANIEL A. SCOLA¹ and DANIEL W. GRISLEY, Jr.² Boston Laboratories, Monsanto Research Corp., Everett, Mass. 02149

Several N,N'-disubstituted P-phenylphosphonothioic diamides were synthesized and characterized. Yields, melting points, infrared data, and elemental analyses are given for the reported compounds.

SEVERAL N,N'-disubstituted P-phenylphosphonothioic diamides were synthesized by the reaction of phenylphosphonothioic dichloride with primary and secondary amines using standard methods (1, 2). The compounds are listed in Table I.

$$S \atop {\stackrel{\bullet}{\dagger}} C_6H_5 - PCl_2 + 4R_2NH \rightarrow C_6H_5 - P(NR_2)_2 + 2R_2N \cdot HCl$$

With the exception of the N,N'-bis(ethoxyethyl) derivative, which was a straw-colored oil, the compounds were

¹ Present address: United Aircraft Research Laboratories, East Hartford, Conn. 06108

 $^{2}\,\mathrm{Present}$ address: Syracuse University Research Corp., Syracuse, N.Y.

colorless, crystalline solids. The infrared spectra were consistent in each instance with the desired structure. Characteristic absorptions are shown in Table II. Expected absorptions due to specific groups for each compound were also noted.

EXPERIMENTAL

Phenylphosphonothioic dichloride was purchased from the Aldrich Chemical Co. Other reactants were also obtained commercially (reagent grade) and used without further purification, except 2-aminothiazole (technical grade) which was recrystallized from toluene. Reaction solvents were dried over sodium. Melting points were taken on a Thomas-Hoover melting point apparatus and are uncorrected.