Effect of Calcium Chloride on the Ternary
 Liquid Equilibria of the Water-Phosphoric
 Acid-1-Butanol System at $35^{\circ} \mathrm{C}$.

PARAMESWARAM ANANTHANARAYANAN and PALURI BHIMESWARA RAO
Department of Chemical Engineering, Indian Institute of Technology, Madras, India

Abstract

Liquid-liquid equilibria of the ternary system 1-butanol-phosphoric acid-calcium chloride solution (2 or 5% by weight of calcium dihydrate) have been studied at $35^{\circ} \mathrm{C}$. The tie-line data are determined. The solvent capacity of 1 -butanol and the distribution coefficient of phosphoric acid increase with increase in calcium chloride content of the aqueous phase, indicating the salting out effect of calcium chloride on phosphoric acid.

IN THE PRECEDING paper (4), the liquid equilibria for the ternary system, water-phosphoric acid-1-butanol were studied at $35^{\circ} \mathrm{C}$. In this investigation, the effect of calcium chloride, as an impurity, on the equilibrium of the above system at $35^{\circ} \mathrm{C}$., using calcium chloride solution containing 2 and 5% by weight of calcium chloride dihydrate, has been studied.

EXPERIMENTAL

Materials. Analar grade phosphoric acid from British Drug House Co., India (B.D.H.), containing 88% by weight of phosphoric acid and not more than 0.1% impurities, is used directly. Analar grade 1-butanol from B.D.H.,
[$\mathrm{d}_{20^{\circ} \mathrm{C} .}{ }^{0.8098,} n_{\mathrm{D}}^{20} 1.3990$; Lit. values (7) $\mathrm{d}_{20^{\circ} \mathrm{C} .}{ }^{0.8097,} n_{\mathrm{D}}^{20} 1.3992$]
analar grade crystalline calcium chloride from E. Merck Co. of Germany, containing a minimum of 99% by weight of crystalline calcium chloride ($\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$) and not more than 0.2% impurities, reagent grade ethylene-dinitrilo-
$\left.\begin{array}{ccc}\hline \text { Table } I . & \text { Phase Boundary Data at } 35^{\circ} \mathrm{C} . \\ \text { (Data in Wt. \%) }\end{array}\right]$.
tetra-acetic acid disodium salt (EDTA) from B.D.H. of England (assay via calcium content not less than 98%), and Solochrome Black from B.D.H. of England are used directly. The refractive index is measured for sodium light with an Abbe precision refractometer calibrated to 0.001 . The fourth decimal place is obtained by visual interpolation only.

Procedure. The calcium chloride solutions are prepared at the same time, immediately after opening the sample bottle. The phase boundary curve data are determined at $35^{\circ} \mathrm{C}$. for these two ternary systems by the turbidity method and are given in Table I. At low concentrations of phosphoric acid, less than about 14% in the homogeneous binary mixture of 1 -butanol and phosphoric acid, a small amount of white precipitate is formed which dissolves on further addition of a small amount of calcium chloride solution, for both the ternary systems. On still further addition of calcium chloride solution, turbidity is observed. At higher concentrations of phosphoric acid, more than about 14% (for runs other than 2 in Table I, for both systems), no such precipitate is observed. The precipitate, if formed, is soluble in the strong acid solution.

The tie-line data are obtained by analysis of the organic and aqueous phases for the phosphoric acid content (3) and are given in Table II. Both the aqueous and organic phases are tested for calcium using EDTA solution with Solochrome Black as indicator (6). The calcium is confined

Table II. Tie Line Data at $35^{\circ} \mathrm{C}$. (Data in Wt. \%)					
Solvent Layer			Aqueous Layer		
Water	Phosphoric acid	1-Butanol	Calcium Chloride solution	Phosphoric acid	1-Butanol
2\% by Wt., Calcium Chloride Solution-Phosphoric Acid-1-Butanol					
18.2	4.80	77.0	76.60	19.35	4.05
19.1	10.70	70.2	68.40	27.56	4.04
21.4	16.42	62.18	62.50	33.49	4.01
25.3	25.52	49.18	55.40	40.69	3.91
27.2	27.80	45.00	54.00	42.04	3.96
32.2	34.60	33.2	47.40	48.65	3.95
5% by Wt., Calcium Chloride Solution-Phosphoric Acid-1-Butanol					
18.3	6.24	75.46	77.00	18.73	4.27
19.9	12.57	67.53	68.30	27.66	4.04
22.0	17.83	60.17	63.10	32.88	4.02
27.5	27.94	44.56	54.70	41.27	4.03
33.1	35.06	31.84	50.40	45.54	4.06
36.2	37.80	26.0	49.00	46.92	4.08

Figure 1. Phase boundary data at $35^{\circ} \mathrm{C}$.
© Water-phosphoric acid-1-butanol (4)
Δ Calcium chloride solution (2% by wt.)-phosphoric acid-1-butanol

- Calcium chloride solution (5% by wt.)-phosphoric acid- 1 -butanol

Figure 2. Equilibrium data on Hand's coordinates at $35^{\circ} \mathrm{C}$.
© Calcium chloride solution (2% by wt.)-phosphoric acid-1-butanol Δ Calcium chloride solution (5% by wt.)-phosphoric acid-1-butanol

Figure 3. Equilibrium data on Othmer-Tobias coordinates at $35^{\circ} \mathrm{C}$.
© Colcium chloride solution (2% by wt.)-phosphoric acid-1-butanol
Δ Calcium chloride solution (5% by wt.)-phosphoric ocid-1-butanol

Figure 4. Distribution of phosphoric acid between 1-butanol and calcium chloride solution at $35^{\circ} \mathrm{C}$.
© Water
2\% by wt. calcium chloride solution $\triangle 5 \%$ by wt. calcium chloride solution
to the aqueous layer. The complete equilibrium compositions of the aqueous and organic phases are obtained from the phase boundary curve data for the calcium chloride solution-phosphoric acid-1-butanol system and the waterphosphoric acid-1-butanol system (4), respectively. The titration of phosphoric acid is an even more accurate method (1), and this composition must lie on the phase boundary curve. Two independent analyses are not necessary in this case. The tie-line data are plotted on Hand's (2) and Othmer-Tobias (5) coordinates in Figures 2 and 3. These data were taken at $35^{\circ} \pm 0.01^{\circ} \mathrm{C}$. The distribution diagram is given in Figure 4. The accuracy of the data is within $\pm 0.5 \%$. Figures 1 and 4 show that the solvent capacity of 1 -butanol and the distribution coefficient of phosphoric acid increase with an increase in the calcium chloride content of the aqueous phase.

NOMENCLATURE

$X_{c w}=$ weight fraction of solute in water-rich phase
$X_{w w}=$ weight fraction of water in water-rich phase
$X_{s}=$ weight fraction of solute in solvent-rich phase
$X_{s}=$ weight fraction of solvent in solvent-rich phase
$X_{c}=$ weight fraction of solute
$X_{w}=$ weight fraction of water
$X_{s}=$ weight fraction of solvent

LITERATURE CITED

(1) Francis, A.W., "Liquid-Liquid Equilibrium," p. 45, Interscience, New York, 1963.
(2) Hand, D.B., J. Phys. Chem. 34, 1961 (1930).
(3) Indian Standards Institute, I.S., 798, 1955.
(4) Muralimohan, S., Rao, P.B., J. Chem. Eng. Data 12, 494 (1967).
(5) Othmer, D.F., Tobias, P.E., Ind. Eng. Chem. 34, 690 (1942).
(6) Vogel, A.T., "A Text Book of Quantitative Inorganic Analysis," 3rd ed., p. 436, Longmans, London, 1961.
(7) Weissberger, A., Proskauer, E.S., Riddick, J.A., Toops, E.E., "Organic Solvents," 2nd ed., Interscience, New York, 1955.

Received for review October 4, 1967. Accepted December 9, 1968.

