Chemical Thermodynamic Properties of the Pentadienes

Third Law Studies

JOHN F. MESSERLY, SAMUEL S. TODD, and GEORGE B. GUTHRIE Bartlesville Petroleum Research Center, Bureau of Mines, U.S. Department of the Interior, Bartlesville, Okla. 74003

> The chemical thermodynamic properties of the seven pentadienes are determined from adiabatic calorimetric studies over the range 12° to 320° K. Properties measured include the heat capacities in the solid and liquid state, heats of fusion, melting points, and purities of the samples. The heats of vaporization at 298.15° K are calculated from vapor pressure data, and the entropies of all seven pentadienes in the ideal gas state at 298.15° K are determined. Free energies of formation and the logarithm of the equilibrium constants of formation at 298.15° K are calculated.

LOW-TEMPERATURE calorimetric studies of the seven isomeric pentadienes were included in the continuing program of the Bureau of Mines for obtaining thermodynamic properties of materials important in petroleum technology. In many thermodynamic applications, particularly in isomerization studies, high relative accuracy of the experimental thermodynamic functions of the isomers is necessary for mole-fraction calculations. All of the values reported here are related to the same methods of measurement and correlation, and the same calibrated standards. Thus, systematic errors tend to cancel and uncertainties will be smaller than those that are found when comparing work of different laboratories. Previously, low-temperature thermal data had been reported by Bekkedahl and Wood (1) for 2-methyl-1,3-butadiene, and by Parks, Todd, and Shomate for 1,4-pentadiene (10).

To obtain values of the thermodynamic properties in the ideal gas state at 298.15° K, the experimental lowtemperature properties were combined with enthalpies of formation (3, 4) and vapor pressure data (9). The available literature values of the thermodynamic functions of the pentadienes are those reported by Kilpatrick *et al.* (8), from a correlation based on data obtained from lower molecular weight alkanes, alkenes, and alkadienes.

EXPERIMENTAL

Materials. The compound samples were purified and made available in glass, internal breakoff-tip ampoules through American Petroleum Institute Projects 44 and 58B at Carnegie-Mellon University. Before the ampoules were opened they were immersed in liquid nitrogen to test the samples for cloudiness, as an indication of polymer, and for the formation of ice crystals. The sample of 1,4pentadiene which showed no ice or cloudiness and the sample of 2-methyl-1,3-butadiene which showed only a trace of ice crystals were used as received. The other pentadiene samples showed a marked cloudiness upon melting which disappeared, as they warmed, well below the melting point of ice; therefore they were given a bulb-to-bulb distillation to remove polymer and, except for 3-methyl-1,2-butadiene, were dried by passing their vapors through magnesium perchlorate. 3-Methyl-1,2-butadiene was dried by passing its vapor through molecular sieve. The magnesium perchlorate turned yellow to brown upon passage of the vapors of 1,2-pentadiene, 1,cis-3-pentadiene, 1,trans-3-pentadiene, and 2,3-pentadiene.

Each sample was placed in the calorimeter without exposure to air or a temperature above 25° . In the case of 2-methyl-1,3-butadiene 34 mm. of Hg of helium gas was added to promote thermal equilibration during the calorimetric measurements.

Apparatus and Physical Constants. The measurements were made with an adiabatic apparatus described as Rig 1 by Huffman and coworkers (6, 7, 12, 13). The samples were contained in a copper calorimeter (laboratory designation 3-C) which was designed to hold a platinum thermometer (laboratory designation 6) in its re-entrant well. Identical operating techniques, including manual control of the adiabatic shield temperatures, were used on all seven isomers. The molecular weight of pentadiene, based on 1961 International Atomic Weights (2), was 68.1195. Conversion of observed quantities to standard data forms was made with the aid of recent values of the fundamental physical constants (11). Measurements of temperature were made with platinum resistance thermometers calibrated in terms of the International Temperature Scale of 1948 (16) from 90° to 400° K, and the provisional scale of the National Bureau of Standards (5) from 11 to 90°K. Celsius temperatures were converted to Kelvin temperatures by adding 273.15° (15). Energy was measured in joules and converted to calories by the relation 1 cal = 4.184 J. Measurements of mass, electrical potential, and resistance were made in terms of secondary standard devices that had been calibrated at the National Bureau of Standards.

RESULTS

Heat Capacities. Heat capacity determinations reveal no instances of polymorphism in the pentadienes. Not only was a single crystalline form readily obtained upon freezing each sample, but little if any supercooling of the liquids was observed. Experimental values of the heat capacities of the crystalline and liquid phases are recorded (Table I) in the order of ascending mean temperature which, however, is not necessarily the chronological order of the observations. The energy increments were kept small enough so that nominal heat capacities in the incremental temperature ranges were, within experimental error, linear functions of temperature. Corrections to heat capacity determinations for the effect of heterophase premelting have not been applied to the values in Table I; however, such corrections were applied to the smoothed heat capacity values in Table II. The experimental temperature incre-

				Table I.	Molal Hea	t Capacity (Ca	l ° K ^{−1})				
$T, \circ \mathbf{K}^a$	$C_s^{\ b}$	T, ° K ^a	$C_{s}^{\ b}$	$T, \circ \mathbf{K}^{a}$	$C_s^{\ b}$	T, ° K °	C_s^b	T, ° K°	C^{b}_{s}	$T, \circ \mathrm{K}^\circ$	C^b_s
		1,2-Pen'	TADIENE					1,trans-3-P	ENTADIENE		
		Cry	stals					Crys	stals		
12.97	0.7304	32.09	5.250	89.73	14.771	21.69	3.042	86.72	15.025	152.53	26.731°
13.29 14.53	0.7867	35.16	5.986	90.90 95.07	14.902	23.82	3.579	91.53	15.708	157.90	26.845°
14.00 14.66	1.004 1.027	42.71	7.640	100.51	15.946°	25.98 26.37	4.209	92.03 92.44	15.820	158.01	26.808 26.855°
16.10	1.309	47.10	8.509	106.16	16.531°	26.49	4.235	92.98	15.868	163.10 164.05	26.995°
17.12	1.543	51.93	9.409	108.99	16.823°	28.87	4.802	94.28	16.015	165.13	27.072^{e}
17.94	1.729	53.95	9.763	110.61	16.982°	29.60	4.978	97.84	16.588	170.43	27.256^{e}
20.03	2.209	59 00	10.301	112.09	17.147°	32.96	5.763	98.29	16.638	171.43	27.354
20.10 22.26	2.230 2.765	64.00	11.391	113.80	17.319 17.419°	50.74 41.02	0.000 7.501	98.52 100.74	16.632	173.01	27.513 28.450°
22.32	2.790	69.05	12.112	117.81	17.763°	45.53	8.387	100.86	16.978	177.33 182.21	20.400 34.133
24.57	3.370	74.67	12.869	118.58	17.832°	50.22	9.270				
24.89	3.439	80.40	13.634	119.99	17.985°			Lio	uid		
20.00 27.79	3.945 4 170	85.01 85.78	14.216	120.45 130.27	18.043 19.836°	1 20 20	01 140	000.00	01 750	007 00	00.004
29.30	4.557	00.10	14.010	100.21	10.000	199.20	31.143	222.22 227.40	31,758	207.83	33.824 34 394
		Lia	uid			196.32	31,141	237.72	32.331	288.19	35.036
		ц	ulu			201.84	31.217	247.90	32.793	298.29	35.692
142.31	31.32	181.87	31.58	247.74	33.55	204.06	31.274	257.94	33.290	308.23	36.372
144.95	31.30	190.28	31.73	209.16	34.06 34.61	211.71	31,448			316.41	36.959
151.16	31.30	203.01	32.03	282.17	35.18			1,4-Pen'	FADIENE		
158.91	31.33	213.96	32.33	293.73	35.81			Crv	stals		
169.21	31.41	225.13	32.69	297.20	36.00	11.37	0.756	26.52	4.682	91.32	15.997
179.80	31.54	236.51	33.10	307.50	36.59	12.55	0.979	28.34	5.196	93.64	16.279'
		1, <i>cis</i> -3-Pe:	NTADIENE			13.31	1.133	29.39	5.493	97.71	16.793'
		Crvs	stals			13.84	1.251	32.50	6.356	98.90	16.933
11 10	0.700	97.99	4 520	99.10	14.009	15.37	1.420 1.605	39.63	8.135	99.93 100 17	17.117 17.099^{f}
12.26	0.799	27.62	4.550	87.58	14.005 14.675 ^d	16.25	1.815	43.95	9.079	103.78	17.645'
13.00	1.109	30.75	5.213	87.95	14.717^{d}	17.14	2.046	48.22	9.944	105.86	17.985'
13.66	1.249	33.96	5.957	91.85	15.148°	18.10	2.290	53.04	10.773	106.16	18.019
14.05	1.322	37.35	6.694	94.33	15.403ª	20.00	2.002	58.70 58.49	10.884	106.37	18,106'
15.20	1.577	40.87 44.83	7.430	90.08 99.49	15.662 15.973 ^d	21.14	3.134	63.75	12.452	111.85	18.972'
16.73	1.905	49.44	9.100	102.57	16.287^{d}	21.83	3.330	69.57	13.220	115.04	19.616^{\prime}
17.07	1.983	53.84	9.873	105.27	16.563^{d}	23.37	3.770	75.48	13.963	117.27	20.078'
18.59	2.332	55.11	10.081	107.69	16.817 ^d	23.94	3.943	81.44	14.734 15.515	119.99	20.525'
19.05	2.437	58.48	10.651	111.35	17.182° 17.406°	20.10	4,400	07.40	10.010		
20.70 21.24	2.953	65.36	10.899 11.727	113.64 117.20	17.400 17.777^{d}			Liq	bit		
22.89	3.352	70.97	12.508	119.38	18.006^{d}	127.99	30.564	174.37	30.387	241.96	32.178
23.62	3.527	76.52	13.245	122.85	18.417^{d}	132.47	30.486	184.57	30.515	252.13	32.627
25.25	3.928					138.15	30.482	194.66 204.66	30.699	262.17	33.102
		Liq	uid			139.76	30.385	214.55	31.199	281.82	34.136
138.21	31.152	193.97	30.773	256.29	32.698	145.27	30.325	224.33	31.518	291.44	34.691
142.63	31.028	203.96	30.930	266.35	33.194	154.11	30.287	234.00	31.873	300.93	35.258
143.92	31.014	204.01	30.932	276.26	33.722	164.08	30.309				
148.24	30.921	214.67 225.27	31,166	286.37	34.306			2,3-Pent	ADIENE		
163.39	30.828 30.710	235.74	31.403 31.825	307.14	35.620			Crys	tals		
173.65	30.663	246.08	32.235	316.12	36.240	11 74	0.578	27.08	4 029	87 79	15 576
183.85	30.683					12.30	0.667	27.91	4.245	93,48	16.265
		1,trans-3-Pi	ENTADIENE			13.32	0.829	29.61	4.664	93.54	16.268
		Crys	tale			13.68	0.899	30.81	4.971	99.49	16.950
	0 500		10.110	104.00	18 500	14.91 15.18	1.134	34.30 38.37	0.837 6.805	100.54	17.060 17.7098
$11.56 \\ 11.70$	0.760	55.04 55.42	10.110 10.183	104.30 106.85	17.522	16.58	1.474	42.67	7.802	108.83	17.949^{g}
12.76	0.986	55.46	10.178	110.38	18.379	16.81	1.534	47.04	8.752	112.52	18.333
12.97	1.019	59.57	10.872	110.86	18.591	18.34	1.873	52.06	9.793	114.71	18.560 ^s
14.11	1.266	61.24	11.155	112.65	18.876	18.53 20.25	1.918 2.321	06.24 57.44	10.602	118.87 120.94	18.986* 19.1778
14.47 15.77	1.333	67.25	11.710 12.125	117.08	19.742 20.636	20.20	2.321 2.401	60.77	10.034 11.454	120.94 123.93	19.427*
16.03	1.679	70.00	12.544	121.31 123.28	21.521	22.34	2.833	65.66	12.319	125.56	19.606
17.50	2.025	73.33	13.025	128.16	22.758	22.90	2.980	71.08	13.162	129.41	19.992
17.53	2.034	75.53	13.359	129.01	23.101	24.62	3.408	76.64 89.19	14.007	134.73	20.547^{s}
17.73 19.41	2.076	79.60 81.09	13.951 14 189	133.71 134 53	24.277 94 454°	20.02	0.000	02.10	14.01/	109.00	41.41 Z"
19.60	2.529	85.15	14.756	140.58	25.563			Liqu	ıid		
21.50	2.995	86.30	14.948	146.42	26.367°	150.70	32.489	189.38	32.713	253.95	34.416

Table	I. Molal H	eat Capac	ity (Cal ° K	$(Contin^{-1})$	nued)			
$T, \circ K^\circ$	C_s^b	T, °K°	C_s^{\flat}	T, °K⁴	$C^{\flat}_{\mathfrak{s}}$			
		Liq	luid					
155.41	32.468	199.20	32,879	264 47	34 838			
155.94	32 475	208.95	33.065	274.85	35 287			
162.85	22.410	200.00	22.000	274.00 005 11	25.201			
170.22	29 51 2	210.01	22 540	200.11	35.760			
170.22	02.010	220.10	33.349	295.23	36.264			
170.45	32.313	233.00	33.708	305.22	36.785			
179.47	32.599	243.65	34.037	315.09	37.334			
	3	-Methyl-1,	2-BUTADIEN	١E				
		Cry	stals					
11.32	0.460	27.58	3.981	86.64	14.371			
12.77	0.653	28.67	4.246	89.34	14.772			
13.36	0.752	30.72	4.734	92.29	15.079			
14.22	0.897	34.07	5.524	93.48	15.219			
14.82	1.004	37.60	6.301	95.45	15.495			
15.79	1.194	41.43	7.104	98.69	15.833			
16.48	1.332	45.80	7 958	99.92	15,970			
17.63	1.576	50.79	8 887	106.54	16 726			
18.23	1.705	54.88	0.007	119.95	17 516			
10.20	2.004	56.26	9.010	110.00	10.074			
19.00	2.004	50.20	9.642	120.24	18.274			
20.20	2.164	59.90	10.460	127.23	19.019			
21.57	2.492	65.35	11.341	133.95	19.712''			
22.46	2.715	71.30	12.218	140.45	20.399*			
23.87	3.064	77.29	13.077	142.94	20.644'			
24.87	3.308	83.29	13.966	147.34	21.202^{h}			
26.17	3.627	86.01	14.297					
		Liq	uid					
161.86	31.212	196.37	31 943	266 89	34 745			
167 19	31 302	206.57	32 256	276.88	35 938			
169.44	31 341	216.65	32 506	210.00	26 790			
169.60	31 334	210.00	32.057	200.75	26 297			
175.66	21 444	220.01	02.901	290.40	30.327			
170.55	21 520	200.40	33.340	306.04	36.890			
179.00	31.339	246.00	33.776	314.56	37.411			
109.92	31.701	200.70	34.249 2 DUTADIDA					
	2-IVIETHYL-1,3-BUTADIENE							
11.51	0.912	24.31	3.882	60 56	10 598			
12.46	1.088	24 94	4 029	61.63	10.742			
13.77	1.358	26.99	4.524	66 68	11 405			
14.62	1.559	20.00	4.645	71.00	10.000			
15.17	1.686	21.00	5 997	77.02	12.020			
16 10	1.000	30.01	5.227	11.00	12.040			
16.19	1.090	30.47	0.324 5.070	82.51	13.279			
10.72	2.028	33.32	5.970	88.11	13.903			
18.03	2.328	36.79	6.683	92.13	14.341			
18.44	2.434	40.40	7.398	93.43	14.428'			
19.96	2.797	44.28	8.090	97.83	14.884'			
20.39	2.905	49.14	8.905	103.41	15.482^{i}			
21.99	3.302	54.92	9.794	109.29	16.151^{i}			
22.59	3.448	56.61	10.044	115.35	17.633^{i}			
		Liq	uid					
130.32	20 202	176.84	20 644	940 51	29 774			
194.05	20.200	197 40	23.044	249.01 050.00	32.114			
104.90	29.200	107.40	29.904	259.69	33.406			
137.13	29.248	191.93	30.243	260.91	33.464			
140.93	29.243	208.10	30.638	271.26	34.158			
146.05	29.247	218.23	31.080	282.10	34.912			
155.73	29.301	228.57	31.594	293.09	35.733			
166.14	29.435	239.13	32.151	303.86	36.540			
N 6		e . 1 1			. h r r			

^a Mean, temperature of each heat capacity measurement. ^bHeat capacity of 1 mole of compound in condensed phase under saturation pressure. Values of C_s for crystals not corrected for effect of premelting. ^{c.d. a. b. a. b.} Temperature increment ΔT , of these measurements are, in order of increasing temperature, in °K: ^c5.245, 6.049, 4.945, 3.614, 5.818, 4.793, 4.787, 5.626, 4.653, 5.562, 5.374, 4.256; ^d4.342, 6.042, 4.183, 4.935, 5.478, 5.381, 6.300, 6.195, 6.068, 5.958, 5.837, 5.749, 5.645, 5.548; ^c6.169, 5.927, 5.755, 6.470, 5.371, 5.674, 5.607, 6.421, 6.342, 6.343, 6.260, 5.427, 4.518, 3.934; ^f6.459, 6.219, 7.168, 6.122, 6.142, 5.915, 6.751, 5.835, 6.758, 5.632, 5.559, 5.354, 5.285, 5.000; ^s6.111, 5.988, 5.887, 5.773, 6.814, 6.694, 5.555, 6.578, 5.394, 5.249, 5.066; ^h7.131, 6.852, 6.604, 6.416, 4.057, 4.753; ⁱ5.759, 5.447, 5.969, 5.204, 5.706, 5.470, 6.284, 5.850.

ments in the premelting regions are contained in a footnote to Table I to make available documented data for studies of premelting behavior.

Heat capacity curves for crystalline pentadienes are normally sigmoidal, and for liquid pentadienes are concave upward. Except for one isomer, 3-methyl-1,2-butadiene, the heat capacity curves of the liquids show minima over a range 50° above the melting points. Cubic equations in T were fitted to the molal heat capacities of the liquids. The constants for these equations are given (Table III) with values of the average and maximum deviations of the observed points from smooth curves.

Above 30° K the estimated precision uncertainty of the heat capacity measurements is less than 0.1%, and the estimated accuracy uncertainty is 0.2%. Below 30° K the estimated precision uncertainty and estimated accuracy uncertainty increase and reach a value of 1% at the lowest experimental temperature. Just below the melting points

	Table II. Mo Pentadien	lal Thermod es in Solid a	ynamic Proj Ind Liquid S	perties of states ^{a,b}	
<i>T</i> , ° K	$-(G_s - H_{8})/T,$ Cal ° K ⁻¹	$-(H_s - H_{ m o})/T,$ Cal ° K ⁻¹	$H_s - H_{ m i},$ Cal	S₅, Cal °K⁻¹	$C_s,$ Cal ° K ⁻¹
		1,2-Penta	DIENE		
		Crysta	als		
10	0.028	0.084	0.842	0.112	0.336
15	0.095	0.283	4.247	0.378	1.091
20	0.220	0.620	12.405	0.840	2.207
25	0.404	1.062	26.562	1.466	3.461
30	0.642	1.568	47.04	2.210	4.728
35	0.924	2.108	73.77	3.032	5.948
40	1.241	2.659	106.36	3.900	7.074
45	1.586	3.207	144.32	4.793	8.095
50	1.952	3.744	187.22	5.696	9.056
60	2.727	4.775	286.52	7.502	10.761
70	3.536	5.740	401.8	9.276	12.240
80	4.361	6.637	530.9	10.998	13.581
90	5.193	7.478	673.0	12.671	14.801
100	6.021	8.265	826.4	14.286	15.877
110	6.845	9.003	990.3	15.848	16.888
120	7.658	9.702	1164.2	17.360	17.889
130	8.461	10.370	1348.1	18.831	18.888
135.89	8.930	10.753	1461.3	19.683	19.482
		Liqui	d		
135.89	8.930	24.047	3268.0	32.977	31.372
140	9.648	24.261	3396	33.909	31.33
150	11.338	24.731	3709	36.069	31.29
160	12.948	25.142	4022	38.090	31.33
170	14.484	25.508	4336	39.992	31.41
180	15.951	25.840	4651	41.791	31.54
190	17.356	26.145	4967	43.501	31.72
200	18.705	26.429	5285	45.134	31.95
210	20.000	26.699	5606	46.699	32.21
220	21.249	26.956	5930	48.205	32.51
230	22.452	27.205	6257	49.657	32.85
240	23.616	27.448	6587	51.064	33.23
250	24.740	27.688	6921	52.428	33.64
260	25.831	27.925	7260	53.756	34.09
270	26.890	28.162	7603	55.052	34.56
273.15	27.217	28.238	7713	55.455	34.72
280	27.918	28.400	7952	56.318	35.07
290	28.918	28.640	8305	57.558	35.60
298.15	29.717	28.836	8597	58.553	36.05
300	29.894	28.881	8664	58.775	36.15
310	30.845	29.125	9028	59.970	36.73
320	31.773	29.372	9398	61.145	37.31

^a Values tabulated are Gibbs energy function, enthalpy function, enthalpy, entropy, and heat capacity of condensed phases at saturation pressure. ^bThis part of table given for illustrative purposes only. Complete table available from ASIS.

Table III. Equation for Heat Capacity of Liquid

 $C_{\rm s} = A + BT + CT^2 + DT^3$, cal ° K⁻¹ mole⁻¹

Compound	А	В	$\rm C \times 10^4$	$D \times 10^7$	Range, ° K	Av. Dev., Cal ° K ⁻¹	Max. Dev., Cal ° K ⁻¹
1,2-Pentadiene	38.193	-0.10007	4.1059	-3.3210	142 - 316	0.003	0.009
1,cis-3-Pentadiene	44.719	-0.17584	6.3844	-5.2865	153 - 316	0.007	0.035
1,trans-3-Pentadiene	51.047	-0.25113	9.4359	-9.1898	189 - 316	0.015	0.057
1,4-Pentadiene	39.075	-0.12124	4.7654	-3.8494	128 - 301	0.006	0.014
2,3-Pentadiene	38.435	-0.080580	2.9801	-1.6936	151 - 315	0.004	0.009
3-Methyl-1,2-butadiene	34.932	-0.066215	3.0056	-2.0677	162 - 306	0.004	0.013
2-Methyl-1,3-butadiene	38.236	-0.13639	5.8779	-5.1748	130-304	0.006	0.014

accuracies decrease because of slow equilibration and uncertainties in the corrections for heterophase premelting. Fortunately, the uncertainties only slightly decrease the accuracy with which the enthalpy and entropy of the liquids are determined because these errors tend to cancel in enthalpy and entropy of fusion measurements.

Molal Heats of Fusion, Triple-Point Temperatures, and Sample Purities. Replicate determinations of the molal heat of fusion, ΔHm , were made from heat capacity data and from enthalpy measurements over ranges of temperatures that included triple-point temperatures. Because measurements are made on slightly impure compounds, the observed heat capacities and enthalpies of fusion have been corrected for the effects of these impurities. These premelting corrections are made empirically based on an "effective" impurity, footnote^c Table V, a little smaller than the actual impurity as determined in the melting point studies. The exact causes of these differences in impurity behavior are unknown but they probably result from deviations from ideal behavior, presence of solid solutions, or nonattainment of thermodynamic equilibrium. The average of at least three heats of fusion is given in Table IV, and the uncertainty of ΔHm for each compound is the maximum deviation of any individual measurement from the arithmetic mean.

The results of a study of the equilibrium melting temperature T_{obsd} , as a function of the fraction of the total sample melted, F, are listed (Table V) with the amount of impurity found for each of the seven pentadienes. The triple-point temperatures and the cryoscopic constants, defined by the relations (17), $A = \Delta Hm/RT^2_{TP}$ and $B = (1/T_{TP}) - (\Delta Cm/2\Delta Hm)$, calculated from the observed values of T_{TP} , ΔHm and ΔCm (the heat capacity of the liquid minus that of the solid, at the melting point), are in Table IV.

Thermodynamic Properties in Solid and Liquid States. The experimentally determined values of heat capacity were used to provide "smoothed" values at selected temperatures by numerical methods. From these data and values of the heat of fusion the thermodynamic properties for the condensed phases were calculated for even temperatures from 10° to above 300° K by appropriate numerical integration. The values of the thermodynamic functions at 10° K were calculated from Debye functions fitted to the heat

capacities from 12° to 20° K. The Debye parameters, θ , the characteristic temperature, and the degrees of freedom, are given for each compound in Table VI.

Entropy in Ideal Gas State. The entropies of all seven pentadienes in the ideal gas state at 298.15°K have been calculated from the entropy in the liquid by use of the vapor pressures as reported by Osborn and Douslin (9). The entropies of vaporization at 298.15°K were calculated from the Clapeyron equation, using gas volumes computed from the virial equation PV = RT(1 + B/V); and values of B taken from the empirical equation of Scott *et al.* (14). Values of dp/dt were obtained from Cox equations, fitted to experimental values of the vapor pressure as reported by Osborn and Douslin (9). The entropies of compression at 298.15° K were calculated using the pressures interpolated from the same Cox equations. The corrections to the entropy of gas imperfection were made empirically from a linear correlation of calculated corrections from the published literature vs. vapor pressure at 298.15° K. A summary of these calculations and a comparison with the literature values at 298.15° K are given in Table VII.

Free Energies and Logarithm of Equilibrium Constants of Formation. The free energies of formation of all seven pentadienes at 298.15°K in the ideal gas state were calculated from the above entropies at 298.15°K in the ideal gas state and the heats of formation, as given by Fraser and Prosen (3), for six of the pentadienes and the heat of formation of 3-methyl-1,2-pentadiene as measured in this laboratory but reported separately (4). The calculations were made using the values of heats and entropies of formation of water and carbon dioxide and the entropy of graphite, from the National Bureau of Standards (18). The logarithms of the equilibrium constants of formation were calculated from the free energies of formation and are listed with a comparison with literature values in Table VIII.

DISCUSSION

Calorimetric Data. Previously low-temperature studies had been made for only two of the pentadienes. A comparison of the data here presented with those of Bekkedahl and Wood (1) for 2-methyl-1,3-butadiene shows that their values of heat capacity are higher than those of this laboratory

Compound	${T}_{{\scriptscriptstyle TP}}$	ΔHm , Cal Mole ⁻¹	A, ° K ^{-1}	B, ° K ^{−1}
1,2-Pentadiene	135.89 ± 0.05	1806.7 ± 0.3	0.04923	0.00407
1, <i>cis</i> -3-Pentadiene	132.35 ± 0.05	1347.7 ± 0.5	0.03870	0.00300
1,trans-3-Pentadiene	185.71 ± 0.05	1707.4 ± 0.8	0.02491	0.00447
1,4-Pentadiene	124.91 ± 0.05	1461.5 ± 0.4	0.04714	0.00492
2,3-Pentadiene	147.52 ± 0.05	$1584.1~\pm~1.8$	0.03663	0.00327
3-Methyl-1,2-butadiene	159.53 ± 0.05	1901.6 ± 0.8	0.03760	0.00395
2-Methyl-1,3-butadiene	127.27 ± 0.05	1177.0 ± 0.6	0.03656	0.00476

	Table V. Melting	g Point Summari	es
F	1/F	T_{osbd} , ° K	$T_{ m calcd}^{a}$, ° K
1,2-Pe	entadiene (Impurit	$y^{\circ} = 0.08 \pm 0.04$	Mole %)
0.1095	9.132	135.7143	135.7364
0.2640	3.788	135.8264	135.8283
0.5064	1.975	135.8595	135,8595
0.9054	1.104	135.8707	135.8745
1.0000	1.000	10010101	135.8763
Pure	0		135.8935°
1, <i>cis</i> -3-P	entadiene (Impur	$ity^b = 0.09 \pm 0.04$	Mole $\%$)
0.1232	8.117	132.2145	132.17
0.2560	3.906	132.2774	132.266
0.2653	3.769	132.2796	132.269
0.5170	1.934	132.3120	132.3104
0.7070	1.414	132.3229	132.3113
0.7431	1.346	132.3236	132.3236
0.9210	1.086	132.3300	132.3295
0.9583	1.044	132.3304	132.3304
1.0000	1.000		132.3314
Pure	U Dente diene (Ieree		132.3539°
1,trans-3	-Pentadiene (Imp	$\operatorname{arity} = 0.10 \pm 0.0$	02 Wiole $%$
0.1093	9.149	185.3992	185.3434
0.2000	3.864	185.6297	185.0624
0.5166	1 395	185 6584	185 6584
0.9036	1.107	185.6701	185.6701
1.0000	1.000		185.6744
Pure	0		185.7151°
1,4-Pe	ntadiene (Impurit	$y^b = 0.02 \pm 0.001$	Mole $\%$)
0.0993	10.070	124.8670	124.8670
0.2516	3.975	124.8921	124.8921
0.5134	1.948	124,8994	124.8993
0.7058	1.403	124.0014	124.5014
1.0000	1.000	124.5024	124.9020
Pure	0		124.9070°
2,3-Pe	entadiene (Impuri	$ty^b = 0.12 \pm 0.02$	Mole %)
0.1310	7.634	147.2565	147.2673
0.2813	3.555	147.4014	147.4014
0.4715	2.121	147.4501	147.4486
0.7005	1.420 1.112	147.4729	147.4714
1.0000	1.000	147,4010	147.4855
Pure	0		147.5184°
3-Methyl-1	,2-butadiene (Imp	$purity^{b} = 0.02 \pm 0$	0.005 Mole %)
0.1202	8.319	159.4731	159.4805
0.2665	3.752	159.5061	159.5061
0.5113	1.956	159.5161	159.5162
0.7071	1.414	159.5192	159.5192
1.0000	1.000	100.0204	159.5205
Pure	0		159.5271°
2-Methyl-	1,3-butadiene (Im	purity ^{b} = 0.17 \pm 0	0.08 Mole %)
0.04726	21.16	126.5155	126.2891
0.1651	6.057	127.0357	126.9900
0.4216	2.372	127.1651	127.1608
0.8096	1.020	127,1900	127.1900 197 9136
1.0000	1.000	121.2100	127.2245
Pure	0		127.2709°
emperatures	read from straig	tht line through	plot of $T_{\rm phase}$

^a Temperatures read from straight line through plot of T_{obsd} vs. 1/F. ^b Impurity calculated from simplified relationship $N_2 = F \times A \times (T_{TP} - T_{obsd})$ where N_2 is the mole fraction of impurity. "Effective" impurity activities for pentadienes used in corrections to heat capacities and heats of fusion for effects of premelting are: 0.067, 0.050, 0.078, 0.020, 0.075, 0.020, and 0.160, respectively. "Triple-point temperature taken as extrapolated temperature for 1/F = 0.

Table VI. Debye Parameters

Compound	θ , Deg	Degrees of Freedom
1,2-Pentadiene	136.2	5.5
1,cis-3-Pentadiene	98.6	3.5
1,trans-3-Pentadiene	101.0	3.5
1,4-Pentadiene	105.1	4.0
2,3-Pentadiene	128.6	5.0
3-Methyl-1,2-butadiene	138.6	5.5
2-Methyl-1,3-butadiene	95.2	3.5

throughout the entire range. The difference is 2% from 20° to 100° K, 0.3% at 130° K rising to 1% at 300° K. Despite this difference in heat capacity, their values of entropy at 298.15°K is only 0.25 cal $^\circ K^{-1}$ mole $^{-1}$ higher than this work owing to their lower entropy at 20° and lower entropy of fusion. The triple point reported for 2-methyl-1,3butadiene (126.4°K) by Bekkedahl and Wood differs markedly from that reported in this work and that reported by Streiff et al. (17). By use of the heat capacity data reported by Bekkedahl and Wood it is possible to make a rough calculation of the melting point of their sample. From this, the triple point is found to be 127.36°K and the impurity 1.7 mole %. The heat capacities reported for 1,4-pentadiene by Parks, Todd, and Shomate (10) differ from this work by more than the expected experimental error. Their values are from 0.5 to 1% higher from 80° to $100^{\circ}\,K,\,0.3\%$ lower from 130° to $180^{\circ}\,K,$ nearly the same from 180° to 220°K, and gradually increase to 1% higher at 300° K. The entropy reported by Parks et al. is 1.33 eu less than that found in this work. Most of the difference in entropy is due to Parks' extrapolation from 80° to 0° K which differed by 1.46 eu from the measured values reported in this paper.

Entropies and Free Energies of Formation. The only published data for the free energies and entropies of the pentadienes in the ideal gas state are those of Kilpatrick *et al.* (8). These data, dating from 1949, are essentially those published in the API Research Project 44 tables. A comparison of the entropies in the ideal gas at 298.15°K reported here with those calculated by Kilpatrick *et al.* shows that difference was less than the estimated uncertainty except in cases of 2,3-pentadiene and 1,*trans*-3-pentadiene, where the differences were about 1 cal°K⁻¹ mole⁻¹.

The Gibbs energies of formation of the seven pentadienes in the ideal gas state (Table VIII) show that, as expected, the 2-methyl-1,3-pentadiene and 1,trans-3-pentadiene were the most stable and 1, cis-3-pentadiene only a little less stable. All three of these have conjugated double bonds and the slightly greater Gibbs energy of formation of the cis form may be attributed to steric effects. The nonconjugated pentadienes were several orders of magnitude less stable than the three dominant forms, with the allenelike structures being the least stable. The differences in Gibbs energies of formation at 298.15°K between this work and that of Kilpatrick et al. are well within claimed 1,trans-3-pentadiene, 1,4-pentadiene, accuracies for 3-methyl-1,2-butadiene, and 2-methyl-1,3-butadiene but exceed 1 kcal for 1,2-pentadiene, 1,cis-3-pentadiene, and 2,3-pentadiene. The effect of these differences in Gibbs energy of formation is shown in Table IX as the equilibrium concentrations of each pentadiene at 298.152°K as calculated from the two sets of energies. The major change is the large difference in the relative stabilities of cis- and trans-1,3-pentadiene. The deviations between the new and old values at 298.15°K indicated that a complete revision of the thermodynamic properties of the pentadienes is needed, supported by gas phase equilibria studies at higher temperatures.

Compound	S° (lia)	٨S	^S	Gas Imperfection	S° (dae)	S° (gas)
Compound	U (IIQ)	Jovap	Comp	Imperiection	(gas)	Literature
1,2-Pentadiene	58.55	22.791	-1.444	0.12	80.02	79.7°
1,cis-3-Pentadiene	55.747	22.659	-1.382	0.13	77.15	77.5°
1,trans-3-Pentadiene	54.28	22.248	-1.224	0.13	75.43	76.4°
1,4-Pentadiene	59.48	20.209	-0.068	0.20	79.82	79.7°
2,3-Pentadiene	56.72	23.547	-1.718	0.11	78.66	77.6°
3-Methyl-1,2-butadiene	55.40	22.377	-1.150	0.14	76.77	76.4°
2-Methyl-1,3-butadiene	54.56	21.152	-0.643	0.16	75.23	75.4^{a}

Table VIII. Molal Free Energies and Logarithms of the Equilibrium Constants of Formation at 298.15° K

Compound	$S^\circ~({ m gas}), \ { m Eu}$	ΔS ?, Eu	$T\Delta S$?, Kcal	ΔH ?, Kcal	ΔG ۶, Kcal	$\operatorname{Log} K$	ΔG_l^2 Literature, Kcal
1,2-Pentadiene	80.02	-51.672	-15.406	33.625°	49.031	-35.94	50.29^{b}
1, cis-3-Pentadiene	77.15	-54.542	-16.262	19.785°	36.047	-26.42	34.88°
1,trans-3-Pentadiene	75.43	-56.262	-16.775	18.125°	34.900	-25.58	35.07^{b}
1,4-Pentadiene	79.82	-51.872	-15.466	25.425°	40.891	-29.97	40.69°
2,3-Pentadiene	78.66	-53.032	-15.811	31.805°	47.616	-34.90	49.22^{b}
3-Méthyl-1,2-butadiene	76.77	-54.942	-16.381	30.852°	47.228	-34.62	47.47^{b}
2-Methyl-1,3-butadiene	75.23	-56.462	-16.834	18.105^{a}	34.939	-25.61	34.87^{b}
Values quoted from (3), but	t corrected to	latest (20)NBS	values of heats	of formation	of water and	carbon dioxid	e. $b(8)$. $c(4)$.

Table IX. Equilibrium Concentrations at 298.15° K

Compound	This Work, Mole Fraction	Kilpatrick <i>et al.</i> , Mole Fraction
1,2-Pentadiene	2.1×10^{-11}	0.000
1, cis-3-Pentadiene	0.0696	0.367
1,trans-3-Pentadiene	0.481	0.263
1,4-Pentadiene	$2.0 imes 10^{-5}$	0.000
2,3-Pentadiene	$2.3 imes10^{-10}$	0.000
3-Methyl-1,2-butadiene	$4.4 imes 10^{-10}$	0.000
2-Methyl-1,3-butadiene	0.449	0.370

ACKNOWLEDGMENT

The assistance of J. P. McCullough and Thelma Kincheloe in obtaining some of the measurements is gratefully acknowledged.

LITERATURE CITED

- (1) Bekkedahl, N., Wood, L.A., J. Res. Natl. Bur. Std. 19, 551 (1937).
- (2) Cameron, A.E., Wichers, E., J. Am. Chem. Soc. 84, 4175 (1962).
- (3) Fraser, F.M., Prosen, E.J., J. Res. Natl. Bur. Std. 54, 143 (1955).
- (4) Good, W.D., J. CHEM. ENG. DATA 14, 480 (1969).
- (5) Hoge, H.J., Brickwedde, F.G., J. Res. Natl. Bur. Std. 22, 351 (1939).
- (6) Huffman, H.M., Chem. Rev. 40, 1 (1947).
- (7) Huffman, H.M., Todd, S.S., Oliver, G.D., J. Am. Chem. Soc. 71, 584 (1949).

- (8) Kilpatrick, J.E., Beckett, C.W., Prosen, E.J., Pitzer, K.S., Rossini, F.D., J. Res. Natl. Bur. Std. 42, 225 (1949).
- (9) Osborn, A.G., Douslin, D.R., J. CHEM. ENG. DATA 14, 208 (1969).
- (10) Parks, G.S., Todd, S.S., Shomate, H., J. Am. Chem. Soc. 58, 2505 (1936).
- (11) Rossini, F.D., Pure Appl. Chem. 9, 453 (1964).
- (12) Ruehrwein, R.A., Huffman, H.M., J. Am. Chem. Soc. 65, 1620 (1943).
- (13) Scott, D.W., Douslin, D.R., Gross, M.E., Oliver, G.D., Huffman, H.M., *Ibid.*, 74, 883 (1952).
- (14) Scott, D.W., Finke, H.L. Gross, M.E., Guthrie, G.B., Huffman, H.M., Ibid., 72, 2424 (1950).
- (15) Stimson, H.F., Am. J. Phys. 23, 614 (1955).
- (16) Stimson, H.F., J. Res. Natl. Bur. Std. 42, 209 (1949)
- (17) Streiff, A.J., Soule, L.F., Kennedy, C.M., Jones, M.E., Sedlak, V.A., Willingham, C.B., Rossini, F.D., *Ibid.*, 45, 173–91 (1950).
- (18) Wagman, D.D., Evans, W.H., Parker, V.B., Halow, I., Bailey, S.M., Schumm, R.H., Natl. Bur. Stds. Tech. Note 270-3 (January 1968).

RECEIVED for review July 7, 1969. Accepted December 31, 1969. Work supported in part by the American Petroleum Institute through its Research Project 62 on "Thermodynamics of Hydrocarbons from Petroleum," conducted by the Bureau of Mines, U.S. Department of the Interior. Contribution No. 170, thermodynamics laboratory, Bartlesville Petroleum Research Center, Bureau of Mines, U.S. Department of the Interior, Bartlesville, Okla. 74003. For supplementary material order NAPS Document NAPS-00785 from ASIS National Auxiliary Publications Service, % CCM Information Sciences, Inc., 22 West 34th St., New York, N.Y., 10001, remitting \$1.00 for microfiche or \$3.00 for photocopies.