Tetrapalladium Sulfide and Tetrapalladium Selenide

Heat Capacities and Thermodynamic Properties from 5° to 350° K.

FREDERICK GRØNVOLD

Institute of Inorganic Chemistry, University of Oslo, Oslo 3, Norway

EDGAR F. WESTRUM, Jr., and RAY RADEBAUGH¹ Department of Chemistry, University of Michigan, Ann Arbor, Mich. 48104

> The heat capacities of Pd₄S and Pd₄Se were determined by adiabatic calorimetry from 5° to 350°K. and found to be of usual sigmate shape, without transitions or anomalies. Values of the heat capacity (C_p) , entropy (S°) , and Gibbs energy function $\left[-(G^\circ - H\delta)/T\right]$ at 298.15°K. (expressed in units of cal. mole⁻¹ °K.⁻¹) are 27.48, 43.18, and 23.16 for Pd₄S and 32.75, 47.83, and 24.84 for Pd₄Se, respectively. The heat capacity of Pd₄Se exceeds the classical limit near 200°K., probably because of 4*d*-electron excitations in palladium.

PALLADIUM is apparently the only metal which forms a sulfide and a selenide in the atomic ratio of 4 to 1 (4, 5). Therefore, it seemed of interest to study the thermodynamic properties of these rather unusual compounds. The structures of Pd₄S and Pd₄Se are tetragonal (4, 5)and characterized by coordination of each palladium atom with two sulfur (selenium) atoms and ten palladium atoms, while each sulfur (selenium) atom is coordinated to eight palladium atoms. Above 150° C. the compounds are almost nonmagnetic ($x_{g} < 0.2 \times 10^{-6}$), but upon lowering the temperature, field-strength-dependent magnetic susceptibilities develop. This phenomenon apparently needed further consideration; hence, heat capacity measurements were undertaken.

EXPERIMENTAL

Cryogenic Apparatus. Measurements were made in the Mark III vacuum cryostat by heating the sample intermittently under quasi-adiabatic conditions. The goldplated copper calorimeter (laboratory designation W-29), with a capacity of 41 cc., was surrounded by adiabatic shields provided with three separate channels of recording electronic circuitry with proportional, rate, and reset actions. These kept the temperature differences between calorimeter and shields less than a millidegree. Consequently, the error due to heat exchange was negligible compared with other sources of error. The heat capacity of the calorimeter-heater-thermometer assembly was determined in a separate series of experiments. Small corrections were applied for differences in the amounts of indiumtin solder for sealing the calorimeter, Apiezon-T grease for thermal contact between calorimeter and heaterthermometer assembly, and about 10-torr helium pressure at 300° K. for improving thermal equilibration between calorimeter and sample. Temperatures determined with the strain-free capsule-type platinum resistor (laboratory designation A-3) are considered to be in accord with the thermodynamic temperature scale to within 0.03°K. All measurements of mass, temperature, resistance, voltage, and time are based upon calibrations or standardizations of the National Bureau of Standards.

¹Present address: Boulder Laboratories, National Bureau of Standards, Boulder, Colo.

Preparation and Purity of Samples. The tetrapalladium sulfide and selenide were synthesized by reaction of palladium metal with elemental sulfur or selenium. High purity palladium, provided by International Nickel, Ltd., contained the following impurities (p.p.m.): Ag(30), Au(70), Fe(20), Pb(2), Pt(50), Rh(10), insoluble material— principally SiO₂—(60), volatile material (120). The metal was degassed in vacuo at 600° C. for 4 hours. The sulfur was a product of the American Smelting and Refining Co., in which no impurities had been detected by spectrographic analysis. The selenium was a gift from Bolidens Gruvaktiebolag which, according to their analyses, contained as impurities (p.p.m.): Cl(2), Fe(0.8), K(0.3), Na(0.4), nonvolatile matter (12). Stoichiometric amounts of palladium and sulfur were heated in an evacuated and sealed quartz tube at 800°C. for 6 days. The resulting regulus was very hard and had to be crushed in a diamond mortar. In the case of Pd₄Se, the heating was carried to 600°C. for 18 hours, and the sample could then be crushed in an agate mortar. Both crushed samples were subsequently heat-treated at 500°C. for 2 weeks and cooled to room temperature in the furnace.

The heat capacity of the Pd₄S sample, weighing 191.599 grams, represented about 90% of the total at 15° K., decreasing to 72% at 350° K. For the Pd₄Se sample, weighing 211.422 grams, the corresponding values are 85 and 67%, respectively.

RESULTS AND DISCUSSION

The experimental heat capacity values for tetrapalladium sulfide and tetrapalladium selenide at the mean temperatures of the measurements are presented in Table I in chronological sequence. The data have been corrected for curvature of the heat capacity and are given in terms of the defined thermochemical calorie (equal to 4.1840 joules), and an ice point of 273.15°K. The probable errors in the measurements are considered to decrease from about 3% at 5°K. to 0.5% at 10°K. and to less than 0.1% above 20°K. The heat capacities of both compounds have the usual sigmate shape, without transitions or anomalies.

The smoothed heat capacities and the thermodynamic functions derived from them by means of a digital computer using a previously described program (7) are given for selected temperatures in Table II. The thermodynamic

T	able I. He	at Capaci	ties of Pd ₄	S and Pd₄S	õe ^a				Table II. The	rmodynamic
T	C_p	Т	C_p	T	C_p	T	C_{p}	S°	$H^\circ - H_\delta$	$-(G^\circ - H_{ m d})/T$
Т	etrapalladi	um Sulfide,	1 Mole = 4	57.67 Gram	s					
Seri	es I					Tet	rapalladium S	Sulfide, 1 Mo	le = 457.67 Gra	ms
5.55	0.037	41.78	8.161	205.24	25.83	5	0.025	0.006	0.022	0.001
6.01	0.058	46.41	9.521	213.99	26.05	10	0.292	0.086	0.677	0.019
6.56	0.072	51.49	10.942	222.66	26.23	15	0.929	0.312	3.562	0.074
7.24	0.105	56.94	12.370	231.26	26.41	20	1.934	0.709	10.588	0.179
8.09	0.149	62.57	13.756	232.28	26.43	25	3.192	1.272	23.32	0.339
9.05	0.217	68.43	15.04	241.06	26.64	0.0	4.015	1.070	40.50	0
10.12	0.312	74.63	16.25	258.73	26.88	30	4.615	1.978	42.78	0.552
11.35	0.424	81.48	17.49	276.24	27.16	35	6.124	2.802	69.61	0.813
12.68	0.580	88.77	18.64	285.01	27.29	40	7.633	3.719	104.02	1.118
14.06	0.780	96.20	19.58	293.45	27.41	45	9.113	4.704	145.90	1.461
15.52	1.021	103.97	20.44	301.78	27.54	50	10.535	5.738	195.1	1.837
17 14	1 321	111.99	21.24	310.02	27.62	60	13 137	7 894	313 7	2 666
18 99	1 704	120.37	21.98	318.43	27.74	70	15 271	10.009	456.6	2.000
19.75	1,653	128.67	22.63	326.86	27.87	10	10.071	10.092	400.0	3.009
20.97	2 1 2 5	137.48	23.20	335.43	27.94	80	17.24	14.200	019.9	4.021
20.07	2.135	146.26	23.20	345 10	28.05	90	18.78	14.392	800.2	0.001
23.20	2.717	159 15	20.70	010110	20100	100	20.04	16.44	994.0	6.493
25.75	3.399	154.10	24.01	Seri	es II	110	21.09	18.399	1200.4	7.487
28.63	4.210	104.00	24,12	007 57	96 59	120	21.96	20.273	1415.7	8,475
30.51	4.768	163.37	24.49	237.57	20.02	130	22 70	22.060	1639.2	9 452
34.02	5.823	170.20	24.77	246.50	20.00	140	22.10	23 767	1869 4	10 414
37.71	6.950	178.82	25.06	255.48	26.81	140	20.00	25.707	2105.5	11 358
		187.54	25.35	264.46	26.96	100	20.00	20.000	2100.0	11.000
		196.41	25.60	273.43	27.10	160	24.35	26.952	2346.8	12.285
т	etranalladi	um Selenid	e 1 Mole =	504 56 Grs	ms	170	24.77	28.441	2592.4	13.192
1	спаранаці	um bereinu	e, i mole –	004.00 GIL		180	25.13	29.867	2841.9	14.079
Ser	ies I	17.93	1.065	151.64	27.55	190	25.44	31.234	3094.8	14.946
66.00	15 54	19.78	1.432	160.75	28.16	200	25.71	32.55	3350.6	15.79
70.74	10.04	21.82	1.901	168.29	28.61					
70.74	16.65	24.11	2.490	177.03	29.09	210	25.95	33.81	3608.9	16.62
76.16	17.88	26.70	3.229	184.81	29.47	220	26.17	35.02	3869.5	17.43
82.70	19.27	29.68	4.150	193.93	29.86	230	26.37	36.19	4132.2	18.22
90.10	20.65	33.15	5.299	203.05	30.22	240	26.56	37.31	4396.9	18.99
97.86	21.86	36.93	6 592	212 11	30.55	250	26.74	38.40	4663.4	19.75
105.98	23.00	41 19	8 040	221.06	30.86	000	00.01	00.45	1001 6	00.40
114.33	24.06	45.70	9.577	221.00	31 19	260	26.91	39.40	4931.0	20.49
Soni	og II	45.77	9.573	238.00	21 20	270	27.07	40.47	5201.5	21,21
Sell	es 11	50.79	11 1 20	200.34	01.00	280	27.22	41.46	5472.9	21.91
5.43	0.028	50.78	11.109	247.80	31.03	290	27.37	42.42	5745.9	22.60
5.90	0.033	55.67	12.667	200.02	31.84	300	27.50	43.35	6020.2	23.28
6.51	0.048	61.24	14.268	265.39	32.04	310	27.63	44 25	6295 9	23.94
7.46	0.064	66.77	15.71	274.17	32.23	320	27.76	45.13	6572.9	24 59
8 47	0.093	73.11	17.20	282.96	32.44	320	27.70	45.00	6851.1	25.22
9.41	0.143	80.03	18.71	291.74	32.61	330	21.09	40.99	7120 6	25.22
10 43	0 1 86	87.51	20.19	300.56	32.81	340	20.00	40.04	7100.0	20.00
11 79	0.100	95.26	21.47	309.47	32.95	390	20.00	41.00	(411.0	20,40
1914	0.200	109.01	23.43	318.41	33.12	273.15	27.12	40.79	5286.8	21.43
10.14	0.307	117.03	24.41	327.44	33.27	220				
14.00	0.557	125.20	25.31	336.61	33.44	298.15	27.48	43.18	5969.4	23.16
16.22	0.777	133.58	26.11	345.81	33.56					
		142.52	26.86							
Units. Ca	Units. Cal., mole. °K.						mole, °K.			
						,				

functions may be considered reliable to better than 0.1% at temperatures above 100° K., even taking possible departures from the assumed compositions into account. No adjustments have been made for nuclear spin or isotopic mixing contributions to the entropy and Gibbs energy function, and hence they are practical values for use in chemical thermodynamic calculations.

Electrical conductivity measurements (3) on Pd₄S have shown it can be a conductor, $\rho = 3.20 \times 10^{-4}$ ohm cm. and $(\partial \rho / \partial T) = 1.05 \times 10^{-6}$ ohm cm. °K.⁻¹. Pd₄S is not superconducting above 0.32° K., while Pd₄Se becomes superconducting at 0.42° K. (10). Therefore, the heat capacity behavior at low temperatures was examined by plotting C_{ρ}/T vs. T^2 for both compounds (see Figure 1). Corresponding data for palladium metal (4 moles) taken from the literature (6, 8, 9, 11) are also shown in the figure. Apparently, the conduction electron contributions in Pd₄S and Pd₄Se are negligible compared to that of palladium. According to recent theoretical prediction (1, 2), the interactions between low energy spin fluctuations and conduction electrons in a nearly ferromagnetic metal result in a large renormalization of the *d*-electron mass, which gives rise to a corresponding increase in the linear term of the heat capacity. Because of the difficulties in resolving the lattice heat capacities in these compounds, the electronic contributions are not easily discernible. However, the heat capacity for Pd₄Se exceeds the classical limit near 200° K. This is taken as an indication of 4*d*-electron excitations in palladium.

roperties of	f Pd₄S and P	'd₄Se ^ª		
Т	C_{P}	S°	$H^\circ - H^\circ_\circ$	-(G° - Hồ) / T
Tet	rapalladium S	elenide, 1 Ma	ole = 504.56 Gra	ms
5	0.024	0.008	0.029	0.002
10	0.155	0.053	0.393	0.014
15	0.604	0.188	2.121	0.046
20	1.478	0.471	7.153	0.113
25	2.734	0.930	17.54	0.228
30	4.259	1.560	34.94	0.395
35	5.928	2.340	60.37	0.616
40	7.641	3.244	94.29	0.886
45	9.323	4.241	136.73	1.203
50	10.936	5.308	187.4	1.560
60	13.908	7.570	311.9	2.371
70	16.50	9.914	464.3	3.281
80	18.72	12.266	640.7	4.257
90	20.61	14.583	837.6	5.276
100	22.21	16.839	1051.9	6.320
110	23.57	19.022	1281.0	7.376
120	24.74	21.124	1522.7	8.435
130	25.76	23.145	1775.3	9.489
140	26.65	25.087	2037.4	10.534
150	27.42	26.953	2307.8	11.567
160	28.11	28.745	2585.6	12.585
170	28.71	30.468	2869.8	13.587
180	29.24	32.124	3159.6	14.571
190	29.71	33.72	3454.4	15.54
200	30.12	35.25	3753.6	16.48
210	30.49	36.73	4056.6	17.41
220	30.82	38.16	4363.2	18.32
230	31.12	39.53	4672.9	19.22
240	31.40	40.86	4985.5	20.09
250	31.67	42.15	5300.8	20.95
260	31.92	43.40	5618.8	21.79
270	32.16	44.61	5939.2	22.61
280	32.38	45.78	6261.9	23.42
290	32.59	46.92	6586.7	24.21
300	32.78	48.03	6913.5	24.98
310	32.96	49.11	7242.3	25.74
320	33.14	50.16	7572.8	26.49
330	33.31	51.18	7905.1	27.22
340	33.48	52.18	8239.0	27.94
350	33.63	53.15	8574.6	28.65
273.15	32.23	44.98	6041	22.87
298.15	32.75	47.83	6853	24.84

Ρ

and 4Pd plotted as C_p/T vs. T²
a. Pickard (9)
b. Rayne (11)
c. Hoare and Yates (6)
d. Mackliet and Schindler (8)

ACKNOWLEDGMENT

The authors appreciate the loan of high purity palladium from International Nickel, Ltd., the gift of selenium from Bolidens Gruvaktiebolag, the partial support of the U. S. Atomic Energy Commission, and the cooperation of Torkild Thurmann-Moe in preparing the sample and of James J. Huntzicker in the thermal measurements on tetrapalladium sulfide.

LITERATURE CITED

- (1) Berk, N.E., Schrieffer, J.R., Phys. Rev. Letters 17, 433 (1966).
- (2) Doniach, S., Engelsberg, S., Ibid., 17, 750 (1966).
- (3) Fishmeister, H., Acta Chem. Scand. 13, 852 (1959).
- (4) Grønvold, F., Røst, E., Ibid., 10, 1620 (1956).
- (5) Grønvold, F., Røst, E., Acta Cryst. 15, 11 (1962).
- (6) Hoare, F.E., Yates, B., Proc. Roy. Soc. (London) 240A, 42 (1957).
- Justice, B.H., doctoral dissertation, University of Michigan, 1961; U.S. Atomic Energy Commission, Rept. TID-12722 (1961).
- (8) Mackliet, C.A., Schindler, A.I., J. Phys. Chem. Solids 24, 1639 (1963).
- (9) Pickard, G.L., Nature 138, 123 (1936).
- (10) Raub, C.J., Compton, V.B., Geballe, T.H., Matthias, B.T., Maita, J.P., Hull, G.W., Jr., J. Phys. Chem. Solids 26, 2051 (1965).
- (11) Rayne, J.A., Phys. Rev. 107, 669 (1957).

RECEIVED for review October 11, 1968. Accepted February 6, 1969.