ing relationships are apparent upon inspection of the table.

Vapor pressures of *m*-tolyl derivatives are higher than those of p-tolyl derivatives for all compounds examined here. This is also true for the *m*-cresol-*p*-cresol parent compounds, where the vapor pressure ratio is 1.025 at 100°C. However, this behavior continues to the boiling point for the derivatives, whereas with the cresols the metaisomer has the higher boiling point at atmospheric pressure. The greatest vapor pressure difference occurs with the trifluoroacetates where a ratio of 1.080, m-/p-, exists at 100° C. The ratio at 100° C. for the pentafluoropropionates is 1.028, indicating that any isomeric effect diminishes when the presence of a larger ester group makes the aromatic portion a smaller fraction of the total molecule. Fluorination of the acetate causes both a marked increase in vapor pressure and an increase in the m-/p- ratio, the acetate ratio being 1.021.

The butyl esters show a similar vapor pressure increase upon fluorination. The vapor pressure of the *n*-butyl *tert*butyl ether is slightly higher than that of the trimethylsilyl analog, which might be expected in view of the higher atomic weight of silicon.

LITERATURE CITED

- (1) Auwers, K.V., Schmelzer, A., Sitzber. Ges. Befoerder Ges. Naturw. Marburg 62, No. 4, 113.
- (2) Belov, V.N., Rudol'fi, T.A., Sb. Statei Obshch. Khim., Akad. Nauk SSSR 1, 266 (1953).

- (3) Bourne, E.J., Stacey, M., Tatlow, J.C., Worrall, R., J. Chem. Soc. 1958, 3268.
- (4) Campbell, K.N., Knobloch, J.O., Campbell, B.K., J. Am. Chem. Soc. 72, 4380 (1950).
- (5) Fajkas, J., Chem. Listy 52, 1320 (1958).
- (6) Freedman, R.W., Croitoru, P.P., Anal. Chem. 36, 1389 (1964).
- (7) Henglein, F.A., Kramer, J., Chem. Ber. 92, 2585 (1959).
- (8) Hoover, S.R., John, H., Mellon, E.F., Anal. Chem. 25, 1940 (1953).
- (9) Kliment, V., Fried, V., Pick, J., Collection Czech. Chem. Commun. 29, 2008 (1964).
- (10) Langer, S.H., Connell, S., Wender, I., J. Org. Chem. 23, 50 (1958).
- (11) Langer, S.H., Pantages, P., Wender, I., Chem. Ind. (London) 1958, 1664.
- (12) Macey, W.A.T., J. Phys. Chem. 64, 254 (1960).
- (13) Mousseron, M., Jacquier, R., Bull. Soc. Chim. France 1950, 698.
- (14) Norris, J.W., Rigby, G.W., J. Am. Chem. Soc. 54, 2088 (1932).
- (15) Sauer, R.O., Ibid., 66, 1707 (1944).
- (16) Schiopu, M., Bot, O., Onu, V., Bul. Inst. Politeh. Iasi 7, No. 3-4, 115 (1961).
- (17) Shulgin, A.T., Anal. Chem. 36, 920 (1964).
- (18) Staab, H.A., Walther, G., Angew. Chem. 72, 35 (1960).
- (19) Voronkov, M.G., Shabarova, Z.I., Zh. Obshch. Khim. 29, 1528 (1959).
- (20) Ibid., 30, 1955 (1960).
- (21) Zavgorodnii, S.V., Ibid., 14, 270 (1944).

RECEIVED for review August 8, 1968. Accepted February 17, 1969. Work initiated under a National Science Foundation Fellowship (R.J.S.) and completed under a grant from the Petroleum Research Fund, administered by the American Chemical Society.

CaCl₂-Rich Region of the CaCl₂-CaF₂-CaO System

DONALD A. WENZ, IRVING JOHNSON, and RAYMOND D. WOLSON Chemical Engineering Division, Argonne National Laboratory, Argonne, III. 60439

Thermal analysis studies of the CaCl₂-CaF₂-CaO system show that it contains a ternary eutectic at 625° C. at the composition CaCl₂-17 mole % CaF₂-4 mole % CaO, plus ternary peritectics at CaCl₂-23 mole % CaF₂-10 mole % CaO and CaCl₂-23 mole % CaF₂-13 mole % CaO at 660° and 670° C., respectively. The CaCl₂-CaF₂ binary phase diagram determined in this work differs only slightly from those in the literature. However, the CaCl₂-CaO diagram was found to have a peritectic point at 18.5 mole % CaO and 835° C. which has not previously been reported. The corresponding incongruently melting compound is CaO \cdot 2CaCl₂.

DURING the development, in this laboratory, of nuclear reactor fuel reprocessing methods utilizing molten salts and metals as reaction media, it became necessary to know the liquidus surface of the CaCl₂ corner of the CaCl₂-CaF₂-CaO phase diagram. Information is available in the literature for each of the three binary systems (1-5), but none for the ternary system. Therefore, the portion of the CaCl₂-CaF₂-CaO phase diagram of interest was determined by thermal analysis techniques.

EXPERIMENTAL

Procedure. The salt mixture to be investigated was placed in a 1.5-inch diameter Type 304 stainless steel crucible, which was then put into a 2.5-inch tantalum crucible. The space between the two crucibles was filled with powdered zirconia for thermal insulation. These two crucibles were then lowered into a furnace well attached to the bottom of an inert atmosphere (He) glovebox. The salt mixture was heated 50° to 100° C. above the melting point and stirred with a tantalum agitator for at least 1 hour to ensure solution of all components. The salts did not noticeably attack the stainless steel crucible.

A Type 304 stainless steel-sheathed Chromel-Alumel thermocouple was placed in the salt and another was located outside the crucible containing the salt, and insulated from it. The temperatures of the two thermocouples were measured using a two-pen Bristol recorder when heating and cooling curves (both at a rate of about 4° to 5° C. per minute) were run. The heating rate was determined by the voltage applied to the furnace, and the cooling rate was the inherent cooling rate of the furnace after the power was turned off. The temperatures of thermal halts corresponding to the liquidus, eutectic, and other points were determined by comparing the heating and cooling curves of the thermocouple in the salt with that outside the crucible. The thermocouple and recorder used were calibrated as a system at the melting points of aluminum (660° C.) and NaCl (801° C.). The temperature correction ($+5^{\circ}$ C.) found for these two temperatures was assumed to apply over the whole range of temperature covered in this investigation.

Studies of the ternary system were always begun with a $CaCl_2-CaF_2$ mixture of the desired composition, then incremental additions of CaO were made. At or near the end of a series of CaO additions, samples of the molten salt were taken at a temperature above the liquidus using tantalum tubes with sintered tantalum filters. These were analyzed to determine whether the CaO concentration was in agreement with that calculated on the basis of the amount of CaO added to the original halide mixture.

Chemicals. Reagent grade anhydrous $CaCl_2$ was further dried by passing HCl gas through the solid and molten material for several hours, removing the HCl from the molten salt under vacuum, and filtering the salt into a fused silica ampoule which was later sealed. Calcium oxide was heated at 900°C. under a dry nitrogen stream, and then under vacuum to remove H₂O and CO₂. Calcium fluoride was dried at 800° C. under vacuum. All materials were transferred to and handled in the helium-filled glovebox where the thermal analysis experiments were performed.

Analytical. The CaO in the salt samples was determined by titrating its hydrolysis product, $Ca(OH)_2$, as a strong base. The powdered samples were placed in a known amount of dilute hydrochloric acid to neutralize the $Ca(OH)_2$, then the excess acid was back-titrated with NaOH using a phenolphthalein indicator.

RESULTS AND DISCUSSION

The compositions of the salt mixtures investigated and the thermal halts observed for each are given in Table I. Supercooling occurred in a large number of the cooling curves; therefore, it was necessary to rely on data from the heating curves in these cases. Where the heating and cooling curves were in agreement, the temperatures of the cooling curve arrests are reported. The temperatures in Table I are estimated to have an error of about $\pm 5^{\circ}$ C. and the accuracy of the salt compositions is approximately $\pm 3\%$ (relative).

Table I Halt	ts Observed in	Thermal A	nalysis of	the CaC	System
Tuble I. Hui		The man is a	11019313 01	inc cac	Oysieni

CaCla:CaFa	CaO Concn	Temp. of Thermal Halts, $^{\circ}C.^{\circ}$			CaChiCaFa	CaO Conce	Temp. of Thermal Halts, $^{\circ}$ C. $^{\circ}$				
Ratio	Mole %	Liquids	2nd	3rd	4th	Ratio	Mole %	Liquids	2nd	3rd	4th
100:0	0	775				78:22	0	670h	647		
	2	767	747				3	665h	635h	625h	
	4	758	749				6	655h	635h	625h	
	8	754	750				9	665	638	625h	
	11.5	785	750				12	695h	650	625h	
15 28 35	15	813	750				14	715h	670h	625h	
	28		835	750			18	. 1011	715h	670h	625b
	35		835			75.95		0051	047	01011	02011
05.5	0	745	645			70:20	0	0001	647	0051	
90:0	0	740	045	005			3	680n	635h	625h	
	ž	130	650	620			6	670h	640h	625h	
	5	725	712	625h			9	665h	625h		
	8	740h	719	625h			12	675	665	625	
	12	770	715	625h			14	840	685	670	
16 18.5 22	16	794	699	625h			18		685	665	625h
	18.5	805	675	625h		70.30	0	700	645		
	22		810	660	625h	10.50	0	700 6951	640h	COFL	
90.10	0	708	646				3	6001	640n	625n	
30.10	ä	693	625h				0	080h	645n	620n	
	ě	680	625h				9	670n	625n	0051	
	Ğ	715	670	COFL			11	700h	670h	625h	
	12	747	073	0291			15	• • •	700h	670h	
	15	760	CCOL	0051		65:35	0	715	645		
	16	760	COOL	625h		00100	ž	705	640h	625h	
	10	050	030n	620n	0.0 51		4	700	655h	625h	
	10	950	774	660h	625h		ĥ	695	655	625	
	22	• • •	772	660h	625h		8	690	670	625h	
85:15	0	670	645				10	600L	070 660F	02011	
	3	657	625				10	090h	000n	625h	
	6	680h	645	625			12	7001	neco	620n	
1 1 1 2	9	710h	635h	625h		62.5:37.5	2	710h	635h	625h	
	12	724	625h	02011			4	705h	650h	625h	
	14.5	742	660h	695h			6	700h	660h	625h	
	15.7	900	746	670h	COFL		8	710h	670h	02011	
	20	000	746	670h	025H		10	715h	665h		
	20	•••	740	0701	620n		12	720h	660h		
81:19	0	649	645				12.5	850h	720h	660h	
	3	633				60.40	0	700	0.45	00011	
	6	655h	640h	625h		60:40	0	730	640	CO F 1	
	9	695h	650h	625h			2	715n 705	640h	625h	
	12	710h	655h	625h			4	705	655h	625h	
	14.5	720	660	625			6	710	670h	625h	
	17		725	665	625h		8 10	715h 725h	670h 690h	660h 670h	6601
						52.48	10	790	795	645	00011
						02.40	0	100	100	040	
[emperatures]	obtained fi	rom heating	g curves of	nlv are indi	cated by lette	45:55 er h.	0	870	735		

Figure 1. CaCl₂-CaF₂ phase diagram

The CaCl₂-rich portions of the CaCl₂-CaF₂ and CaCl₂-CaO binary phase diagrams were obtained during the course of this investigation. The CaCl₂-CaF₂ phase diagram in Figure 1 is almost in exact agreement with diagrams given in the literature (1, 4). Previous work indicated a peritectic at about 42 mole % CaF₂, whereas the present work suggests that it is at 45 mole % CaF₂. The observed peritectic temperatures are the same. To substantiate the composition of the incongruently melting compound, a 55 mole % CaF₂-45 mole % CaCl₂ mixture was held for 16 hours at 820° C., and then cooled to room temperature. X-ray diffraction examination of this salt showed it to be primarily the compound CaCl₂·CaF₂ plus a small amount of CaF₂, which is in agreement with the phase diagram.

The CaCl₂-CaO phase diagram is shown in Figure 2. The liquidus points above the peritectic temperature were obtained from analyses of samples of the liquid phase of the CaCl₂-28 mole % CaO salt taken at the indicated temperatures. The present work agrees with the older literature data of Neumann et al. (3), up to about 15 mole % CaO, but not at all with those of Threadgill (5). At higher concentrations of CaO, this research indicated a peritectic at 18.5 mole % CaO and 835°C., with the corresponding incongruently melting compound having the composition CaO·2CaCl₂. However, Neumann et al. show the formation of the compound CaO.4CaCl₂ and a eutectic at about 800°C. and 22 mole % CaO. Their observation of a thermal halt at 800°C., rather than at 835°C. as in the present work, may be due to supercooling in their system.

The CaCl₂-corner of the CaCl₂CaF₂-CaO ternary diagram is presented in Figure 3. The system contains a ternary eutectic involving the compounds CaCl₂, CaCl₂·CaF₂, and CaO·2CaCl₂ in equilibrium at 625° C. with liquid of the composition CaCl₂-17 mole % CaF₂-4 mole % CaO. There are ternary peritectics at CaCl₂-23 mole % CaF₂-10 mole % CaO and CaCl₂-23 mole % CaF₂-10 mole % CaO and CaCl₂-23 mole % CaO at the temperatures 660° and 670° C., respectively. At the former point CaCl₂·CaF₂, CaO·2CaCl₂, and CaF₂ are in equilibrium with the liquid, while the solids CaF₂, CaO, and CaO·2CaCl₂ are in equilibrium with liquid of the latter composition.

Figure 3. CaCl₂ corner of CaCl₂-CaF₂-CaO phase diagram

ACKNOWLEDGMENT

The authors thank R. V. Schablaske for x-ray diffraction measurements and interpretation.

LITERATURE CITED

- (1) Bukholova, G.A., Bergman, A.G., Zh. Obshch. Khim. 21, 1723 (1951).
- (2) Mukerji, J., J. Am. Ceram. Soc. 48, 210 (1965).
- (3) Neumann, B., Kröger, C., Jüttner, H., Z. Elektrochem. 41, 725 (1935).
- (4) Plato, W., Z. Physik. Chem. 58, 350 (1907).
- (5) Threadgill, W.D., J. Electrochem. Soc. 112, 632 (1965).

RECEIVED for review September 6, 1968. Accepted December 13, 1968. Work performed under auspices of the U. S. Atomic Energy Commission.