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Transport Collision Integrals for Gases Using 

the Lennard-Jones (6, n )  Potentials 
S. T. LIN and H. W. HSU 
Department of Chemical and Metallurgical Engineering, The University of Tennessee, Knoxville, Tenn. 3791 6 

The three-parameter Lennard-Jones (6, n) intermolecular potential function was used 
to calculate the first six reduced collision integrals, the correction factors, and the 
various quantities derived from those collision integrals. The ranges of tabulation 
were 

n = 8(2)20 and 
r* = o.ooi(o.oo~)o.o2(o.oi )o.i(0.05)0.5(0.1) i .o(o.2) 

2.0(0.5)4.0( 1.0) 10(2.0)20(5)50( 10) 100 

[numbers in parentheses between two numbers were interval for tabulation]. The 
three intermolecular potential parameters-n, e l k ,  and u-were determined from 
the experimental viscosity data for 12 gases: helium, argon, neon, hydrogen, nitrogen, 
oxygen, carbon monoxide, carbon dioxide, air, methane, propane, and n-pentane. 

THE TRANSPORT properties of a dilute gas can be 
calculated if the intermolecular potential energy function 
is known, and calculations of this kind have important 
applications in analyzing experimental da ta  to provide 
information on the  potential energy function and in 
interpolating or extrapolating experimental data.  The  cal- 
culation is based on the  Chapman-Enskog solution of the 
Boltzmann equation, which is given by Hirschfelder, Cur- 
tiss, and Bird (9); i t  involves evaluation of collision integrals 
which are complicated integrals requiring three stages of 
numerical integration. These collision integrals have been 
tabulated for a number of potential energy functions, 
including the well known Lennard-Jones (6, 12) ( 9 ) ,  Buck- 
ingham exp-6 (21),  L-J  (6, 9) (27) ,  and L-J (7, 28) (27) 
functions. There is a large amount of evidence tha t  these 
functions are not sufficiently flexible to describe the  actual 
interactions of real molecules accurately. With the  availabil- 
ity of high-speed computers, we have used the L-J (6, 
a )  potentials t o  calculate collision integrals. Thus, the  poten- 
tial function allows the adjustable steepness of the repulsive 
potential an  additional degree of flexibility as compared 
to  the L-J  (6, 12) potential. The  applicability of the  poten- 

tials was tested for 12 gases with experimental viscosity 
data.  Recently Klein and Smith (1 7 )  also tabulated collision 
integrals using L-J (6, n) with n = 9, 12, 15, 18, 21, 
24, 30, 50, and 75. 

The  form of the L-J (6, n)  potential E f r )  is 

6 

n - 6  

where c is the depth of the potential well, n is an  adjustable 
parameter for the steepness of the  repulsion potential, and 
E(u)  = 0. The  reduced form of the  potential is shown 
in Figure 1 for n = 8 and n = 20. This function should 
prove useful on several counts-it is simple in form, the  
repulsive index, n, serves as a simple indicator of the  hard- 
ness of the  repulsive core, the potential has been used 
in a number of more complicated theories ( I O ,  231, this 
form has proved useful because the theory involves deriva- 
tives of potential which then leads to simple recursion for- 
mulas on the index n, and the potential functions derived 
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1.0 1 NUMERICAL RESULTS 

The  numerical evaluation of the various integrals was 
carried out on an IBM 7040 computer. The  calculation 
of the angle of deflection is complicated by the phenomenon 
of orbiting. The  integrand of Equation 4 has a sharp max- 
imum in the vicinity of the orbiting region. This difficulty 
may be alleviated by increasing the number of intervals 
of integration. Equation 4 was integrated numerically using 
the Gaussian 24-point quadrature formula with the interval 
of integration divided into two subintervals and then the 
Gaussian 32-point quadrature formula was used in each 
subinterval. Accuracy up to seven significant figures was 
attained for nonorbiting collisions and up to five significant 
figures for orbiting collisions. 

The  numerical calculation of the cross section becomes 
complicated when orbiting takes place in the encounter. 
T o  facilitate the calculation, Equation 3 may be rewritten 
in terms of r; rather than b"', which gives 

0.5 

- 
t 

L *- 0 
W 

-0.5 

-1.0 

Figure 1 .  Reduced Lennard-Jones (6, n )  potential 
function for n = 8 and n = 20 

from two-body scattering data  have often been represented 
by simple inverse powers of the intermolecular distance 
( I ,  4 , 2 3 ) .  

GENERAL FORMULAS 

The transport properties (viscosity, thermal conductivity, 
diffusion coefficients, and thermal diffusion ratio) can all 
be calculated if the reduced collision integrals (2 ' * are 
known. These integrals are defined by the equations (9): 

Q '  ' " ( T ' )  = 1 

(s + l)! T"'  

1 r 

L '  2 ( 1 + 1 ) 1  

( 3 )  

The  first approximations of various transport coefficients 
given in terms of collision integrals nowadays often appear 
elsewhere (9). Thus,  there is no need to  repeat these formu- 
las. Higher approximations are obtained by multiplying 
the first approximation for the transport coefficients by 
correction factors which are near unity. Certain ratios of 
the collision integrals appear in the transport properties 
of mixtures (15). These ratios, being slowly varying func- 
tions of T",  are also useful in interpolation. The  ratios 
of collision integrals and the correction factors (15)  are 

where subscripts v ,  h ,  and D are the viscosity, thermal 
conductivity, and self-diffusion coefficients, respectively. 

where 

1 + (-1) 
2 (1  + i) A = 1 - -  

For nonorbiting collisions, the Gaussian 24-point quad- 
rature formula was used to evaluate Equation 13 with 
the interval divided into two subintervals. Precision of 
six or seven figures was obtained. When orbiting collisions 
occur, the term cos'x oscillates violently as the angle of 
deflection, x, approaches negative infinity. The factor H (g*', 
rp*i) damps the oscillations as H(g*', r;)  approaches zero 
a t  r: = r:. For the case of orbiting collisions, the interval 
of integration from rmo to infinity is no longer continuous. 
Dividing Equation 13 into two parts a t  the point of discon- 
tinuity, one obtains 

Q *&:"i) = A J ''. 11 - H(g-2, r;)ci(rzj) 
r:- 

+ A J-- 11 - C O s , x ~ ~ ( g a ' ,  rzld(r;j) (16) 

T o  evaluate Equation 16 efficiently, the interval of integra- 
tion was divided into four regions: 

Region 1 (from x = a to x = -2a). The interval of 
integration from r;: (where x = a) to  r l *  (where x = 
- 2 ~ )  was divided into two subintervals, using r 2  as  an 
independent variable in the integration. Then the Gauss 
32-point quadrature formula was applied in each subinter- 
val. 

Region 2 (from x = -2a to  x = - m ) .  From r? to  r:2 
(where x = - a ) ,  the angle of deflection may be approx- 
imated by 

x = P + C In 16:' - b"l (17) 

where C is the constant to  be determined. Then Equation 
13 can be integrated analytically. If one defines 

(18) W,, = 1 b:' - b7'l 

and 
= 1 bd2 - bT'1 [hCl sin ( K x l )  + cos ( x , )  ] / ( I  + K'Ci) (19) 

in which XI and b?' are the values a t  rZL = rT2, the contribu- 
tions to Q "(g"') from this orbiting region are: 

q l " ( g " )  = w,- WI (20) 

(21) q ?  "(g") = 3.1 (Wo - W,) 
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and 

The constant C was evaluated by a least-squares curve- 
fitting method. A total of 128 Gaussian points was used 
to evaluate the angle of deflection, X .  

Region 3 (from x = - m  to x = - 2 . ~ ) .  The  contributions 
to Q “(g”’) from this orbiting region are found in exactly 
the same manner as in Region 3, except that  C is evaluated 
from this side of the orbiting region. 

Region 4 (from x = -27 to x = 0). The interval of 
integration from rT’ (where x = - 2 . ~ )  to infinity (where 
x = 0) was divided into two subintervals, using U = r;’/ 

as the new variable of integration. Then the Gauss 
32-point quadrature formula was applied to each subinter- 
val. 

The over-all precision is estimated to be 0.05%. The  
largest contributions to the Q “(g”’) come from Region 
1. The  contributions from other collision regions account 
for less than 17. 

The  Fortran program for the computation of Q ’ *(g*’) 
contained a subprogram for calculating the angle of 
deflection. For each of seven values of the repulsion index 
n ( n  = 8, 10, 12, 14, 16, 18, 20), the Q ’  ”(g”) were calculated 
for 1 = 1, 2, 3 and for g” from 0.1 to  1000. 

Equation 2 was used to  calculate the reduced collision 
integrals by using the Laguerre 32-point quadrature formula 
(24 )  with exp(-g*‘/T’) as  the weight function. Only the 
first 16 points were required in the calculations, since the 
contributions to the collision integrals from the remaining 
16 points were completely negligible. The  values of Q ” 
in Equation 2 were obtained by a four-point Lagrangian 
interpolation formula from the results tabulated from Equa- 
tion 3. The  Gauss quadrature formulas were used in the 
integration of Equations 3 and 4. 

Table I gives the first six reduced collision integrals and 
Table I1 the higher approximation correction factors- j v  , 
f 4 ,  and fo-and the various ratios of collision integrals. 
The collision integrals for the L-J  (6, 12) potential obtained 
in this work are in good agreement with those calculated 
by Monchick and Mason (221, Itean, Gluck, and Svehla 

( 2 1 1 ,  Barker, Fock, and Smith (2), and Klein and Smith 
(17) .  0 * and 0 *, ’ * for L-J  (6, 12)  are compared with 
Klein and Smith’s work (17)  in Table I11 ( 1 6 ) .  At reduced 
temperature below 0.6 both tables show internal differences 
indicating lower precision. In  the neighborhood of 0.8 this 
work appears to be smoother than Klein and Smith’s work, 
and between 0.8 and 2.0 Klein and Smith’s appear to be 
smoother. I n  general, the agreement is excellent. Thus  
the accuracy of the calculation above T* = 0.1 appears 
to be a t  least 0.1%. The uncertainty increases, with the 
reduced temperature becoming lower. 

DETERMINATION OF POTENTIAL PARAMETERS 

The intermolecular potential parameters were determined 
from experimental viscosity data  by nonlinear least squares 
curve fitting to the formula for the viscosity of a pure 
gas given by Hirschfelder et al. (9).  

(23) 
5 MkT I i  f 

16‘ T ’ o’Qi2‘(T*l 
q = -  ~ 

The technique is based on the Marquardt’s (20) maximum 
neighborhood algorithm for the least-squares estimation of 
parameters in nonlinear formulas. The  algorithm is a com- 
bination of the Taylor series method and the steepest de- 
scent (or gradient) method. In  using Equation 23, two 
simplifications were made: The correction factor, f , was 
assumed to be unity, which is consistent wit% the 
experimental accuracy of the viscosity data, and the re- 
pulsive potential indices were confined to the values of 
8, 10, 12, 14, 16, 18, and 20, a t  which the calculations 
were made. 

The procedures used in the computer program for the 
determination of the potential parameters, n, c / k ,  and u 
were: 

1. The repulsive potential index was first assumed to 
be 8; thus, the values of 0 ’,’ ’ were found from Table 
I for the given repulsion index, n = 8. Then, an approximate 
value of u and the experimental viscosity were stored in 
the computer along with the above information. 

Table I. Collision Integrals for the 
Lennard-Jones (6, n )  Potentials 

n = 8  n= 12 n = 20 
T“ , l l *  R”* , 1 1 *  n 2 2 *  n ’  1 *  n 2 2 *  

0.010 
0.050 
0.100 
0.500 
1.000 
5.000 
10.000 
50.000 
100.000 

9.2683 
6.4813 
5.1099 
2.3319 
1.5059 
0.7953 
0.6780 
0.4848 
0.4179 

9.8176 
6.4475 
5.0693 
2.5953 
1.6882 
0.8932 
0.7723 
0.5629 
0.4900 

6.6939 
4.9500 
3.9922 
2.0634 
1.4419 
0.8431 
0.7421 
0.5758 
0.5166 

7.3970 
5.1317 
4.0957 
2.2898 
1.5913 
0.9267 
0.8243 
0.6496 
0.5849 

5.5703 6.2542 
4.1117 4.3539 
3.3218 3.4866 
1.8566 2.0282 
1.3796 1.5085 
0.8991 0.9631 
0.8188 0.8822 
0.6892 0.7486 
0.6425 0.7006 

Table Ill. Comparison of Q ’ * and 12 * of Lennard-Jones 
(6, n )  Potential with Klein and Smith’s Values (17) 

R’ z *  R l  I *  

[(KS) - [W) - 
~. (LWI loj (LH)J 

T’ (KS) K - S  L - H  (KS) K - S  L - H  
0.10 5.1240 4.0127 3.9922 1.9825 4.1039 4.0958 
0.50 1.3720 2.0662 2.0634 1.3446 2.2867 2.2898 
1.00 1.7968 1.4394 1.4420 1.2599 1.5933 1.5913 
5.00 0.4756 0.8427 0.8431 0.0777 0.9266 0.9267 
10.00 0.1496 0.7422 0.7421 0.1759 0.8242 0.8244 
50.00 0.0521 0.5759 0.5759 0.0231 0.6496 0.6497 
100.00 0.2303 0.5167 0.5166 0.2342 0.5851 0.5850 

T* 

0.010 
0.050 
0.100 
0.500 
1.000 
5.000 
10.000 
50.000 
100.000 

Table 11. Higher Approximation Correction Factors for Lennard-Jones (6, n)  Potentials 

f v  
1.0071 
1.0016 
1.0013 
1.0005 
1.0006 
1.0043 
1.0056 
1.0052 
1.0055 

n = 8  

fk 

1.0110 
1.0025 
1.0021 
1.0008 
1.0010 
1.0067 
1.0088 
1.0081 
1.0086 

f D  

1.0099 
1.0024 
1.0012 
1.0012 
1.0004 
1.0041 
1.0056 
1.0055 
1.0058 

f, 
1.0085 
1.0021 
1.0017 
1 .oooo 
1 .oooo 
1.0058 
1.0073 
1.0075 
1.0073 

n =  12 n = 20 

/ A  

1.0133 
1.0033 
1.0027 
1 .oooo 
1.0000 
1.0090 
1.0114 
1.0117 
1.0114 

fD 

1.0112 
1.0033 
1.0020 
1.0000 
1.0000 
1.0059 
1.0076 
1.0081 
1.0080 

f q  

1.0086 
1.0022 
1.0018 
1.0006 
1.0003 
1.0075 
1.0092 
1.0097 
1.0100 

f k  

1.0134 
1.0034 
1.0029 
1.0009 
1.0004 
1.0117 
1.0144 
1.0152 
1.0167 

f D  

1.0111 
1.0032 
1.0021 
1.0003 
1.0007 
1.0082 
1.0101 
1.0199 
1.0113 
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Table IV. Potential Parameters Determined from Viscosity Data 

Temperature No. of Data Standard” Data 
Gas n v k, OK. u, A. Range, O K. Points Used Error Sources 

He 
Ar 
Ne 
H? 
s, 
0 2  

co 
co, 
Air 
CHI 
C& 
n-CiH,, 

10 
14 
14 
14 
12  
14 
16 
10 
1 2  
12  
20 
20 

10 
130 
45 
52 
93 

117 
115 
207 
94 

157 
265 
333 

2.650 
3.390 
2.715 
2.802 
3.663 
3.402 
3.566 
3.892 
3.628 
3.700 
5.053 
5.883 

80.0-1088.0 
80.0-1500.0 
80.0-1000.0 

100.0-1500.0 
100.0-1500.0 
100.0-1500.0 
80.0-1500.0 

200.0-1500.0 
100.0-1500.0 
100.0-1500.0 
273.2- 463.2 
273.2- 492.3 

31 
44 
14 
23 
34 
37 
18 
22 
18 
17 
16 
12 

0.085 
0.217 
0.170 
0.216 
0.086 
0.264 
0.283 
0.358 
0.316 
0.16 
0.118 
0.185 

(13, 30) 
(6 ,  13, 31) 
(13) 
(12, 18, 25) 
(7, 12, 24) 
(5, 7, 8 ,  24, 25) 
(1.3, 25) 
(3, 5 ,  7, 25, 31) 
(2, 7, 25, 31) 
(7,251 
(19, 26, 27, 29, 30) 
(19,28, 32) 

Table V. Potential Parameters and Standard Errors for 
Lennard-Jones (6, 12) Potential Using Same Temperature 

Range and Same Data Points as Table Ill 

Gas c ,  k ,  E;. a, A. Error 
He 6.5 2.660 0.355 
Ar 116.0 3.452 0.287 
Ne 39.0 2.780 0.216 
H2 40.0 2.899 0.252 
0 2  106.0 3.462 0.292 
co 91.0 3.702 0.420 
co2 213.0 3.859 0.427 
CBH, 254.0 5.021 0.143 
n-C5H12 337.0 5.740 0.224 

Standard 

____- ____ 

Table VI. Experimental and Calculated Values of Viscosity 
of n-Pentane as Function of Temperature 

(G. cm.-’ set.-' x lo6) 

T veXptl r~-J(6, 12)  L-J(6, 20) Ref. 
273.16 62.00 63.89 65.89 (19) 
308.16 77.10 72.84 73.68 (19) 
323.16 79.30 76.10 77.02 (19) 
338.16 81.30 79.66 80.35 (19) 

351.16 83.69 82.74 83.23 (19) 
352.96 83.80 83.16 83.62 (29) 
363.36 85.90 85.60 85.91 (19) 
395.76 91.09 93.08 92.95 (29) 
432.06 99.50 101.36 100.55 (28 1 
462.76 106.40 108.24 106.76 (28 1 
492.26 112.60 114.75 112.61 (28 1 

343.26 81.69 80.87 81.48 (32) 

Standard 
error 0.224 0.185 

rJ 5.740 5.883 
d k  337 333 

2. With an approximate value of c / k ,  the value deter- 
mined from the L-J  (6, 12)  potential, the  reduced tem- 
perature was calculated. 

3. The  reduced collision integral Q ’ ’ * ( T I )  for t he  cal- 
culated reduced temperature was evaluated by using the  
Lagrangian four-point interpolation method. 

4. Experimental viscosity data points a t  various tem- 
peratures and values of the reduced collision integral, 

* ’ “ ( T ” ) ,  calculated in step 3, were substituted in Equa- 
tion 23. Then the nonlinear least-square curve fitting pro- 
gram was used to evaluate the collision diameter, R ,  for 
the entire temperature range. 

5 .  Steps 2 through 5 were repeated with a successively 

adjusted new value of t / k  until the possible range of c / k  
had been covered. 

6. Steps 1 through 5 were repeated by changing the 
repulsive potential index, n, by an  increment of 2 until 
the selected range of n(8-20) had been covered. 

From these results, a set of potential parameters, n, 
c / k ,  and U ,  which produced the best over-all fit to  the 
experimental viscosity data with the smallest standard error 
of estimate, was chosen as the set of potential parameters 
for the gas. 

The  potential parameters for 12 gases-helium, argon, 
neon, hydrogen, nitrogen, oxygen, carbon monoxide, carbon 
dioxide, air, methane, propane, and n-pentane-are listed 
in Table IV along with their standard errors of estimate, 
number of data points, and the temperature range of data 
points used in the determination for each gas. For compari- 
son, Table V lists these results obtained from the L-J 
(6, 12) potential for the same temperature range and the 
same number of data points. A representative calculation 
of the viscosity us. temperature using L-J  (6, 12) and an 
improved L-J  potential is presented in Table VI for 
n-pentane with the experimental data points. 
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NOMENCLATURE 

A =  
A* = 
B* = 
b‘ = 
c* = 

E(r) = 

E”(r*) = 
E* = 

F* = 

f, = 
f h  = 
frJ = 

g*’ = 

H =  
k =  
I =  
M =  
n =  

quantity defined in Equation 15 
ratio of collision integrals defined in Equation 5 
ratio of collision integrals defined in Equation 6 
reduced impact parameter 
ratio of collision integrals defined in Equation 7 
intermolecular potential energy of interaction 
ratio of collision integrals defined in Equation 8 
reduced intermolecular potential 
ratio of collision integrals defined in Equation 9 
correction factor for viscosity of a gas 
correction factor for thermal conductivity of a gas 
correction factor for self-diffusion of a gas 
reduced relative kinetic energy of molecule 
function defined in Equation 14 
Boltzmann constant 
constant 
molecular weight 
repulsive potential index 
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rzo = 
rb = 
r: = 

s =  
T" = 
w, = 
wa = 

Greek letters 

collision cross sections of colliding molecules 
reduced collision cross sections of colliding molecules 
contributed from orbiting regions 
intermolecular distance 
reduced intermolecular distance 
distance of closest approach at  a given kinetic energy 

and impact parameter 
reduced distance of closest approach at  a given 

reduced kinetic energy and reduced impact param- 
eter 

reduced distance of closest approach when b" = 0 
reduced distance of closest approach when b' = g"2 
distance of closest approach when dE*,dr* = 0 at  

constant 
reduced temperature 
quantity defined in Equation 18 
quantity defined in Equation 19 

b" = gC2 

6 = maximum attraction of potential energy 
7~ = viscosity 
u = collision diameter 
x = angle of deflection 

( T I )  = reduced collision integrals 
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