for the system reported here. The calculation method used is similar to the one suggested by Prausnitz et al. (4).

$$\ln \gamma_{1} = x_{2}^{2} \left\{ \tau_{21} \frac{\exp \left(-2\alpha_{12}\tau_{21}\right)}{\left[x_{1} + x_{2} \exp \left(-\alpha_{12}\tau_{21}\right)\right]^{2}} + \tau_{12} \frac{\exp \left(-\alpha_{12}\tau_{12}\right)}{\left[x_{2} + x_{1} \exp \left(-\alpha_{12}\tau_{12}\right)\right]^{2}} \right\}$$
(1)

$$\ln \gamma_{2} = x_{1}^{2} \left\{ \tau_{12} \frac{\exp(-2\alpha_{12}\tau_{12})}{[x_{2} + x_{1} \exp(-\alpha_{12}\tau_{12})]^{2}} + \tau_{21} \frac{\exp(-\alpha_{12}\tau_{21})}{[x_{1} + x_{2} \exp(-\alpha_{12}\tau_{21})]^{2}} \right\}$$
(2)

where

$$\tau_{12} = (g_{12} - g_{22}) / RT$$

$$\tau_{21} = (g_{21} - g_{11}) / RT$$

$$\alpha_{12} = 0.30$$

$$g_{12} = g_{21}$$
(3)

Calculated values of y_1 based on τ_{12} and τ_{21} are given in Table II $(y_{1 \text{ calcd}})$. The maximum percentage deviation between $y_{1 \text{ exptl}}$ and $y_{1 \text{ calcd}} = (100 \Delta y / y_{1 \text{ exptl}})$ is less than 3.03%. Plots of log (γ_1/γ_2) vs. x_1 in accordance with the Redlich and Kister equation (5) showed the integrated value was 0.417 and the absolute value was 4.075. The small integrated value showed that the data were consistent.

NOMENCLATURE

- = energies of interaction between an *i*-*j* pair of molecules
- D. vapor pressure, mm of Hg
- mole fraction in liquid phase x =
- mole fraction in vapor phase У = α_{ii} =
 - nonrandomness constant for binary i j interactions =
- $(y_{1 \text{ exptl }} y_{1 \text{ calcd }})$ Δy activity coefficient =
- γ π
- total pressure, mm of Hg coefficient defined in Equation 3 τ_{ii}

Subscripts

- 1 = carbon disulfide
- 2 = methanol

LITERATURE CITED

- Hollis, O.L., Anal. Chem. 38, 309 (1966). (1)
- (2)
- Horsley, L.H., Advan. Chem. Ser., No. 6, 18 (1952). Kogan, V.B., "Vapor-Liquid Equilibrium Data," p. 377, GNTI, (3)Leningrad, 1966.
- Prausnitz, J.M., Eckert, C.A., Orye, R.V., O'Connell, J.P., (4)"Computer Calculations for Multi-component Vapor-Liquid
- Equilibria," p. 71, Prentice Hall, Englewood Cliffs, N. J., 1967. Redlich, O., Kister, A.T., Ind. Eng. Chem. 40, 345 (1948). (5)
- (6)Renon, H., Prausnitz, J.M., A.I.Ch.E. J. 14, 135 (1968).
- Smith, T.E., Bonner, R.F., Ind. Eng. Chem. 41, 2867 (1949). (7)
- Weissberger, A., Proskauer, E.S., Riddick, J.A., Troops, E.E., (8)Jr., "Organic Solvents," 2nd ed., 90,245, Interscience, New York, 1955.

RECEIVED for review December 19, 1969. Accepted May 17, 1970.

Solubility Isotherm of the FeCl₂-MgCl₂-HCl-H₂O System

E. C. CHEN, GEORGE McGUIRE¹, and HERBERT Y. LEE Quebec Iron and Titanium Corp., Sorel, Quebec, Canada

> The FeCl₂-MgCl₂-HCl-H₂O system at 50° C was studied at HCl concentrations of 2, 4, and 11 weight % by using a vacuum evaporation method. Experimental results were shown in a diagram by projecting the data points on the FeCl₂-MgCl₂-H₂O face, using the HCI vertex as the projection center. Within the HCI concentration ranges investigated, the solid phases existing in the system are $FeCI_2 \cdot 4H_2O$ and MgCl₂·6H₂O. No double or complex salts were found.

SOLUBILITY isotherms of the $FeCl_2$ -HCl-H₂O system at 40° and 60° C (5), the MgCl₂-HCl-H₂O system at 25° C (1, 2), and the FeCl₂-MgCl₂-H₂O system at 15° and 40°C (3, 4) are available in the literature. However, no data on the $FeCl_2$ -MgCl_2-HCl-H₂O system have been reported. The present work investigated this quaternary system at 50° C.

EXPERIMENTAL

The apparatus used is shown schematically in Figure 1. An aqueous solution with the desired composition of MgCl₂ and HCl was saturated with $FeCl_2 \cdot 4H_2O$ at 50° \pm 0.5° C. The solution was charged into flask A and agitated, and the pressure in the system was adjusted so that

¹ Present address, Johnson, Matthey and Co., Ltd., Royston, Herts, England

STIRRER VACUUM LINE NO.I THERMOMETER ARGON GAS HEXANE VACUUM LINE NO. 3 CONDENSER VACUUN LINE NO. 2 TO VACUUM PUMP BOTTLE B UBE C GLASS พื่อดเ CONSTANT TEMP. BATH (50°C) MERCURY COLUMN

Figure 1. Schematic diagram of experimental apparatus

448 Journal of Chemical and Engineering Data, Vol. 15, No. 3, 1970

Figure 2. Projections of solubility curves on $FeCl_2-MgCl_2-H_2O$ face

the solution boiled at $50^{\circ} \pm 0.1^{\circ}$ C. At this stage, vacuum line 1 was used. When a sufficient quantity of crystals had formed, the vacuum line was switched from 1 to 2, the valve on the argon gas line was opened, and the mother liquor was sucked into bottle *B*, leaving the crystals inside tube *C*. The crystals were then washed and dried by passing hexane through tube *C* via vacuum line 3. A sample of the mother liquor was analyzed for Fe^{2+} , Mg^{2+} , and free HCl, while samples of the crystals were identified by x-ray diffraction.

The iron(II) and free HCl in the liquid samples were determined by titration with standard cerium(IV) ammonium nitrate and NaOH solution, respectively. For the determination of Mg^{2+} , the Fe²⁺ ions were first oxidized to Fe³⁺ and removed by an ion exchange column containing Dowex 1 × 8 resin,. The iron-free solution was then titrated with EDTA at a pH between 9 and 10, using Eriochrome Black T as indicator. All the end points of these titrations are sharp and the error should be less than 0.5%.

Reagent grade iron(II) chloride tetrahydrate, magnesium chloride hexahydrate, and 37.4% hydrochloric acid from the J. T. Baker Chemical Co. were used to prepare the test solutions. The iron(II) chloride tetrahydrate was purified by recrystallization before use.

RESULTS AND DISCUSSION

A four-component system is usually represented on a regular tetrahedron with the vertices corresponding to the components of the system. However, a central projection onto one of the faces of the tetrahedron may be employed. Figure 2 is a projection on the FeCl₂-MgCl₂-H₂O face, using the HCl vertex as the projection center. To represent the points of the system on Figure 2, the percentage composition was recalculated so that the sum of FeCl₂ + MgCl₂ + H₂O was taken as 100%.

As seen from Figure 2, the solubilities of $FeCl_2$ and $MgCl_2$ decrease with increasing HCl concentration. Thus, by raising the HCl concentration of a saturated solution—e.g., bubbling dry HCl gas through the solution—either $FeCl_2 \cdot 4H_2O$ or $MgCl_2 \cdot 6H_2O$ will be crystallized, depending on the crystalline region in which it is located. If the starting solution has a composition corresponding to the phase transition point, mixed crystals of $FeCl_2 \cdot 4H_2O$ and $MgCl_2 \cdot 6H_2O$ will be obtained. This means that composition corresponding to points *B* and *C* on Figure 2 may be

Table I. Solubility in FeCl₂-MgCl₂-HCl-H₂O System at 50° C Liquid-Phase Composition, Wt. %

-	-	,	
$MgCl_2$	\mathbf{FeCl}_2	HCl	Solid Phase
0	40.34	2.04	$FeCl_2 \cdot 4H_2O$
5.32	33.11	2.19	$FeCl_2 \cdot 4H_2O$
16.61	21.41	2.18	$FeCl_2 \cdot 4H_2O$
19.66	18.36	2.07	$FeCl_2 \cdot 4H_2O$
21.88	17.33	2.12	$FeCl_2 \cdot 4H_2O$
23.31	15.68	1.93	$FeCl_2 \cdot 4H_2O$
25.46	14.97	1.95	$FeCl_2 \cdot 4H_2O + MgCl_2 \cdot 6H_2O$
27.62	11.36	2.15	$MgCl_2 \cdot 6H_2O$
29.43	8.45	2.21	$MgCl_2 \cdot 6H_2O$
33.48	2.89	2.27	$MgCl_2 \cdot 6H_2O$
34.74	0	1.98	$MgCl_2 \cdot 6H_2O$
0	37.20	3.96	$FeCl_2 \cdot 4H_2O$
11.38	24.63	3.87	$FeCl_2 \cdot 4H_2O$
15.72	19.89	4.21	$FeCl_2 \cdot 4H_2O$
17.93	17.32	4.07	$FeCl_2 \cdot 4H_2O$
24.97	12.07	4.14	$FeCl_2 \cdot 4H_2O + MgCl_2 \cdot 6H_2O$
27.35	6.12	4.19	$MgCl_2 \cdot 6H_2O$
32.30	0	4.01	$MgCl_2 \cdot 6H_2O$
0	27.70	11.00	FeCl ₂ ·4H ₂ O
18.31	10.40	10.86	FeCl ₂ .4H ₂ O
24.60	4,75	11.24	$FeCl_{2} \cdot 4H_{2}O + MgCl_{2} \cdot 6H_{2}O$
27.42	0.	11.10	MgCl ₂ ·6H ₂ O

reached by bubbling dry HCl gas through a solution with a composition corresponding to point A. This phenomenon was confirmed experimentally.

The solid phases found in this investigation are iron(II) chloride tetrahydrate and magnesium chloride hexahydrate only. The salts, $FeCl_2 \cdot 2H_2O$ (5) and $MgCl_2 \cdot HCl \cdot 7H_2O$ (2), and the double salt, $FeCl_2 \cdot MgCl_2 \cdot 8H_2O$ (3), were not detected.

LITERATURE CITED

- (1) Akumov, E.I., Spiro, N.S., Zh. Prik. Khim. 27, 1163 (1954).
- Kao, W.M., Kao, S.Y., Hua Hsueh Tung Pao 4, 242 (1966).
 Schedrina, A.P., Hrasnova, L.I., Ozerova, M.N., Zh. Neorg.
- (b) Schedrina, A.P., Ozerova, M.N., *Ibid.*, 9, 724 (1964).
 (4) Schedrina, A.P., Ozerova, M.N., *Ibid.*, 9, 724 (1964).
- (1) Schimmel, F.A., J. Amer. Chem. Soc. 74, 4689 (1952).

RECEIVED for review February 18, 1970. Accepted May 6, 1970.

Journal of Chemical and Engineering Data, Vol. 15, No. 3, 1970 449