NOMENCLATURE

- A_n = fitting parameter in excess properties equation
- H = enthalpy of forming new surface, ergs per sq. cm.
- n = fitting parameter in excess properties equation
- R = gas constant
- S = entropy of forming new surface, ergs per deg. per sq. cm.
- $t = \text{temperature, } ^{\circ}\text{C}.$
- $T = \text{temperature, } \circ \text{K.}$
- X_i = mole fraction of component *i*
- d = density, g. per cc.
- Γ_i = individual Gibbs surface excess of component *i*, moles per sq. cm.
- Γ_2^N = composite Gibbs surface excess, moles per sq. cm.
- Σ = summation sign
- σ = surface tension, dynes per cm. or free energy of forming new surface, ergs per sq. cm.

LITERATURE CITED

- (1) Battino, R., J. Phys. Chem. 70, 3408 (1966).
- (2) Clever, H.L., Ibid., 61, 1082 (1957).
- (3) Counsell, J.F., Green, J.H.S., Hales, J.L., Martin, J.F., Trans. Faraday Soc. 61, 212 (1965).

- (4) Decreux, V., Bull. Soc. Chim. Belg. 44, 249 (1935).
- (5) Evans, F.D., Bogen, M., Battino, R., Anal. Chem. 40, 224 (1968).
- (6) Guggenheim, E.A., "Mixtures," Chap. 9, Oxford University Press, London, 1952.
- (7) Harkins, W.A., Alexander, A.E., in "Technique of Organic Chemistry," A. Weissberger, Ed., Vol. I, Part 1, Chap. XIV, Interscience, New York, 1959.
- (8) Hildebrand, J.H., Scott, R.L., "Solubility of Nonelectrolytes," Chap. 21, Reinhold, New York, 1950.
- Kipling, J.J., "Adsorption from Solutions of Nonelectrolytes," Chap. 10, Academic Press, London, 1965.
- (10) Myers, D.B., Scott, R.L., Ind. Eng. Chem. 55, 43 (1963).
- (11) Quayle, O.R., Chem. Rev. 53, 439 (1953).
- (12) Schmidt, R.L., Clever, H.L., J. Colloid Interface Sci. 26, 19 (1968).
- (13) Whittaker Corp., Narmco Research and Development Division, San Diego, Calif., Hexafluorobenzene Product Bulletin.

RECEIVED for review May 31, 1968. Accepted October 18, 1968. Work supported by National Science Foundation Grant GP-5937.

Physical Properties of Some Sulfur and Nitrogen Compounds

W. J. LANUM and J. C. MORRIS

Laramie Petroleum Research Center, Bureau of Mines, U.S. Department of Interior, Laramie, Wyo. 82070

> Physical properties were determined on purified samples of 38 organic sulfur compounds and 18 organic nitrogen compounds. Most of the compounds were donated by interested laboratories for augmenting the spectral data on these types of compounds. Special handling techniques to prevent contamination or decomposition were employed during purification, storage, and property measurement. Boiling point, freezing point, density at 20° C., and refractive index (sodium *D* and mercury *g* lines) at 20° C. were determined. Derived functions calculated are refractivity intercept, specific dispersion, and molecular refraction.

 T_{0} SUPPLY fundamental data on the sulfur and nitrogen compounds that occur in petroleum, the Bureau of Mines prepared standard samples of organic sulfur and nitrogen compounds as reference materials and carried out intensive studies of their properties (4, 5, 6, 8).

An important adjunct of this work was a program to speed the acquisition and publication of spectral data on additional compounds of these types. A bank of over 350 sulfur and nitrogen compounds of reliable purity, ranging in amounts from a few milligrams to several grams, was accumulated. Most of the compounds in this phase of the work were donated, although a few were purchased. Spectral data on these compounds were determined by cooperating oil company laboratories and the Bureau of Mines and were published in the Catalogs of Selected Spectral Data edited by American Petroleum Institute Research Project 44 (1). This paper reports the values for the physical properties of 56 of these small-scale samples. Included in the tables are the catalog serial numbers for the mass, ultraviolet, infrared, and Raman spectra obtained on these samples.

EXPERIMENTAL

Purification. Purification procedures were similar to those reported previously by this laboratory (4, 5, 6, 8) on organic sulfur and nitrogen compounds. Three distillation columns were used: a column 30 cm. in length and 1.1 cm. in diameter packed with stainless steel helices, a spinning band column 30 cm. in length and 1.2 cm. in diameter, and a concentric tube column approximately 100 cm. in length and 1.0 cm. in diameter. Each column was vacuum-jacketed and equipped with automatic take-off and reflux ratio control.

Table I. Properties of Organic Sulfur Compounds

								De	riyed Functio	SU						
		F reezine	Punity	Boiling Point	Density			Refrac- tivity	Specific dispersion,	Molecular		Spect	ra Catalog S	erial Number	s	
Compound		Point, ° C.	Mole %	* C., * C., 760 Mm.	G./ML di	Refractiv n ²	e Index $n_e^{\Lambda_e}$	$n^{\frac{2n}{2}}_{0} - d^{\frac{2n}{2}}_{1}/2$	$\binom{n_{e}}{n_{b}} \frac{10^{4}}{10^{4}}$	$\frac{\text{retraction,}}{M(n^2-1)/d(n^2+2)}$	υv	$^{2-5\mu}$	IR 2-15μ	1R $15 \cdot 25\mu$	Mass	Raman
Thiols 3-Pentanethiol* C -C - 6	-cc		q	113.9	0.8410	1.4447	1.4566	1.0242	141.5	32.961	530	1527	1526	1528	921	
a 2-Methyl-I-butanethiol ^e C → C →	н - С-С ен		ą	1.9.1	0.8467	1.4477	1.4598	1.0243	142.9	32.985	770		2029		1413	
3-Methyl-2-butanethiol ^a C - C - C C C C	HS 1-2-0-2-		-9	109.8	0.8408	1.4446	1.4566	1.0242	142.7	32.969	554		1548	1549	943	219
C 2.2-Dimethyl-1-propanethiol [®] C - C - C	c—sH		q.	103.7	0.8298	1.4393	1.4512	1.0244	143.4	33.029	527	1519	1518		918	
CC CC			q	139.1	0.8330	1.4448	1.4565	1.0283	140.5	37.757	726		1942			
2-Methyl-1-pentanethiol* C C	c-c-c		ą	143.9	0.8455	1,4501	1.4620	1.0273	140.5	37.618	641		1771		1242	
4-Methyl-1-pentanethiol* C— C — 	не о 		q	144.9	0.8383	1.4477	1.4596	1.0285	142.0	37,800	607		1775		1235	
C 4-Methyl-2-pentanethiol* C C	SH CCC		ą	U	ಲ	1.4409	1.4527				642		1772		1243	
ر 2-Methyl-3-pentanethiol* C—C—	с-с-с -с-с-с		q	135.6	0.8480	1.4499	1.4617	1.0259	139.2	37.507	643		1773		1244	
5 1-Heptanethiol ^d C ₇ SH	Э Н Ц		<i>q</i>	110.4^{4}	0.8429	1.4519	1.4638	1.0304	141.2	42.367	451		1425	1260	726	
Cyclopentanethiol"	₹ SH		q	132.2	0.9553	1.4904	1.5040	1.0627	142.4	216.06	528	1521	1520	1522	616	
1-Methylcyclopentanethiol*	c SH		q	137.6	0.9269	1.4800	1.4932	1.0165	142.4	35.610	608		1776		1236	
cis-2-Methylcyclopentanethiol"	¥ c		ą	86.94	0.9474	1.4892	1.5023	1.0155	138.3	35.453	664		1849		1371	
trans 2. Methylcyclopentanethiol*	SH SH		q	,1.18	0.9236	1.4799	1.4932	1.0181	144.0	30.578					1414	

Cyclohexanethiol"	SH SH		q	158.8	0.9485	1.4936	1.5072	1.0193	143.4	35.674	555		1550	1551	944	
cis-2. Methylcyclohexanethiof	SH C C		ą	109.2″	0.9498	1.4945	1.5076	1.0196	137.9	39.905	665		1850		1372	
Sulfides 2-Thiahexane'	$\mathbf{C} = \mathbf{S} - \mathbf{C} - \mathbf{C} + \mathbf{C} - \mathbf{C}$	-97.9	8.66	123.3	0.8424	1.4478	1.4601	1.0266	146.0	33.154	449		1423	1258	724	20
4-Methyl-2-thiapentane"	C S C C - C C S C	-109.1	98.2	113.1	0.8349	1.4437	1.4559	1.0262	146.1	33.077	546	1541	1540	1541	945	
	с 0-															
3.3-Dimethyl-2-thiabutane"	c - s - c c - c	-82.3	86.66	98.9	0.8255	1.4403	1,4526	1.0275	149.0	37.813	529	1524	1523	1525	920	
2-Thiaoctane	$C \rightarrow S \rightarrow C_6$	-66.8	1.66	107.2^{d}	0.8435	1.4529	1.4649	1180.1	142.3	42.337	545		1467		925	
2-Methyl-3-thiaheptane'	$\begin{array}{c} \mathbf{C} = \mathbf{C} = \mathbf{S} + \mathbf{C}_i \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \end{array}$	-92.4	0.69	92.1"	0.8291	1.4470	1.4589	1.0324	143.5	42.593	730		1946			
2,4-Dimethyl-3-thiahexane ⁷	C-C-C C-C-C C C C C C C C C C C C C C C		лс	144.6	0.8253	1.4453	1.4572	1.0326	144.2	42.630	687		1161		1409	
2,2,4-1 rimethyl-3-thiapentane	c - c c - c c - c	-70.3	0.66	132.7	0.8132	1.44()4	1.4525	1.0338	148.8	42.939	688		1912		1410	
2-Thiadodecane	c s c,	-63.4	1.99	127.7"	0.8437	1.4548	1.4666	1.0329	139.9	46.989	542		1426	1261	727	210
3,5-Dimethyl-4-thiaheptane	$\begin{array}{ccc} \mathbf{C} \cdot \mathbf{C} \cdot \mathbf{C} - \mathbf{S} \cdot \mathbf{C} \cdot \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} \end{array}$		æ	101.2^{a}	0.8336	1.4504	1.4622	1.0336	141.6	47.207	663		1851		1373	
2.'Thiadodecane'	$\mathbf{C} \cdot \mathbf{S} = \mathbf{C}_{\mathrm{III}}$	-18.5	99.8	180.5	0.8451	1.4592	1.4707	1.0366	136.1	59.235	531	1530	1529	1531		
1-Cyclopentyl-1-thiaethane"	>s-c	-103.3	8.66	155.9	0.9419	1.4892	1.5026	1.0182	142.3	35.660	547	1543	1542	1543	946	
Dicyclopentylthiamethane"			8.66	^{,0} .691	0.9752	1.5099	1.5233	1.0223	137.4	52.218	504		1499		860	
1-Phenyl-1-thiaethane"	S-c	-16.7	6.66	125.9*	62301	1.5873	1.6187	1.0583	296.8	39.447	561		1636	188:3	696	
I-Phenyl-2-thiapropane"	C - S - C	-28.3	T.66	141.6"	1.0274	1.5634	1.5880	1.0497	239.4	43.726	562		1637	1884	970	
Cyclic sulfides 3-Methylthiacyclohutane"	c s	-83.5	0.66	51.9"	0.9588	1.4873	1.5020	1.0079	153.3	26.484	769		2028		1412	
Disulhdes 2,5-Dimethyl-3,4-dithiahexane	C - C - S - S - C - C C 	-70.5	99.8	109.5^{a}	0.9427	1.4918	1.5074	1.0204	165.5	46.238	689		1913		1411	
3,6-Dimethyl-4,5-dithiaoctane	$\begin{array}{c} c_{i} = c_{i} - s_{i} + s_{i} - c_{i} \\ c_{i} = c_{i} - s_{i} + s_{i} - c_{i} \\ c_{i} = c_{i} - c_{i} \\ c_{i} = c_{i} \\$		₹¢.	145.0"	0.9363	1.4928	1.5076	1.0246	158.1	55.433	727		1943		1502	
1,2-Dicyclopentyl-1,2-dithiaet	hand $\sqrt{5-5-5}$	- 19,1	1.66	205.9	1.0655	1.5479	1.5642	1.0151	153.0	60.399	728		1944	20)	ntinued on p	96 osta

			Table I.	Propertie	es of Orga	nic Sulfur (Compound	ds (Contin ^{Dei}	ved) rived Functio	SU						
		5		Boiling	Domeitu			Refrac- tivity	Specific despersion,	Molecular		Spec	etra Catalog S	Serial Number	50	
Communed		Freezing Point, ° C	Funty, Mole %	romt, °C., 760 Mm.	G./MI. d ²⁰	Refractiv	e Index	$n_n^{x_0} - d_n^{x_0} - d_n^{x_0/2}$	n_{D}^{20} 10 ⁴ / d ²⁰	$M(n^2 - 1)/d(n^2 + 2)$	UV	1 R $2^{-5\mu}$	IR 2–15 μ	IR 15-25μ	Mass	Raman
Compound Thiophenes 3-Ethylthiophene'	€ ^s C ²	-89.T	6.66	140.9	0.9980	1.5146	1.5346	1.0156	200.4	33.837	503		1498		859	
2,5.1)imethylthiophene [°]	cfs c	-62.6	6.06	136.8	0.9852	1.5130	1.5340	1.0204	213.2	34.276	544		1466		924	
3-Metbyl-1-thiaindene"	₹ ³ Лc	8.95-	æ	168.2"	1.1292	u	ų				999		1853		1027	
2-Ethyl-1-thiaindenc"	22 C2	9.2	6.66	180.4 ^{<i>a</i>}	1.0883	1.6083	1.6437	1.0641	325.3	51.582						
[•] Original sample donated by Northwestr ample for this measurement. ⁴ Boilin Columbia, S. C. ⁴ Original sample dona	em University, Evanstc ig point at 100 mm. ated by Bureau of Mi	on, Ill. ^a Purity ^c Original sat ines, Bartlesv	y certified 99. mple purcha ille, Okla. "	0 mole % or h sed from Col Purity estima	etter by donor. lumhia Organic ted 99.0 mole	' Insufficient Chemicals, 6 or better	(8). ^h Origina of Mines, Lar	al sample pur amie, Wyo. *-	rchased from Original samp	Eastman Orga ole donated by 5	anic Chemi 30cony-Vacu	cals, Rochest uum Oil Co.,]	er, N. Y. (Paulshoro, N	Jriginal samp . J.	le donated by	Bureau

Special procedures were used to increase the purity and to protect the purity of the samples during storage. To minimize decomposition, the compounds were distilled under an atmosphere of dry nitrogen containing less than 2 p.p.m. of oxygen (7). The nitrogen compounds after distillation were treated with calcium hydride to remove traces of water. Silica gel treatment was used on some of the thiols to remove polar materials, including water. All compounds were degassed and sealed in borosilicate glass ampoules either under their own vapor pressure or under an atmosphere of dry, deoxygenated nitrogen.

Property Determinations. The properties determined and calculated are shown in Tables I and II; Table I gives the properties of the 38 sulfur compounds, and Table II lists the properties of the 18 nitrogen compounds. During property measurements, the compounds were protected by an atmosphere of dry, deoxygenated nitrogen.

Freezing points were determined using a platinum resistance thermometer and a Mueller bridge (Leeds and Northrup, Type G-2), as described by Glasgow *et al.* (3). Less than optimum amounts of sample were available for most of the determinations, reducing the precision to an estimated $\pm 0.02^{\circ}$ C. The values in the table have been rounded to the nearest 0.1° C.

Purities were calculated from the freezing point curves according to the method of Glasgow *et al.* (3). For compounds where freezing point data were lacking in precision, estimates of purity were calculated, using a combination of spectral techniques described by Davis and Morris (2). The purity values reported in the table are calculated to within ± 0.1 mole % of the true value.

Boiling point measurements were made on a Cottrell ebulliometer, using a platinum resistance thermometer and precision Mueller bridge. Pressure was maintained at 760 torr by means of a Cartesian manostat, using dry, deoxygenated nitrogen for pressurization. Measurements for high-boiling compounds, especially those subject to decomposition, were made at 100 torr. The platinum resistance thermometer was calibrated and certified by the National Bureau of Standards. The manostat was calibrated from the boiling point of triple-distilled water at 760 and 100 torr; the estimated variability was ± 0.05 torr.

Density was obtained at 20.00° C. with a Christian Becker Chainomatic five-place density balance, using a 5-gram plummet. The balance was calibrated with a set of standard weights and with hydrocarbon standards certified by the National Bureau of Standards. The measurements were made in a vacuum-jacketed bath, through which water thermostated to a maximum variation of 0.005° C. was circulated. Temperature was measured near the plummet by means of a calibrated precision thermometer.

Refractive indices were measured with a Bausch and Lomb Precision oil refractometer, Abbe type, enclosed in a special housing. Temperature within the housing was controlled by circulating nitrogen through a water-cooled radiator within the housing. Temperature in the prisms was maintained at 20.00° C. by circulating water thermostated to a maximum variation of 0.005° C.

Derived functions were calculated from the properties determined (Tables I and II). Specific dispersion was calculated from the sodium D and mercury g lines according to Thorne *et al.* (9). Refractivity intercept and molecular refraction were calculated using methods discussed by Weissberger (10).

The spectra obtained on the samples are noted in the tables according to the serial numbers assigned in the catalogs (1). The spectra were obtained by laboratories cooperating with API Research Projects 48 and 52 to speed the publication of the spectral data of these samples. The laboratories cooperating to obtain the spectra are identified in the catalogs.

Table II. Properties of Organic Nitrogen Compounds

								Der	ived Funct	ions					
				Boiling				Refrac- tivity	Specific dispersion,	Molec- ular refrac-	Sp	ectra Cai	alog Seri	al Num	bers
		Freezing	Purity,	Point,	Density	Refractiv	e Index	intercept	$(n_{\ell}^{2^{(2)}} - n_{\ell}^{2^{(2)}})$	tion,		ID	ID.		
Compound		° C.	Mole	° C., 760 Mm.	G./Mi., d₄"	n_D^{20}	n_r^{20}	$n_D^{v} \sim d_1^{v}/2$	n ^w)10*/ d ^w	$\frac{M(n^2-1)}{d(n^2+2)}$	UV	1R 2–15μ	1R 14–25μ	Mass	Raman
2-Methylnymale ^a	H N C	-35.6	,	v		1.5035	1.5229				729	1945		1536	
	н М														
3-Methylpyrrole ²	K ⊂ C	-48.4	0	٤	L	1.4986	1.5176					2474	2475		
2,5-Dimethylpyrrole°	c – v – c		99.8	108.3ª	0.9361	1.5066	1.5257	1.0385	204.04	30.22			2594		
2,4-Dimethylpyrrole'	c C C		2	165.3	0.9194	1.4965	1.5149	1.0368	200.13	30.26	633	1761	1762'	1347	247
1-(1-Butyl)pyrrole ^r	^C ₄	-66.1	99.5	106.7 ^d	0.8747	1.4741	1.4901	1.0367	178.83	39.59		2478	2479		
2,4-Dimethyl-3-ethylpyrrole'		13.6	ŝ	197.3	0.9115	1,4974	1.5147	1.0416	189.80	39.57	634	1763	1764 ⁷	1349	248
1-Methylpyrrolidine ^e	<pre>C N N</pre>		ø	79.3	0.7 99 2	1.4236	1.4351	1.0240	143.89	27.17		2731			
1-Methylpiperidine*	C N H		,	105.7	0.8157	1.4372	1.4489	1.0298	137.31	31.87					
3-Methylpiperidine'		-27.2	99.7	64.9 ⁴	0.8433	1.4472	1.4583	1.0295	131. 6 3	31.43	644	1744		1245	
2.6-Dimethylpiperidine	c _ c	-63.6	99.9	127.3	0.8201	1.4395	1.4503	1.0294	131.69	36.34	668	1871		1348	
2-Methylpyrazine	C N C	-28.8	99.7	135.7	1.0246	1.5053	1.5297	0.9930	238.14	27.25	691	1929	1930	1417	
2,5-Dimethylpyrazine		-15.5	ò	89.1ª	0.9884	1.5007	1.5247	1.0065	242.82	32.22		2476	2477		
1-Methylpiperazine'		-5.33	b	137.ō	0.9021	1.4658	1.4793	1.0147	149.65	30.74		25 9 6			
1.4-Dimethylpiperazine°		-1.0	ō	131.0	0.8509	1.4471	1.4602	1.0216	153.95	35.86		2597	(Ca	ntinued	on page 98)

Table II. Properties of Organic Nitrogen Compounds (Continued)

								De	rived Funct	ions					
		Freezing	Purity	Boiling Point	Density	Defeat		Refrac- tivity	Specific dispersion, $(n^{20} -$	Molec- ular refrac- tion	Sp	oectra Ca	talog Seri	ial Num	ers
Compound		Point, °C.	Mole %	° C., 760 Mm.	G./Ml., d4 ²⁰	n _D ²⁰		$n_D^{20} - d_4^{20}/2$	n_D^{20} 10 ⁴ / d_4^{20}	$\frac{M(n^2 - 1)}{d(n^2 + 2)}$	UV	IR 2–15μ	IR 14–25µ	Mass	Raman
cis-2,5-Dimethylpiperazine		18.9	ð	101.1ª	0.9218	1,4731	1.4853	1.0122	132.35	34.76	772	2031	2032	1559	
Quinoline ^c	N.	-14.9	à	161.9 ⁴	1.0941							2598	2599		
2-Methylquinoline ⁱ	C C		è	171.5ª	1.0636										
6-Methylquinoline	c N	-26.0	ė	181.4 ^d	1.0664	1.6165	1.6577	1.0833	386.35	46.95	773	2033	2034	1560	

 $^{\circ}$ Original sample donated by University of Kansas, Lawrence, Kan. $^{\circ}$ Purity estimated 99.0 mole $_{c}$ or better (8). $^{\circ}$ Insufficient sample for this measurement. $^{\circ}$ Boiling point at 100 mm. $^{\circ}$ Original sample donated by Mellon Institute of Research, Pittsburgh, Pa. $^{\prime}$ 14–40 $_{\mu}$. $^{\circ}$ Original sample donated by Bureau of Mines, Laramie, Wyo. $^{\circ}$ Original sample purchased from Aldrich Chemical Co., Milwaukee, Wis. $^{\circ}$ Original sample purchased from Du Pont Organic Chemicals, Wilmington, Del. $^{\circ}$ Original sample purchased from Wyandotte Chemical Corp., Wyandotte, Mich. $^{\circ}$ Original sample purchased from Union Carbide Corp., New York, N. Y. $^{\circ}$ Original sample purchased from Matheson Co., Inc., East Rutherford, N. Y.

LITERATURE CITED

- American Petroleum Institute Research Project 44, Thermodynamic Research Center, Texas A&M University, College Station, Tex., Catalogs of Selected Spectral Data: Selected Ultraviolet Spectral Data; Selected Infrared Spectral Data; Selected Raman Spectral Data; Selected Mass Spectral Data.
- (2) Davis, T.C., Morris, J.C., "Purification, Purity Estimation, and Spectra of Some Organic Derivatives of Fluorine, Silicon, Boron, and Aluminum," U.S. Bureau Mines, Rept. Invest. 6633 (1965).
- (3) Glasgow, A.R., Streiff, A.J., Rossini, R.F., J. Res. Natl. Bur. Stds. 35, 355 (1945).
- (4) Haines, W.E., Helm, R.V., Bailey, C.W., Ball, J.S., J. Phys. Chem. 58, 270 (1954).
- (5) Haines, W.E., Helm, R.V., Cook, G.L., Ball, J.S., Ibid., 60, 549 (1956).
- (6) Helm, R.V., Lanum, W.J., Cook, G.L., Ball, J.S., Ibid., 62, 858 (1958).

- (7) Helm, R.V., Latham, D.R., Ferrin, C.R., Ball, J.S., IND. ENG. CHEM., CHEM. ENG. DATA SER. 2, 95 (1957).
- (8) Morris, J.C., Lanum, W.J., Helm, R.V., Haines, W.E., Cook, G.L., Ball, J.S., J. CHEM. ENG. DATA 5, 112 (1960).
- (9) Thorne, H.M., Murphy, Walter, Ball, J.S., Ind. Eng. Chem., Anal. Ed. 17, 481 (1945).
- (10) Weissberger, Arnold, "Physical Methods of Organic Chemistry," 2nd ed., Part II, p. 1142, Interscience, New York, 1946.

RECEIVED for review June 20, 1968. Accepted October 16, 1968. Work done under a cooperative agreement between the Bureau of Mines, U.S. Department of Interior, and the University of Wyoming, an adjunct of American Petroleum Institute Research Projects 48 and 52, sponsored cooperatively by the Bureau of Mines and the American Petroleum Institute. Reference to specific brand names or models of equipment is made to facilitate understanding and does not imply endorsement by the Bureau of Mines.

Vapor Pressure of Primary *n*-Alkyl Chlorides and Alcohols

HERBERT R. KEMME¹ and SAUL I. KREPS

Department of Chemical Engineering, Newark College of Engineering, 323 High Street, Newark, N.J. 07102

The vapor pressures of 1-alkyl chlorides and of 1-*n*-alkanols were determined by differential thermal analysis between 5 and 760 Torr. The experimental data were correlated by the Antoine vapor pressure equation, and the Antoine constants for the compounds are presented.

DIFFERENTIAL thermal analysis provides a relatively new technique for determining the vapor pressure of compounds over a wide range of temperature and pressure (8). The dynamic nature of the technique avoids problems of decomposition and decontamination of the compounds under test and the method can provide data of excellent accuracy.

Experimental determinations of vapor pressure of the

¹Present address: American Cyanamid Co., Bound Brook, N.J.

primary alcohols and the corresponding alkyl chlorides have been reported in many places, but the data available are neither complete nor entirely reliable. For example, Winslow (14) shows that fair amounts of data are available for the first eight members of the series, especially for the even numbered homologs, but above this point the data are sparse and of unknown reliability. Li and Rossini (10)have shown that most of the reliable data for the alkyl chlorides apply to the first four homologs, but even within these data there are many discrepancies. For instance,