on θ. However, in these experiments, approximately constant boil-up rates were maintained. To be completely quantitative, the contact angle should be determined at a specific vapor velocity.

DISCUSSION

An interesting phenomenon was observed while measuring the contact angles under conditions of mass transfer for the fluids under test. For all the positive systems studied, the sessile drop remained immobile, with no indication of interfacial turbulence occurring at any stage in the experimental procedure. However, for the negative systems, a considerable amount of agitation was evident in the droplet, which resulted at some concentrations in the production of droplets ejected from the main sessile body. This phenomenon explains why distillation efficiencies are often high for negative systems, although the contact angle would suggest a poor wetting performance and hence low transfer area. The behavior has an analogy in liquid-liquid extraction, where systems with negative interfacial tensions produce satellite droplets.

ACKNOWLEDGMENT

We acknowledge the provision of facilities by T. K. Ross and a maintenance grant to one of us (A.P.B.) from the Cabot Carbon Co., Ellesmere Port.

NOMENCLATURE

$\rho=$ density of sessile drop
$g=$ acceleration due to gravity
$h=$ equilibrium drop height
$\gamma=$ surface tension
$\theta=$ contact angle
Subscripts
$L=$ liquid
$V=$ vapor

LITERATURE CITED

(1) Padday, J.F., "New Method for Measuring the Spreading Coefficient of a Liquid on a Solid Surface," Proc. 2nd. Intern. Congr. Surf. Act., Vol. 3, p. 136, Butterworths, London, 1957.
(2) Ponter, A.B., Davies, G.A., Ross, T.K., Beaton, W.I., Intern. J. Heat Mass Transfer 10, 733 (1967).
(3) Ibid, p. 1633
(4) Ponter, A.B., Davies, G.A., Ross, T.K., Thornley, P.G., Ibid., 10, 349 (1967).
(5) Zuiderweg, F.J., Harmans, A., Chem. Eng. Sci. 9, 89 (1958).

Low-Temperature Volumetric Properties of Methane

ALAN J. VENNIX, ${ }^{1}$ THOMAS W. LELAND, JR., and RIKI KOBAYASHI
William Marsh Rice University, Houston, Tex. 77001

Abstract

Pressure and temperature measurements were performed on 16 constant-mass methane samples ranging in density from 0.04 to 0.36 gram per cc. for temperatures between 150° and $273^{\circ} \mathrm{K}$. at pressures to 680 atm . Saturation temperatures, pressures, and densities were also measured. Analysis of the data in the critical region suggested critical constants of $190.77^{\circ} \mathrm{K}$., 45.66 atm ., and $\mathbf{0 . 1 6 2 5}$ gram per cc. An empirical equation of state was developed for the isochoric data which reproduces the measured pressures with an average error of 0.02% and a maximum error of 0.08%. Certain qualitative features of the isochoric equation representing the volumetric behavior of methane are discussed.

THE pressure-volume-temperature relations for methane were determined as part of a continuing program to investigate the basic properties of gases and liquids at low temperatures. Data have been recently reviewed and reported for hydrogen and methane in the gas phase (14, 15), helium and nitrogen in the gas phase (4,5), and low-density methane (8,9). Available data sources for the properties of pure methane are numerous, but they are in serious disagreement, especially in the temperature region below $0^{\circ} \mathrm{C}$. A recent compilation by Din (6) summarizes many of the discrepancies and deficiencies of the data.
Three significant investigations have been carried out on methane gas in the temperature range below $0^{\circ} \mathrm{C}$. The
${ }^{1}$ Present address, Shell Development Co., Houston, Tex.
earliest was by Kvalnes and Gaddy (12) in 1931 at temperatures to $-70^{\circ} \mathrm{C}$. and pressures to 1000 atm . Measurements by Mueller et al. $(14,15)$ extended the data to $-128.7^{\circ} \mathrm{C}$. and 510 atm . Both of these investigations claimed compressibility factors accurate to 0.1%; however, in some regions disagreements between the two sets of data are as large as 2 or 3%. Hoover et al. $(8,9)$ measured virial coefficients and gaseous compressibility factors between 131° and $273^{\circ} \mathrm{K}$. at pressures to 40 atm .

Investigations at temperatures above $0^{\circ} \mathrm{C}$. were conducted by Michels and Nederbragt (13), Schamp et al. (16), and Douslin et al. (7). The results of all these measurements above $0^{\circ} \mathrm{C}$. are in close agreement. The results reported here agree with those of Douslin et al. within 0.03% at $0^{\circ} \mathrm{C}$.

For liquid methane, van Itterbeek, Verbeke, and Staes (10) in 1963 published measurements on the behavior of 14 isotherms between 114° and $190^{\circ} \mathrm{K}$. at pressures to 300 atm.

The present investigation was designed to rectify the disagreement in the existing data below $0^{\circ} \mathrm{C}$. and to provide additional data extending into the liquid region.

EXPERIMENTAL

Equipment. The compressibility apparatus and procedure were described in detail in previous publications (17, 19). Briefly, the method was as follows: The methane sample was charged into a $150-\mathrm{cc}$. aluminum cylinder to a pressure of 680 atm . The cylinder, with attendant valves and lines, was weighed on a Seko analytical balance having a sensitivity of 0.1 mg . and an accuracy greater than 0.5 mg . for total masses up to 2 kg . The cylinder was then attached to a constant-volume chamber contained within a tem-perature-controlled bath. After charging the isochoric chamber to the desired pressure, liquid nitrogen was applied to a coil of tubing attached to the charging system. This system was then reweighed to determine the amount of methane in the measurement chamber. The isochoric vessel was a stainless steel sphere having a spherical cavity of approximately 75 cc. Connections were provided to a differential pressure cell, which was also immersed in the low-temperature bath. All the methane charged to the system could be contained in the temperature-controlled environment. About 95% of the sample was always contained in the spherical cavity, for which accurate pressure deformation calculations could be performed.
The system volume consisted of the spherical vessel, lines, valves, and the lower chamber of the differential pressure cell. This volume was measured by making a series of helium Burnett expansions (3) into a reference chamber of known volume. This reference volume was maintained at $0^{\circ} \mathrm{C}$. and the expansions were performed at various system temperatures in order to determine directly the system volume as a function of temperature. The maximum volume error was estimated to be on the order of 0.015 cc . in a total system volume of about 75 cc .

Pressure measurements were made with a set of calibrated dead-weight gages. Errors in the measured pressure are on the order of 0.01% at the highest pressures and increase to about 0.07% at the pressures as low as 1 atm . Bath temperature was controlled to $\pm 0.001^{\circ} \mathrm{C}$., and the system temperature was measured with a platinum resistance thermometer embedded in the wall of the sphere to an absolute accuracy believed to be within $\pm 0.01^{\circ} \mathrm{C}$. of the recorded temperature. In converting temperatures from ${ }^{\circ} \mathrm{C}$. to ${ }^{\circ} \mathrm{K}$., the more recent definition of the absolute temperature scale was used, $0^{\circ} \mathrm{C} .=273.15^{\circ} \mathrm{K}$. The corresponding gas constant to be used with this new definition is $R=82.059 \mathrm{cc} . \mathrm{atm} . /\left(\mathrm{g}\right.$. mole ${ }^{\circ} \mathrm{K}$.).

Details concerning the experimental apparatus are given by Vennix (17).
Sample Material. The methane used was obtained commercially from the Matheson Co. and had a reported minimum purity of 99.95%. Two independent mass spectrometer measurements showed the actual purity to be in excess of 99.99%. For converting between grams and moles, a molecular weight of 16.042 was used.

Compressibility Measurements. The detailed procedure for obtaining the data has been reported elsewhere (17, 19). Briefly, it consists of charging methane to the system and determining the differential mass. The temperature and pressure of the sample are measured. The bath temperature is then changed and the pressure measured for the new temperature. A series of pressure-temperature determinations was made on a constant-mass sample, beginning at an upper limit of $0^{\circ} \mathrm{C}$. and continuing by lowering the
temperature until the temperature corresponding to the vapor pressure was attained. Pressure-temperature measurements were continued along the vapor pressure curve as a further check of the experimental data. Changes in the system volume were accounted for by utilizing the measured temperature-dependence of the entire system volume and the calculated pressure deformation of a spherical chamber of known dimensions. This allowed the sample density to be determined at any point in the pressure-temperature region studied. Due to the slight changes in volume during a series of constant-mass measurements, the density of the sample also varied slightly. In order to obtain results at either a constant temperature or a constant density, the original data were fitted to an empirical equation of state. This equation was used to calculate pressures and temperatures corresponding to the constant-density values reported here. The constant densities reported vary by only a few tenths of 1% from the experimentally observed densities, which show a small variation due to temperatureand pressure-induced distortion of the spherical chamber. The amount of smoothing carried out by the equation of state is thus very small and may be regarded as a correction for the distortion of the system volume. The equation of state is discussed below. The calculated pressures and temperatures for each density are presented in Table I. One additional figure more than the experimental accuracy is included in the computed pressure and temperature values to maintain internal consistency. The original experimental data before smoothing are published elsewhere (17). Vapor pressure measurements and saturated liquid densities are presented in Table II.

A comprehensive error analysis was made (17), based on the estimated accuracy of the measured variablesmass, volume, pressure, and temperature. From this it was concluded that the maximum probable error in the compressibility factor varied from 0.04% in the hightemperature and -pressure region to 0.08% in the lowtemperature and -pressure region. Large-scale plots of the residual quantity, $(Z-1) / \rho$, showed internal consistency within 0.02%. The compressibility factor is not included in the tables, as it can be calculated from the primary variables-temperature, pressure, and density.

COMPARISON WITH OTHER STUDIES

A detailed comparison was made between the data obtained in this study and other values reported. The interpolated pressures at $0^{\circ} \mathrm{C}$. agreed to within 0.02% with those given by Douslin et al. (7). Data reported by Mueller (14, 15) showed average pressure deviations of 0.1% at $255^{\circ} \mathrm{K}$. and 0.4% at $200^{\circ} \mathrm{K}$. Corresponding deviations in the values reported by Kvalnes and Gaddy (12) varied from an average of 0.4% at $273^{\circ} \mathrm{K}$. to 2.7% at $203^{\circ} \mathrm{K}$. A comparison with the liquid data of van Itterbeek et al. (10) showed differences as high as 4%. However, the liquid density data published by these authors have reportedly been remeasured, due to inconsistencies in the original data (20).

The vapor pressures in Table II are within 1% of the values calculated from the equation presented by Armstrong, Brickwedde, and Scott (1). Saturated liquid densities are compared in Figure 1 with the values measured by Bloomer and Parent (2) and by Keyes, Taylor, and Smith (11).

Measurements conducted in the critical region are depicted in Figure 2. Figure 3 gives a large-scale cross plot of interpolated pressure-temperature values at the overall isochoric densities. The critical point is determined by the isotherm which has an inflection point with a zero first derivative. The critical density cannot be determined by this method, since the critical isotherm is extremely flat in this region. The critical point evidenced by the

Table I. Experimental Results Adjusted
Accuracy of original experimental measurements is discussed in text.

Temp., ${ }^{\circ} \mathrm{K}$.	Press., Atm.	Temp., ${ }^{\circ} \mathrm{K}$.	Press., Atm.	$\begin{aligned} & \text { Temp., } \\ & \circ \mathrm{K} . \end{aligned}$	Press., Atm.	$\begin{gathered} \text { Temp., } \\ \circ \mathrm{K} . \end{gathered}$	Press., Atm.
$\rho=0.041 \mathrm{Gram} / \mathrm{Cc}$.		$\rho=0.116 \mathrm{Gram} / \mathrm{Cc}$.		$\rho=0.164$ Gram/Cc.		$\rho=0.189 \mathrm{Gram} / \mathrm{Cc}$.	
273.380	50.527	248.429	99.6046	233.362	109.482	272.698	199.744
263.393	48.033	242.691	94.5228	213.012	78.7240	272.695	199.746
252.821	45.379	237.314	89.3321	207.822	70.9075	272.694	199.748
239.777	42.087	230.025	82.5904	204.003	65.204	268.298	191.360
233.522	40.494	222.897	75.9463	200.541	60.039	268.298	191.366
223.802	38.000	217.105	70.5128	197.891	56.111	263.443	182.075
217.833	36.462	212.133	65.833	195.124	52.017	253.272	162.664
213.009	35.213	208.191	62.094	193.489	49.609	243.363	143.763
203.050	32.611	202.719	56.874	192.043	47.502	243.360	143.765
191.816	29.630	197.702	52.030	191.787	47.137	237.012	131.671
183.147	27.284	193.292	47.700	191.395	46.571	237.011	131.674
177.178	25.632	190.718	45.110	191.197	46.287	233.379	124.753
174.668	24.930	190.020	44.398	191.008	46.008	233.378	124.736
172.506	24.316			190.807	45.735	222.603	104.294
						212.003	84.3351
$\rho=0$.	m/Cc.	$\rho=0.158 \mathrm{Gram} / \mathrm{Cc}$.				212.002	84.3330
						203.400	68.3544
272.185	110.595					198.147	58.767
272.155	110.579	273.167	163.165	$\rho=0.179 \mathrm{Gram} / \mathrm{Cc}$.		195.806	54.555
262.183	102.704	255.152	137.447			192.465	48.653
251.363	94.1331	248.132	127.404	273.092	187.380		
243.755	88.0708	236.376	110.577	273.071	187.330		
243.715	88.0449	223.618	92.3183	263.118	169.980	$\rho=0.206 \mathrm{Gram} / \mathrm{Cc}$.	
234.417	80.5939	213.471	77.8210	253.141	152.600		
223.205	71.5533	206.337	67.651	243.119	135.156	274.151	228.227
208.541	59.561	202.795	62.618	233.137	117.783	267.309	213.066
190.397	44.150	200.377	59.215	223.155	100.465	260.100	197.057
		197.527	55.151	213.180	83.2477	252.960	181.188
		195.209	51.883	213.172	83.2205	245.904	165.489
		192.905	48.641	213.165	73.5743	238.529	149.163
$p=0.116 \mathrm{Gram} / \mathrm{Cc}$.		191.518	46.699	207.531	65.925	228.077	126.043
				203.030	62.277	218.591	105.201
273.171	122.246			200.867	59.447	209.262	84.8889
268.299	117.806	$\rho=0.164 \mathrm{Gram} / \mathrm{Cc}$.		199.181	56.251	203.539	72.5944
263.044	113.005			197.265	52.643	196.471	57.699
258.633	108.966	273.058	169.592	195.076	49.592	192.346	49.283
253.433	104.199	273.016	169.528	193.215	47.381	191.421	47.442
250.180	101.215	252.875	139.042	191.840	47.356	190.671	45.968

Figure 2. Experimental measurements in the critical region

Critical points			Nominal Density
	P,		
$T,{ }^{\circ} \mathrm{K}$.	P.S.I.A.	Ref.	
* 191.06	677.1	(11)	$0.116 \mathrm{~g} . / \mathrm{cc} . \bigcirc$
$\triangle 190.55$	668.6	(2)	$0.158 \mathrm{~g} . / \mathrm{cc}$.
-190.77	671.0	(This work)	$0.164 \mathrm{~g} . / \mathrm{cc} . \mathrm{O}$
			$0.179 \mathrm{~g} . / \mathrm{cc} .4$
			$0.206 \mathrm{~g} . / \mathrm{cc}$.

to Constant Density for Methane
This number of significant figures is retained for consistency.

Temp., ${ }^{\circ} \mathrm{K} .$	Press., Atm.	Temp., ${ }^{\circ} \mathrm{K}$.	Press., Atm.	$\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{K} . \end{gathered}$	Press., Atm.	Temp., ${ }^{\circ} \mathrm{K}$.	Press., Atm.
$\rho=0$.	/ Cc.	$\rho=0.2$	m / Cc.	$\rho=0.2$	am/Cc.	$\rho=0.3$	m/Cc.
273.153	252.590	212.903	114.797	196.350	103.800	211.493	284.074
267.883	239.261	207.594	99.2556	184.411	54.274	204.147	241.068
267.816	239.090	203.020	85.9600	180.980	40.264	196.055	193.510
262.926	226.733	199.576	76.043	179.803	35.504	186.819	138.986
258.305	215.029	194.770	62.365	179.113	32.723	178.454	89.4515
253.099	201.858	191.420	53.020			172.545	54.549
248.751	190.863	188.895	46.102	$\rho=0.2$	/ Cc .	170.158	40.547
242.967	176.257	187.618	42.655			168.227	29.177
238.487	164.940	- $\quad=0$	ram/Cc.	$\begin{aligned} & 272.927 \\ & 263.277 \end{aligned}$	$\begin{aligned} & 493.559 \\ & 448.609 \end{aligned}$		/ Cc .
233.248	151.730	$\rho=$	am/Cc.	263.277	448.609 400.865	$\rho=0$	/ Cc.
227.820	138.049	272.981	363.591	253.114	400.865 376.860	252.980	659.443
222.763	125.347	267.880	345.060	243.037	353.310	247.365	662.874
213.291	101.724	261.819	322.956	237.586	327.446	235.756	546.410
207.164	86.5472	254.520	296.286	233.371	307.399	228.404	497.497
203.288 199.975	77.0752 69.0424	241.276	247.754	229.109	287.081	212.612	391.107
199.975	69.0424 62.074	232.788	216.544	223.713	261.340	204.135	333.169
195.031	62.074 57.255	222.864	180.109	218.727	237.436	197.280	285.866
195.014	57.221	213.636	146.323	212.392	207.013	189.751	233.635
192.859	52.187	207.737	124.749	208.181	186.807	181.641	177.166
191.043	48.024	201.010	100.400	203.122	162.477	176.864 172.744	143.532
190.706	47.256	198.385 194.385	90.8090 76.4900	198.632	140.877	172.744 159.295	114.502 19.333
190.415	46.600	189.227	76.4900 58.148	193.597 188.261	116.677 91.1138	$\rho=0.360 \mathrm{Gram} / \mathrm{Cc}$.	
190.140	45.978	185.237	44.228	$\begin{aligned} & 188.261 \\ & 182.805 \end{aligned}$	$\begin{aligned} & 91.1138 \\ & 65.081 \end{aligned}$		
189.735	45.075	183.322	37.679	182.805			
189.226	43.950	$\rho=0.282 \mathrm{Gram} / \mathrm{Cc}$.		$\begin{aligned} & 182.805 \\ & 178055 \end{aligned}$	65.107	234.397	690.929
188.937	43.310			178.055 175.605	31.186	226.258	$\begin{aligned} & 628.726 \\ & 567.062 \end{aligned}$
$\rho=0.240 \mathrm{Gram} / \mathrm{Cc}$.		$\begin{aligned} & 274.304 \\ & 266.747 \end{aligned}$	431.613	$\rho=0.321 \mathrm{Gram} / \mathrm{Cc}$.		211.223 512.082	
			400.210			204.332	457.850
275.155	299.467	258.637	366.383	274.490	641.967	196.765	397.610
268.822	280.664	250.722	333.435	267.730	604.184	188.496	331.035
260.829	256.956	240.977	292.481	259.335	557.760	180.089	262.789
253.056	233.896	233.055	259.076	253.816	526.693	168.735	169.142
245.069	210.114	224.994	224.997	244.157	471.969	155.457	57.547
236.577	184.864	217.013	191.271	235.277	421.492	153.619	42.675
228.611	161.199	208.789	156.453	227.078	374.385	151.807	27.336
221.330	139.638	200.503	121.369	219.032	327.945	150.300	14.564

Figure 3. Interpolated isotherms in the vicinity of the critical
data of this work corresponds to a temperature of $190.77^{\circ} \mathrm{K}$. and 45.66 atm . Estimates of the critical point made by Keyes et al. (11) and by Bloomer and Parent (2) are also shown in Figures 1 and 2. The convergence of this experimental data does not agree with either of these estimations. Both the Bloomer and Parent and Keyes determinations were made by a visual estimation of the point at which two-phase behavior was judged to disappear.

From the original data and the data of Douslin (7) above $0^{\circ} \mathrm{C}$., an equation of state has been developed for methane wherein a single expression for pressure as a function of density and temperature applies in both the gas and liquid region (18). This equation is as follows:

$$
\begin{align*}
& P=\rho^{2}\left[A_{1}+\right.\left.A_{2 \rho} \rho+A_{3} \rho^{2}+A_{4} \rho^{3}+A_{5} \rho^{4}\right]+ \\
& \rho T\left[R+B_{1} \rho+B_{2} \rho^{2}+B_{3} \rho^{2}+B_{4} \rho^{4}+B_{5} \rho^{5}\right]+ \\
& \rho^{2}\left(\rho+\rho_{0}\right)^{2}\left[\left(\rho+\rho_{0}\right)^{3}-\left(\alpha+\rho_{0}\right)^{3}\right]\left[\left(\left(\beta+\rho_{0}\right)^{3}-\right.\right. \\
&\left.\left(\rho+\rho_{0}\right)^{3}\right] e^{G-\left[E_{1}+E_{2}\left(\rho+\rho_{0}\right)^{3}\right]\left(T-T_{0}\right)}+ \\
& \rho^{2}\left[D_{1}+D_{2 \rho}+D_{3} \rho^{2}+D_{4} \rho^{3}+D_{5} \rho^{4}\right] e^{k-\left(F_{1}+F_{2 \rho}\right) / T} \tag{1}
\end{align*}
$$

Constants for this equation with units of p.s.i.a., ${ }^{\circ}$ K., and grams per cc. are given in Table III. The gas constant, R, for these units is 75.174 cc . p.s.i.a. per gram ${ }^{\circ} \mathrm{K}$. These constants reproduce the experimental pressure with an average absolute error of 0.04% and a root mean square error of 0.07%. The distribution of error for the 598 data points is given in Table IV. A total of only 10 points had errors in excess of 0.20%. Ninety-five per cent of the

Table II. Vapor Pressures and Experimental Saturated Liquid Densities			
Vapor Pressures		$\underline{\text { Saturated Liquid Densities }}$	
Temp., ${ }^{\circ} \mathrm{K}$.	Exptl. press., atm.	Density, gram/cc.	Temp., ${ }^{\text {® }} \mathrm{K}$.
133.730	4.4931	0.04107	171.35
136.409	5.2178	0.11607	189.43
138.726	5.9037	0.15787	190.7
144.417	7.8865	0.16389	190.7
148.821	9.7143	0.17900	190.63
154.309	12.3946	0.20644	189.85
158.213	14.6007	0.22067	188.82
161.861	16.9027	0.24025	186.74
165.876	19.7279	0.26515	182.58
166.017	19.7640	0.28186	178.70
170.407	23.2208	0.29681	174.75
174.332	26.7224	0.32098	166.75
176.443	28.7754	0.34067	158.82
177.953	30.2785	0.36001	149.77
180.688	33.0616	0.37901	138.96
182.179	34.7192		
184.703	37.7126		
186.524	39.9499		
188.113	42.0158		
188.593	42.6514		
188.801	42.9882		
188.919	43.0630		
189.063	43.2985		
189.413	43.7285		
189.383	43.7339		
189.612	44.0388		
189.674	44.1252		
190.011	44.5913		
190.177	44.8281		
190.455	45.2180		
190.653	45.4964		
190.658	45.5038		
Table III. Coefficient Values for the Methane Equation of State			
Coefficient		Pressure Equation	
A_{1}		68379.37	
A_{2}		00983.52	
A_{3}		7154.8	
A_{4}		44994.	
A_{5}		00314.	
B_{1}		369.46526	
$B_{2}$$B_{3}$		554.53908	
		-8614.1411	
$B_{3}$$B_{4}$		44316.430	
B_{5}		23179.188	
D_{1}		-741.18776	
D_{2}		-2806.7029	
D_{3}		30674.262	
D_{4}		45392.00	
D_{5}		82530.92	
E_{1}		0.04600200	
E_{2}		0.211770	
F_{1}		1378.7933	
F_{2}		-1344.1846	
G		34.348141	
T_{0}		-147.71055	
k		6.00000	
α		0.141199	
β		0.361788	
po		0.113318	
R		75.174	

Table IV. Distribution of Per Cent Error in Calculated Pressure for 598 Points

Number of Points

Error Range, \%
in Error Range
rrors were less than 0.1%, the estimated accuracy of the data, indicating that the equation was reproducing the data within the limits of error of the measurements.

The accuracy of the equation of state and regions of its applicability are described elsewhere (18). Except for a region near the critical point where the isotherms become flat, densities can also be predicted within 0.1%. This involves substituting a pressure and temperature into Equation 1 and iterating for the corresponding density. At points removed from the critical, the iteration converges rapidly to a value within 0.1% of the measured value.

The equation of state has been utilized in the present paper to obtain data adjusted slightly to obtain constant values of density. For the experimental results from each charge to the cell, an average density was selected. For each experimentally measured temperature, a small pressure adjustment was then made to give results at this constantdensity value. The adjustment was made using the following relationship:

$$
\begin{equation*}
\Delta P=\left[\left(\frac{\partial P}{\partial \rho}\right)_{T}\right] \Delta \rho \tag{2}
\end{equation*}
$$

where $\Delta \rho$ was the required density change and the partial derivative was evaluated from the over-all equation of state. Because the equation of state fits all of the experimental data with a precision of better than 0.1%, it is probable that these small pressure adjustments do not introduce errors larger than this value. The adjusted pressures are presented in Table I, which shows the results at constant density.

DEVIATIONS FROM ISOCHORIC LINEARITY

The precision of the data is such that it is possible to calculate the degree to which the isochoric behavior deviates from a linear or van der Waals behavior. Equation 1 was differentiated to find

$$
\left(\frac{\partial P}{\partial T}\right)_{\rho}
$$

and

$$
\left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{\rho}
$$

at each of the constant-density values nearest to an experimental measurement. The region of greatest linearity in each isochore was determined by finding the temperature, T_{0}, and pressure, P_{0}, at which the second derivative is zero. No zero value of the second derivative could be determined for the $\rho=0.116$ gram per cc. isochore or for any smaller density. The inflection point or extremum conditions for $\rho=0.158$ gram per cc. and for all higher densities are presented in Table V. A value of zero for the second derivative indicates conditions at which the

Table V. Calculated Linear Isochoric Conditions for Methane Temperature, Pressure, and Slope When $\left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{v}=0$

Density, Gram/Cc.	Temperature, ${ }^{\circ} \mathrm{K}$.	Pressure, atm.	$\begin{aligned} & (\mathrm{d} P / \mathrm{d} T) \\ & \operatorname{atm} . \\ & { }^{\circ} \mathrm{K} . \end{aligned}$
0.341	161.23	33.033	7.085
0.321	183.00	116.341	5.923
0.297	200.60	150.380	4.814
0.282	211.17	166.519	4.237
0.265	227.56	197.413	3.668
0.240	250.28	225.587	2.972
0.221	287.15	288.012	2.530
0.206	300.00	285.692	2.222
0.189	263.17	131.568	1.909
0.179	252.16	150.897	1.743
0.164	240.23	119.886	1.516
0.158	234.61	108.053	1.431

constant-volume heat capacity is independent of isothermal density variations, because

$$
\begin{equation*}
\left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{\rho}=-\frac{1}{\rho^{2} T}\left(\frac{\partial c_{v}}{\partial \rho}\right)_{T} \tag{3}
\end{equation*}
$$

At temperatures below T_{0} the second derivative is positive, indicating that c_{v} decreases with an isothermal density increase, and at temperatures above T_{0} the second derivative is negative, indicating that c_{c} increases with an isothermal density increase.

Using the slope

$$
\left(\frac{\partial P}{\partial T}\right)_{\rho}
$$

at the point where

$$
\left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{\rho}=0
$$

a linear relation, as would be predicted by the van der Waals equation of state, was calculated to give

$$
\begin{equation*}
\left[P_{\mathrm{vdW}}=\left(\frac{\partial P}{\partial T}\right)_{T_{0}, P_{0}}\left(T-T_{0}\right)+P_{0}\right]_{\rho} \tag{4}
\end{equation*}
$$

The calculated value of P_{vdW} is the result which would be predicted by van der Waals behavior at any temperature T along the isochore. The differences between the linear P_{vdW}. values and the actual experimental values are shown in Figure 4 for a few densities. At densities where an inflection occurs, the deviation from linearity is s-shaped, with experimental pressures greater than the van der Waals pressure at low temperatures near the saturation curve and less than the van der Waals values at high temperatures. Near the saturation curve, the magnitude of the excess of the experimental values over the van der Waals increases with increasing density up to $\rho=0.221$ gram per cc. At higher densities, this excess begins to decrease, until at $\rho=0.341$ gram per cc. the experimental value has become less than the linear van der Waals value. The deviations from linearity in the critical region at $\rho_{c}=0.1625 \mathrm{gram}$ per cc. are small but are definitely not zero. The critical isochore does not extrapolate linearly into the supercritical region, as assumed in some equations of state.

Figure 4. Deviations from linearity for selected methane isochores

ACKNOWLEDGMENT

The authors would like to thank the National Science Foundation for financial support of these experimental investigations, the Continental Oil Co. for a fellowship for Mr. Vennix, the Phillips Petroleum Co. for bath fluids, and Shell Oil Co. for analysis of the gas. The authors would like to express their appreciation to William E. Waters and Patsy S. Chappelear for their assistance with the computations.

LITERATURE CITED

(1) Armstrong, G.T., Brickwedde, F.G., Scott, R.B., Jr., J. Res. Natl. Bur. Std. 55, 39 (1955).
(2) Bloomer, O.T., Parent, J.D., Inst. Gas Tech. Bull. No. 17 (1952).
(3) Burnett, E.S., J. Appl. Mech. 58A, 136 (1936).
(4) Canfield, F.B., Ph.D. thesis, Rice University, Houston, Tex., 1962.
(5) Canfield, F.B., Leland, T.W., Kobayashi, R., Advan. Cryog. Eng. 8, 146 (1962).
(6) Din, F., "Thermodynamic Functions of Gases," Vol. 3, pp. 60-3, Butterworths, London, 1961.
(7) Douslin, D.R., Harrison, R.H., Moore, R.T., McCullough, J.P., J. Chem. Eng. Data 9, 358 (1964).
(8) Hoover, A.E., Ph.D. thesis, Rice University, Houston, Tex., 1965.
(9) Hoover, A.E., Nagata, I., Leland, T.W., Kobayashi, R., J. Chem. Phys. 48, 2633 (1968).
(10) Itterbeek, A. van, Verbeke, O., Staes, K., Physica 29, 743 (1963).
(11) Keyes, F.G., Taylor, R.S., Smith, L.B., J. Math. Phys. 1, 211 (1922).
(12) Kvalnes, H.M., Gaddy, V.L., J. Am. Chem. Soc. 53, 394 (1931).
(13) Michels, A., Nederbragt, G.W., Physica 3, 569 (1936).
(14) Mueller, W.H., Ph.D. thesis, Rice University, Houston, Tex., 1959.
(15) Mueller, W.H., Leland, T.W., Kobayashi, R., A.I.Ch.E. J. 7, 267 (1961).
(16) Schamp, H.W., Jr., Mason, E.A., Richardson, A.C.B., Altman, A., Phys. Fluids 1, 329 (1958).
(17) Vennix, A.J., Ph.D. thesis, Rice University, Houston, Tex., 1966.
(18) Vennix, A.J., Kobayashi, R., A.I.Ch.E. J. 15, p. 926 (1969).
(19) Vennix, A.J., Leland, T.W., Kobayashi, R., Aduan. Cryog. Eng. 12, 700 (1966).
(20) Verbeke, O., Institute of Molecular Physics, University of Maryland, private communication, 1966.

Received for review August 4, 1969. Accepted November 17, 1969.

