ranging from 4 to 24 (3). On the basis of the inherent sensitivity of the two calorimeters used and the good agreement with Wu *et al.*, the present results are believed more accurate.

The values of RTh_0 for the CsCl with LiCl and the KCl with LiCl mixings are large, and change by 20 to 30% in the concentration range 1 to 3m. The concentration dependence could be due to either ion atmosphere effects on like-charged pairs, or triplet interactions (1, 5, 9). The 20 to 30% change in RTh_0 indicates that these effects are only 20 to 30% as large as the like-charged pair interactions. This behavior is similar to the behavior of most alkali chloride mixtures (3, 4, 9).

The results of the CsCl with KCl mixings are more unusual. The value of RTh₀ is comparatively small; this means that the heat of interaction of a Cs⁺-K⁺ pair is almost the average of the heat of interaction of a Cs^+-Cs^+ pair and a K^+-K^+ pair, since this is the change in pair interactions that takes place in the mixing process (1). The other interesting thing about the CsCl with KCl mixing is that RTh₀ changes sign as the concentration increases. This is the first example of this for a symmetrical mixture. Evidently, the like-charged pair interactions are small enough that, at high concentrations, triplet interactions are large enough to change the sign of RTh₀. Because of this change in sign, this mixture at I = 3 violates the sign-predicting rule of Young and coworkers (6, 10, 11). This is not too surprising, since the rule really predicts like-charged pair interactions (7), and it is the triplet interactions that produce a negative RTh_0 in this mixing at I = 3.

ACKNOWLEDGMENT

This study was aided by a grant from the Office of Saline Water, U. S. Department of Interior, Washington, D. C. The authors would also like to thank Gerald C. Kratz for help in constructing the calorimeter.

LITERATURE CITED

- (1) Friedman, H. L., "Ionic Solution Theory," p. 233, Interscience, New York, 1962.
- (2) Rooney, R. A., M.S. thesis, University of Delaware, Newark, Del., 1968.
- (3) Stakhanova, M. S., Bazlova, I. V., Karapet'yants, M. Kh., Vlasenko, K. K., Zh. Fiz. Khim. 40, 1864 (1966).
 [Russ. J. Phys. Chem. 40, 1000 (1966)].
- (4) Stern, J. H., Anderson, C. W., J. Phys. Chem. 68, 2528 (1964).
- (5) Wen, W. Y., Nara, K., Wood, R. H., Ibid., 72, 3048 (1968).
- (6) Wood, R. H., Anderson, H. L., Ibid., 71, 1869 (1967).
- (7) Wood, R. H., Patton, J. D., Ghamkhar, M., Ibid., 73, 346 (1969).
- (8) Wood, R. H., Rooney, R. A., Braddock, J. N., Ibid., 73, 1673 (1969).
- (9) Wood, R. H., Smith, R. W., Ibid., 69, 2974 (1965).
- (10) Wu, Y. C., Smith, M. B., Young, T. F., Ibid., 69, 1868 (1965).
- (11) Young, T. F., Wu, Y. C., Krawetz, A. A. Discussions Faraday Soc. 24, 37 (1957).

RECEIVED for review February 27, 1969. Accepted November 6, 1969.

Ternary Systems: Water-Alkali Metal Hexafluorosilicates

JOHN A. SKARULIS and JOAN B. SEIBERT

Chemistry Department, St. John's University, Jamaica, N. Y. 11432

The existence of Na₃Li(SiF₆)₂, NaLiSiF₆, KLiSiF₆, RbLiSiF₆, and CsLiSiF₆ was discovered from solubility measurements on the systems $M_2SiF_6-Li_2SiF_6-H_2O$ at 25° C. (M = Na, K, Rb, Cs). X-ray data indicate that these salts are orthorhombic, a = 8.680, b = 6.500, c = 7.026; orthorhombic, a = 9.600, b = 9.143, c = 9.300; orthorhombic, a = 9.823, b = 5.805, c = 7.560; orthorhombic, a = 11.230, b = 9.693, c = 8.783; and hexagonal, a = 11.334, c = 9.271 A., respectively. The space groups of KLiSiF₆, RbLiSiF₆, and CsLiSiF₆ are Pcam or Pca2₁, Pbcn, and P6₃22, respectively. Solid solutions occur in the systems $M_2SiF_6-Rb_2SiF_6-H_2O$ (M = K, Cs). The remaining systems are simple. The isothermally invariant saturated solutions in the systems $M_2SiF_6-Na_2SiF_6-H_2O$ (M = K, Rb, Cs) are: K₂SiF₆, 0.096 ± 0.002, Na₂SiF₆, 0.759 ± 0.019; Rb₂SiF₆, 0.138 ± 0.001, Na₂SiF₆, 0.789 ± 0.014; Cs₂SiF₆, 0.83 ± 0.01, Na₂SiF₆, 0.793 ± 0.011%, respectively.

AQUEOUS TERNARY SYSTEMS of alkali metal hexafluorosilicates were investigated by solubility and x-ray methods in a search for double salts with no hydrogen bonding. The suggestion has been made that such double salts are actually complex salts, structures of two ions only (2). This idea is supported by the discovery of Na₃Li(SiF₆)₂, NaLiSiF₆, KLiSiF₆, RbLiSiF₆, and CsLiSiF₆ reported here, particularly in view of the known tendency of the lithium ion to form complexes and the absence of double salts in the alkali metal hexafluorosilicate systems where the ion was not present.

EXPERIMENTAL

Solubility. The hexafluorosilicate salts were prepared as described earlier (2). Analyzed lithium hexafluorosilicate solutions were used instead of the solid in the preparation of half of the mixtures in each of the systems M_2SiF_6 — Li_2SiF_6 — H_2O (M = Na, K, Rb, Cs). Mixtures of known composition were equilibrated at 25° C. for 30 to 60 days. The saturated solutions were analyzed finally either for total solids and one metal, except cesium, or directly for two metals.

In the first procedure, which was applied to the sys-

	Complex		Solution		Solid Phase	Solid
	%A	%B	%A	%B	Calcd., %A ^a	Phase
			M =	Na		
	$11.82 \\ 9.85 \\ 8.98 \\ 9.15 \\ 8.88 \\ 8.24 \\ 8.92 \\ 7.93 \\ 7.84 \\ 9.23 \\ 9.05 \\ 9.74 \\ 8.85 \\ 9.20 \\ 7.96 \\ 10.16 \\ 7.75 \\ 7.02 \\ 8.98 \\ 7.47 \\ 10.71 \\ 2.61 \\ 1.29$	$\begin{array}{c} 7.86\\ 8.46\\ 11.84\\ 13.25\\ 13.52\\ 14.57\\ 15.83\\ 17.12\\ 18.25\\ 19.21\\ 20.07\\ 22.62\\ 23.23\\ 24.26\\ 24.16\\ 25.96\\ 27.30\\ 29.03\\ 31.27\\ 32.34\\ 46.86\\ 37.82\\ 39.30\\ \end{array}$	$\begin{array}{c} 0.63\\ 0.60\\ 0.61\\ 0.56\\ 0.56\\ 0.56\\ 0.54\\ 0.52\\ 0.48\\ 0.45\\ 0.44\\ 0.44\\ 0.44\\ 0.40\\ 0.34\\ 0.34\\ 0.28\\ 0.28\\ 0.24\\ 0.17\\ 0.15\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\end{array}$	$\begin{array}{c} 8.48\\ 8.98\\ 12.43\\ 12.64\\ 12.64\\ 13.75\\ 15.17\\ 16.64\\ 17.87\\ 18.67\\ 19.87\\ 20.19\\ 20.10\\ 20.63\\ 21.02\\ 21.96\\ 24.68\\ 26.71\\ 28.55\\ 29.76\\ 29.82\\ 29.55\\ 29.64\end{array}$	$\begin{array}{c} 96.9\\ 96.4\\ 94.2\\ 81.6\\ 79.1\\ 78.0\\ 78.7\\ 78.3\\ 78.1\\ 76.6\\ 78.3\\ 68.4\\ 58.4\\ 56.4\\ 56.4\\ 56.0\\ 55.6\\ 55.9\\ 53.6\\ 54.5\\ 52.0\\ 27.0\\ 16.35\\ 7.65\\ \end{array}$	ss^{b} ss ss ss $ss + 3A \cdot B$ $3A \cdot B$ $A \cdot B$
			Μ	[= K		
	9.81 8.86 8.03 7.50 7.68 7.79 9.09 9.83 6.76 1.47	$\begin{array}{r} 4.49\\ 11.86\\ 14.95\\ 17.13\\ 19.54\\ 20.35\\ 26.91\\ 29.66\\ 32.59\\ 36.52 \end{array}$	$\begin{array}{c} 0.11\\ 0.17\\ 0.19\\ 0.19\\ 0.17\\ 0.17\\ 0.17\\ 0.11\\ 0.09\\ 0.08\\ 0.07\\ \end{array}$	$\begin{array}{c} 5.01\\ 13.04\\ 15.65\\ 15.68\\ 16.44\\ 17.29\\ 24.44\\ 27.24\\ 29.76\\ 29.65\end{array}$	$100.4 \\ 100.6 \\ 92.6 \\ 70.4 \\ 59.2 \\ 59.1 \\ 59.3 \\ 58.3 \\ 49.4 \\ 11.96$	A A $A + A \cdot B$ $A + A \cdot B$ $A \cdot B + B$ $A \cdot B + B$
			М	= Rb		
	9.51 7.93 9.42 8.67 8.73 7.75 8.56 7.99 8.39 7.66 1.85	5.14 8.28 10.32 11.89 13.20 17.06 20.18 25.42 27.12 31.21 36.44	$\begin{array}{c} 0.17\\ 0.26\\ 0.29\\ 0.24\\ 0.29\\ 0.22\\ 0.15\\ 0.10\\ 0.09\\ 0.08\\ 0.09\end{array}$	$5.68 \\ 9.02 \\ 11.30 \\ 11.33 \\ 11.29 \\ 15.01 \\ 18.38 \\ 24.40 \\ 26.41 \\ 29.76 \\ 29.58 \\$	$100.1 \\ 100.7 \\ 99.3 \\ 83.2 \\ 72.4 \\ 66.9 \\ 67.3 \\ 67.0 \\ 67.9 \\ 59.0 \\ 14.44$	A A $A + A \cdot B$ $A + A \cdot B$ $A \cdot B + B$ $A \cdot B + B$
			М	= Cs		
	$10.06 \\ 8.91 \\ 9.96 \\ 9.34 \\ 10.14 \\ 13.11 \\ 9.63 \\ 8.24 \\ 9.64 \\ 10.41 \\ 7.47 \\ 3.45 \\ 1.47 \\ 1.4$	$\begin{array}{c} 4.69\\ 11.84\\ 12.14\\ 17.99\\ 19.84\\ 20.01\\ 21.44\\ 24.09\\ 26.75\\ 27.76\\ 32.07\\ 31.58\\ 37.79\end{array}$	$1.18 \\ 1.80 \\ 1.90 \\ 2.52 \\ 2.67 \\ 2.63 \\ 2.72 \\ 2.16 \\ 1.82 \\ 1.75 \\ 1.54 \\ 1.64 \\ 1.47 \\ 1.47 \\ 1.47 \\ 1.47 \\ 1.47 \\ 1.80 \\ 1.80 \\ 1.47 \\ 1.80 \\ 1.47 \\ 1.80 \\ 1.80 \\ 1.47 \\ 1.80 \\ 1.47 \\ 1.80 \\ $	$5.09 \\12.83 \\13.11 \\19.33 \\20.96 \\20.94 \\20.84 \\23.91 \\26.79 \\27.75 \\29.57 \\29.57 \\29.45 \\29.66 \\$	$\begin{array}{c} 99.3\\ 101.0\\ 98.5\\ 99.8\\ 92.5\\ 86.5\\ 73.1\\ 74.0\\ 73.6\\ 72.2\\ 50.0\\ 33.3\\ 1.47\end{array}$	$\begin{array}{c} A\\ A\\ A\\ A\\ A + A \cdot B\\ A + A \cdot B\\ A \cdot B + B\\ A \cdot B + B\\ B\\ A \cdot B + B\\ B\end{array}$
ª Tie lines ext	rapolated to	%A at 0%W.	^b Solid solution.	^e Assignment ba	sed on x-ray data.	

Table I. Systems $M_2SiF_6(A)-Li_2SiF_6(B)-H_2O(W)$ at 25° C.

-

Figure 1. System Na₂SiF₆-Li₂SiF₆-H₂O at 25° C.

Figure 2. System $K_2SiF_6-Li_2SiF_6-H_2O$ at 25° C.

tems M_2SiF_6 — Li_2SiF_6 — H_2O (M = Na, K, Rb, Cs) and Na_2SiF_6 — Cs_2SiF_6 — H_2O , the solutions were evaporated to dryness in platinum, and the residue was dried at 110° to 120° C. and weighed as mixed hexafluorosilicates. Sodium, potassium, or rubidium in these residues was determined by flame photometry with an EEL (Evans Electroselenium, Ltd., England) instrument; lithium was determined, only in the residues containing both lithium and cesium, by decomposition of lithium hexafluorosilicate to lithium fluoride at 400° C. In the second procedure, which was applied to the systems $M_2 SiF_6$ - $Na_2SiF_6-H_2O$ (M = K, Rb), the evaporation step was omitted and both alkali metals were determined by flame photometry. However, potassium, rubidium, and cesium could not be determined in the presence of each other by these procedures. Attempts were made to use inorganic ion exchangers in conjunction with flame photometry in these instances. The results obtained were not sufficiently accurate to warrant presenting the solubility data pertaining to the three system involving pairs of hexafluorosilicates of these metals. All equi-

Figure 3. System Rb₂SiF₆-Li₂SiF₆-H₂O at 25°C.

Figure 4. System $Cs_2SiF_6-Li_2SiF_6-H_2O$ at 25° C.

librium solid phases were filtered with the aid of suction or centrifugation, rinsed with small portions of 95%ethanol, air-dried, and stored over calcium chloride prior to x-ray and density measurements or chemical analyses.

Detailed solubility information pertaining to the double salts is summarized in Table I and plotted in Figures 1 to 4. The mathematical extrapolations of the tie lines (1) of the mixtures in which $Na_3Li(SiF_6)_2$, $NaLiSiF_6$, KLiSiF₆, RbLiSiF₆, and CsLiSiF₆ appear as pure solid

Table II. Invariant Solutions in Systems M2SiF6—Na2SiF6—H2O at 25° C.					
(M = K, Rb, Cs)					
$egin{array}{c} \mathbf{M} \ \mathbf{K} \ \mathbf{Rb} \ \mathbf{Cs} \end{array}$	$\begin{array}{l} {\rm Wt.} ~\% ~{\rm M}_{2}{\rm SiF}_{6} \\ {\rm 0.096} ~\pm ~0.002 \\ {\rm 0.138} ~\pm ~0.001 \\ {\rm 0.83} ~\pm ~0.01 \end{array}$	Wt. % Na ₂ SiF ₆ 0.759 \pm 0.019 0.789 \pm 0.014 0.793 \pm 0.011			

Table III. X-Ray Data for $Na_3Li(SiF_6)_2$, $NaLiSiF_6$, $KLiSiF_6$, RbLiSiF₆, and $CsLiSiF_6$ (CuKd = 1.5405 A.)

Na ₃ Li(SiF ₆) ₂			${ m RbLiSiF}_{{ m 6}}$		
$d_{\rm obsd}$,A.	I/I_0	hkl	$d_{ m obsd}, { m A}.$	I/I_0	hkl
4.82	8	011	5.68	2	200
4.34	100	200	4.90	5	210
3.030	40	002 020 102	4.87	11	020
2.740	16	202	4.40	< 1	002
2.503	2	212	4.28	80	211
2.239	41	302	4.25	76	021
2.215	9	013	3.974	16	121
1.986	5	131	3.690	3	220
1.890	2	023	3.470	22	202
1.850	22	032	3.258	100	022
1.635	4	040	2.833	20	103
1.555	9	141	2.812	28	222
			2.808	16	400
	Mat (C)E		2.720	< 1	113
	NaLISIF 6		2.424	< 1	040
d A	I/I.	hkl	2.366	23	402
Cobsd, 11.	1/10	10100	2.310	8	303
4.68	4	002	2.228	45	240
4.29	100	201	2.123	20	042
4.22	93	102, 210	1.998	< 1	024
3.403	83	202	1.884	4	224
2.688	13	022, 300 222	1.881	6	333
2.456	10	123	1.833	< 1	440
2.421	7	132	1.799	2	611
2.325	3	004	1.734	9	404
2.197	91	114	1.694	5	442
1.953	5	233	1.629	6	044
1.937	10	422	1.614	64	060
1.816	0 90	015			
1.600	4	334			
1.581	$\hat{2}$	035		CsLiSiF ₆	
1.532	11	016, 106			<u></u>
1.424	9	145	d A	I/I.	h k l
1.346	4	163	Cobsd, H.	1/10	110
			5.78	12	110
	KL1S1F'6		4.90	41	020
	T / T	hhl	4.90	44	111
$u_{\rm obsd}, A$.	<i>I</i> / <i>I</i> ₀	πκι	4.04	10	002
4.91	4	200	4.00	47	021
4.17	100	111	4,00	11	120
4.12	22	201	9 601	55 18	120
3.782	32	002	3,001	88	112
3.701	4 19	210	2 224	100	022
3.015	89	112	2 976	10	103
2.996	27	202	2.010	25	199
2.901	37	020	2.301	36	220
2.855	32	310	2.885	17	040
2.661	4	212	2.111	24	222
2.612	3	121	2.396	36	123
2.499	2	220	2.366	19	401
2.305	11	022	2.333	29	132
2.277	66	312	2.316	19	004
2.263	28	410	2.249	19	230
2.241	21	122	2.225	31	033
2.167	6	411	2.169	23	042
2.061 1.041	2	402	2.152	14	114
1.892	4 6	412 004	2.096	26	024
1.842	3	131	2.026	36	232
1.801	3	014	1.947	3	142
1.722	2	032	1.720	24	242

Table IV. Summary of Crystallographic Data

	Unit Cell	Z	Dimensions, A.	Density, D_{x^a}	${ m G./Cc.,}\ D_{m^b}$
$\begin{array}{l} Na_{3}Li(SiF_{6})_{2}\\ NaLiSiF_{6}\\ KLiSiF_{6}\\ RbLiSiF_{6}\\ CsLiSiF_{6}\end{array}$	Orthorhombic Orthorhombic Orthorhombic Orthorhombic Hexagonal	$2 \\ 8 \\ 4 \\ 8 \\ 8 \\ mD_x =$	$\begin{array}{rcl} a &=& 8.680, \ b &=& 6.500, \ c &=& 7.026\\ a &=& 9.600, \ b &=& 9.143, \ c &=& 9.300\\ a &=& 9.823, \ b &=& 5.805, \ c &=& 7.560\\ a &=& 11.230, \ b &=& 9.693, \ c &=& 8.783\\ a &=& 11.334, \ c &=& 9.271\\ \textbf{x-ray}_{x} \ {}^{b}D_{m} &=& \text{measured}. \end{array}$	2,99 2,80 2,90 3,26 3,63	$2.78 \\ 2.83 \\ 2.88 \\ 3.21 \\ 3.54$

phases agree well with the calculated compositions of the double salts-78.3, 54.7, 58.6, 66.8, and 72.3% M_2SiF_6 , respectively. Selected samples of these phases were analyzed for lithium hexafluorosilicate by ignition to lithium fluoride at 400° C. In most cases, the lithium values agreed with the theoretical ones within 0.5%. A discrepancy of the order of 3% in the case of $Na_3Li(SiF_6)_2$ and $NaLiSiF_6$ finally was traced, with the aid of heating tests, to the slight decomposition of Na₂SiF₆ during the ignition. Similar results were obtained with twinned crystals of these salts prepared as described below. The five salts are incongruently soluble. There is evidence from the solubility data that solid solutions are formed between Na_2SiF_6 and $Na_3Li(SiF_6)_2$. That these solid solutions exhibit a gap in miscibility is based on x-ray evidence not presented here. The conclusion that $Na_3Li(SiF_6)_2$ and $NaLiSiF_6$ also form solid solutions is based solely on x-ray data. The solubilities in the remaining systems were too low to be useful in the determination of the nature of saturating solid phases. The only significant data obtained, pertaining to the invariant solutions in the systems $M_2 SiF_6$ ---- $Na_2SiF_6-H_2O$ (M = K, Rb, Cs), are given in Table II.

X-Ray Data. The data in Table III were obtained with a General Electric XRD-5 diffractometer using Nifiltered $CuK\alpha$ radiation. The spacings listed for $Na_3Li(SiF_6)_2$ are based on reflections common to all of the phases marked 3A B in Table I, with certain weak reflections attributed to the presence of component salts omitted. The same is true of the spacings for $NaLiSiF_{6}$. These phases were extremely fine and difficult to free from adhering mother liquor. The intensities given are for the phases in equilibrium with the solution containing 17.87 and 21.96% Li₂SiF₆, respectively. Lattice parameters are only tentatively assigned in the case of $Na_3Li(SiF_6)_2$ and $NaLiSiF_6$ at this time. However, the data for KLiSiF₆, RbLiSiF₆, and CsLiSiF₆ were indexed with the aid of precession and Weissenberg photographs of single crystals, and films obtained with a Norelco 114.6-mm. powder camera on powdered single crystals. Also, the space groups were determined in these cases.

The diffraction symmetry of the zero- and firstlevel photographs of KLiSiF_6 and RbLiSiF_6 was 2mm. Systematic absences in Okl reflections, when $l \neq 2n$, and in hOl, when $h \neq 2n$, indicated space group Pcamor $Pca2_1$ for KLiSiF_6 . Absences in Okl, when $k \neq 2n$, hOl, when $l \neq 2n$, and hkO, when $h + k \neq 2n$, fixed the space group of RbLiSiF_6 as Pbcn. Precession about the c axis of CsLiSiF_6 yielded zero- and first-level photographs which exhibited 6mm. symmetry. The only absences noted were in OOOl reflections, when $l \neq 2n$, in precession about the a axis. This indicated space group $P6_322$. In the case of the cesium salt, the precession photographs were obtained using Zr-filtered $\text{Mo}K\alpha$ radiation. The crystals of MLiSiF_6 (M = Na, K, Rb, Cs) were obtained by dissolving 60 to 70 mg. of M_2SiF_6 in approximately 15 grams of hot 25% Li₂SiF₆ solution, which had been just saturated with M_2SiF_6 at 25°, and then cooling to 25° at a rate of 1° to 2° per hour. To obtain Na₃Li(SiF₆)₂, 17% LiSiF₆ solution was used. All the crystals were optically anisotropic. Those of the sodium salts were twinned and unsuitable for single-crystal work. The intensities given for KLiSiF₆, RbLiSiF₆, and CsLiSiF₆ in Table III were obtained with composite samples of equilibrium solid phases. Table IV summarizes the crystallographic data of the double salts. The densities of equilibrium phases appearing in the table were measured pycnometrically, benzene being the displaced liquid, with an estimated accuracy of 1 to 2%.

Within the limitations of diffractometer measurements, the solid phases in the systems M_2SiF_6 — M_2SiF_6 — M_2SiF_6 — M_2O (M = K, Rb, Cs) and K_2SiF_6 — Cs_2SiF_6 — H_2O were mixtures of the pure components. These conclusions, as well as those which follow, were supported by powder camera films of crystals of similar habit and of composites of crystals which were obtained by the slow isothermal evaporation of various solutions in the systems. The diffractometer records of solid phases in the system K_2SiF_6 —RbSiF₆— H_2O indexed completely on the basis of a single cubic phase. Several reflections are given in Table V to show the change in lattice dimensions. They indicate a slight negative deviation from Vegard's law (3).

Finally, all of the equilibrium solid phases in the system Rb_2SiF_6 — Cs_2SiF_6 — H_2O were cubic: One phase, which contained 91 mole % Rb_2SiF_6 could not be distinguished from pure Rb_2SiF_6 ; a second, which was 18 mole % $RbSiF_6$, gave a diffraction pattern similar to 100% Cs_2SiF_6 , a = 8.919 A., but with a measurably different lattice dimension, a = 8.811 A.; a third phase, which was 56 mole % Rb_2SiF_6 , yielded a diffraction pattern that appeared to be a composite of the first two. The measured dimension of the Cs_2SiF_6 -rich phase in

Table V. X-Ray Data of Continuous Solid Solutions (Cubic) in System K₂SiF₆-Rb₂SiF₆-H₂O at 25° C.

Mole Fraction Rb ₂ SiF6	d_{220}	d ₂₂₂	d400
0.000	2.877	2.351	2.034
0.250	2.877	2.360	2.045
0.333	2.901	2.366	2.047
0.397	2.910	2.381	2.061
0.500	2.933	2.399	2.079
0.585	2.940	2.401	2.076
0.750	2.964	2.418	2.095
1.000	2.996	2.440	2.113

this third case was a = 8.798 A. It was concluded from these data that a miscibility gap exists in the system.

ACKNOWLEDGMENT

The principal author thanks Ben Post for the opportunity of doing the single-crystal work at Polytechnic Institute of Brooklyn while on sabbatical leave.

LITERATURE CITED

- (1) Hill, A. E., Ricci, J. E., J. Am. Chem. Soc. 53, 4305 (1931).
- (2) Skarulis, J. A., Kissinger, P., J. Phys. Chem. 70, 186 (1966).
- (3) Vegard, L., Z. Physik. 5, 17 (1921).

RECEIVED for review March 5, 1969. Accepted August 15, 1969.

Enthalpy of Formation of Germanium Tetrafluoride

G. P. ADAMS, T. V. CHARLU, and J. L. MARGRAVE Department of Chemistry, Rice University, Houston, Tex. 77001

The energy of formation of germanium tetrafluoride was measured by direct combination of the elements in a bomb calorimeter. From these measurements the standard enthalpy of formation $\Delta H_f^{\circ}(\text{GeF}_4, \text{g}) = -284.42 \pm 0.38 \text{ kcal. mole}^{-1}$ was obtained.

THERMODYNAMIC STABILITIES of Group IV tetrafluorides can be measured by many techniques, but direct fluorinations should be the most reliable and lead to the fewest ambiguities. In an extended series of measurements, the authors studied the reaction of elemental germanium with fluorine, and repeated some earlier unpublished measurements which were cited by O'Hare *et al.* (14) as being approximately 10 kcal. mole⁻¹ less negative than their value. This discrepancy has now been resolved, and the value obtained supports the other recently published results (4, 14).

EXPERIMENTAL

Materials. Germanium, in ingot form, was purchased from Alfa Inorganics, Inc.; it had a specified purity of 99.995%. Spectrographic analysis failed to reveal any impurity. However, a sample which had been ground for combustion had an oxygen impurity of 225 ± 18 p.p.m. (fast neutron activation analysis). Fluorine, 99.8% pure, was supplied by the Allied Chemical Corp. Impurities of hydrogen fluoride were removed by passing the fluorine through a trap packed with sodium fluoride. Tungsten foil and wire, both 99.99% pure, were obtained from A. D. Mackay and Co. A listing of the nature and level of impurities in the tungsten was provided by the supplier. Calculations showed that the impurity level had no effect on the energy of fluorination of tungsten. The Teflon powder used in these experiments was manufactured by Du Pont (TE 3086, Lot 20022), and its energy of fluorination had been determined by Wood et al. (16).

Calorimeter and Combustion Technique. The calorimeter used was identical to the Argonne National Laboratory Design CT-3986. Combustions were carried out in a Parr 1004 nickel bomb adapted so the two-chamber principle (9) could be employed in effecting combustion. An inner nickel chamber, filled with helium, contained the sample, which was isolated from the fluorine in the main chamber by a diaphragm of tungsten 0.001 inch thick. The ignition system utilized a condenser discharge unit, similar to that described by Lacina *et al.* (10), delivering a pulse of 1.8 cal. of electrical energy. This ignition pulse reached the tungsten diaphragm via a short length of tungsten wire, ignited the diaphragm, and consequently initiated the reaction. Temperatures were recorded using a Dymec Model 2801-A quartz thermometer. The corrected temperature rise associated with the bomb reaction was calculated using standard methods (1) and a suitable computer program.

The energy equivalent of the calorimeter, ϵ (calor.) was measured by combustion of standard benzoic acid (NBS sample 39i with certified energy of combustion 26434 ± 3 abs. joules gram⁻¹). A series of six calibration experiments gave ϵ (calor.) = 3706.02 cal. deg.⁻¹ with a standard deviation of the mean of 0.5 cal. deg.⁻¹ (1 cal. = 4.184 abs. joules).

In a series of preliminary experiments, powdered germanium from Alfa Inorganics was burned, but answers consistently lower than previously published data were obtained. However, x-ray powder patterns of this material showed not only germanium lines, but also strong germanium oxide lines. The energy of fluorination per gram of this material would thus be expected to be less than that of pure germanium. The ground germanium ingot used in the final combustion experiments gave x-ray powder patterns which showed no indication of germanium oxide impurity.

After several exploratory experiments, essentially complete combustion was achieved when an intimate mixture of ground germanium ingot and Teflon was ignited in a prefluorinated nickel cup using 5.4 atm. of fluorine. Infrared spectra of the gaseous products, after removal of excess fluorine, showed the presence of GeF₄, CF₄, and WF₆ (11). No other gaseous products were identified. The small amount of solid residue remaining after combustion was weighed accurately. Analysis of the residue, from a typical experiment, by Schwarzkopf