T	able II. Chara	icteristic Infrared	Absorption	Bands of 1,3-Bis(o-hy	droxybenzy	l)-2-substituted Imidazo	lidines
Compound No.	Aromatic CH Stretch, Cm. ⁻¹	Aliphatic C—H Stretch, Cm. ⁻¹	OH Stretch, Cm. ⁻¹	OH Deformations ^a and C—O Stretch, Cm. ⁻¹	C=C Stretch, Cm. ⁻¹	C—H Out of Plane Deformations, Cm. ⁻¹	Specific Absorptions, Cm. ⁻¹
1	b	ò	b	1230 1335	$1590 \\ 1470 \\ 1400^{\circ}$	695 725 740	None
2	3030	2860	3367	1250 1335	$1610 \\ 1590 \\ 1485 \\ 1410^{\circ}$	825 755	CCl 702
3	3020	2773	3367	1240 1325	1610 1590 1480 1460	759 821 870	C—Cl 652
4	3040	2793	3333	1230 1345	$ 1390^{\circ} \\ 1613 \\ 1585 \\ 1560 \\ 1450 \\ 1450 $	691 754 781 860	None
5	3040	2809	3333	$\begin{array}{c} 1235\\ 1360 \end{array}$	1410 ⁻ 1600 1470 1410 ^c	767 823	$C \equiv N$ 2221
6	3030	2810	3330	$\begin{array}{c} 1245\\ 1325\end{array}$	1615 1590 1490	757	C—CS— 720
7	3030	2790	3340	1230 1325	1590 1470 1400°	715 750 815	None

^a Each compound showed multiple absorptions (7 to 10 bands) in 1180- to 1400-cm.⁻¹ region; bands assigned to OH deformations and C—O stretch were those having strongest absorption. ^bSpecific absorptions could not be assigned because of broad band in 3500- to 2500-cm.⁻¹ region. ^cThis absorption is also in region for —OH deformation or —C—O stretch.

(1). The cooled reaction mixture was filtered and the collected solid purified as indicated in Table I.

LITERATURE CITED

(1) Billman, J.H., Dorman, L.C., J. Med. Chem. 6, 701 (1963).

ACKNOWLEDGMENT

The authors are indebted to A. E. Bekebrede and J. Alm of these laboratories for the infrared work. Elemental analyses were performed by Carol K. Fitz, Needham Heights, Mass.

RECEIVED for review January 22, 1968. Accepted April 30, 1968. Work supported by the U.S. Army Biological Laboratories at Fort Detrick, Frederick, Md., under U.S. Army Contract No. DA-18-064-AMC-69(A).

N,N'-Disubstituted P-Phenylphosphonothioic Diamides

DANIEL A. SCOLA¹ and DANIEL W. GRISLEY, Jr.² Boston Laboratories, Monsanto Research Corp., Everett, Mass. 02149

Several N,N'-disubstituted P-phenylphosphonothioic diamides were synthesized and characterized. Yields, melting points, infrared data, and elemental analyses are given for the reported compounds.

SEVERAL N,N'-disubstituted P-phenylphosphonothioic diamides were synthesized by the reaction of phenylphosphonothioic dichloride with primary and secondary amines using standard methods (1, 2). The compounds are listed in Table I.

$$S \atop {\stackrel{\bullet}{\dagger}} C_6H_5 - PCl_2 + 4R_2NH \rightarrow C_6H_5 - P(NR_2)_2 + 2R_2N \cdot HCl$$

With the exception of the N,N'-bis(ethoxyethyl) derivative, which was a straw-colored oil, the compounds were

¹ Present address: United Aircraft Research Laboratories, East Hartford, Conn. 06108

 $^{2}\,\mathrm{Present}$ address: Syracuse University Research Corp., Syracuse, N.Y.

colorless, crystalline solids. The infrared spectra were consistent in each instance with the desired structure. Characteristic absorptions are shown in Table II. Expected absorptions due to specific groups for each compound were also noted.

EXPERIMENTAL

Phenylphosphonothioic dichloride was purchased from the Aldrich Chemical Co. Other reactants were also obtained commercially (reagent grade) and used without further purification, except 2-aminothiazole (technical grade) which was recrystallized from toluene. Reaction solvents were dried over sodium. Melting points were taken on a Thomas-Hoover melting point apparatus and are uncorrected. Table I. Characterization of Some N,N'-Disubstituted P-Phenylphosphonothioic Diamides

		Yield.		Empirical		Analysis				
No	. Compound	R	%	M.P., °C.	Formula		% C	% H	% P	% S
1	N,N'-Diallyl-P-phenyl phosphonothioic diamide	СН ₈ = СН - СН ₈ - NH -	55°	51-54	$C_{12}H_{17}N_{2}PS$	Calcd. Found	$57.2 \\ 57.1$	6,8 6,1	$\begin{array}{c} 12.2\\ 12.4 \end{array}$	•••
2	Bis(1-aziridinyl)phenyl phosphine sulfide		9,	105-07.5	$C_{10}H_{13}N_2PS$	Calcd. Found	53,5 53,5	5.8 5.8	$\begin{array}{c} 13.8\\14.2\end{array}$	14.3 14.5
3	N,N'-Bis(ethoxyethyl)-P- phenylphosphonothiolc diamide	CgH60 - CH2CH2 - NH-	69°	Oil	$C_{14}H_{25}N_2O_2PS$	Calcd. Found	$53.2 \\ 52.6$	8.0 8.1	9.7 9.7	10.1 9.8
4	N,N'-Bis(2-thiazolyl)-P-phenyl phosphonothioic diamide	N NH-	60 ^{4, e}	210-11 (dec.)	$C_{12}H_{11}N_4PS_3$	Calcd, Found	42.6 42.5	3.3 3.3	9.2 9.3	28.4 28.8
5	N,N'-Bis(2,4-dichlorobenzyl)- P-phenylphosphonothioic diamide	CI-CHg-NH-	28 ^{/.e}	101-02,5	$\mathbf{C}_{20}\mathbf{H}_{17}\mathbf{Cl}_4\mathbf{N}_2\mathbf{PS}^h$	Calcd. Found	49,0 48,9	3,5 3,3	6.3 6.3	6.5 6.5
6	Bis(2-phenylhydrazinyl) phenylphosphine sulfide	Ç ₆ H ₈ NH − NH −	53'. <i>'</i>	199.5-200.5 (dec.)	$\mathbf{C}_{18}\mathbf{H}_{19}\mathbf{N}_{4}\mathbf{PS}$	Calcd. Found	61.0 61.3	5.4 5.6	8.7 8.9	•••

"Recrystallized from absolute ethanol to yield white crystalline solid. ⁶Crude solid dissolved in benzene-pentane (1 to 1), filtered through anhydrous sodium carbonate and cooled to yield white crystalline solid. ⁶Crude oily product heated to 132° C./0.40 mm. to remove unreacted dichloride and amine, n_D^{2D} 1.5508. ⁴Refluxed 1 hour, ⁶Crude solid recrystallized from absolute ethanol to yield white powder. ⁴Refluxed 3 hours, ⁴Crude oil crystallized by trituration in absolute ethanol, then recrystallized from ethanol to yield white powder. ^bCl, calcd., 28.9; found, 29.3. ⁴Refluxed 5½ hours. ⁴Crude solid recrystallized from benzene to yield white powder.

Table II. Characteristic Infrared Absorptions of N,N'-Disubstituted P-Phenylphosphonothiolc Diamides

Com- pound No.	$P \rightarrow S$ (Stretching), Cm, ⁻¹	$\begin{array}{c} P-N\\ (Stretching),\\ Cm.^{-1} \end{array}$	$\begin{array}{c} P-C_{6}H_{5}\\ (Stretching)_{1}\\ Cm,^{-1} \end{array}$	CH Deformations, Cm , $^{-1}$
1	655	715	1439	750 690
2	670	710 730	1439	750 695
3	650	720	1445	750 695
4	650	718	1439	748 693
5	622	715 722	1435	800 748 688
6	650	743 752	1437	750 690

Infrared spectra of the solid compounds dispersed in KBr matrices were recorded by a Perkin-Elmer Model 21 spectrophotometer. The infrared spectrum of a thin film of $N_i N'$ bis(ethoxyethyl)-P-phenylphosphonothioic diamide was also recorded.

Precedure for Compounds 1, 2, and 3 (1, 2). A solution of phenylphosphonothioic dichloride (0.75 mole) in anhydrous ether (200 ml.) was added dropwise with stirring to a solution of amine (2.92 moles) in anhydrous dried ether (500 to 1000 ml.) in a nitrogen atmosphere at room temperature. The reaction mixture was allowed to stand at room temperature overnight under a nitrogen blanket. The precipitated amine hydrochloride was removed by filtration and the filtrate was concentrated in vacuo to yield an off-white solid. The crude product was purified as described in the footnotes in Table I.

Precedure for Compounds 3, 4, and 5 (1, 2). A solution of phenylphosphonothioic dichloride (0.50 ml.) in anhydrous benzene (1000 ml.) was added dropwise with stirring to a solution of the amine (1.90 moles) in anhydrous benzene in an atmosphere of nitrogen at room temperature. In the preparation of N, N'-bis(2-thiazolyl)-P-phenylphosphonothioic diamide, it was necessary to dissolve 2-aminothiazole in dry ether (1 liter).

To prepare the N,N'-bis(2,4-dichlorobenzyl)-P-phenylphosphonothioic diamide derivative, phenylphosphonothioic dichloride (0.114 mole), amine (0.227 mole), and triethylamine (as hydrochloride acceptor) (0.227 mole) were used. The reaction mixture was refluxed (Table I), and the precipitated hydrochloride salt was removed by filtration. The filtrate was concentrated in vacuo to an oil or solid. Purification was effected as described in the footnotes in Table I.

ACKNOWLEDGMENT

The authors are indebted to A. E. Bekebrede of these laboratories for the infrared work. Elemental analyses were performed by the Galbraith Laboratories.

LITERATURE CITED

- (1) Reist, E.J., Junga, I.G., Baker, B.R., J. Org. Chem. 25, 666 (1960).
- (2) Trippett, S., J. Chem. Soc. 1962, p. 4731.

RECEIVED for review January 22, 1968. Accepted April 30, 1968. Work supported by the U.S. Army Biological Laboratories at Fort Detrick, Frederick, Md., under U.S. Army Contract No. DA-18-064-AMC-69(A).