than $\mathrm{H}_{2} \mathrm{O}$ over the entire temperature range; however, at the higher temperatures the viscosities of $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ appear to approach each other. For example, at 5° the difference between the viscosity of $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ is 0.4628 cP while at 70° the difference is only 0.0693 cP . One might attribute the decrease in the difference between the η of $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ to the formation of similar structure for $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ at high temperatures (i.e., if the larger η of $\mathrm{D}_{2} \mathrm{O}$ is due to greater structure). The effect of temperature on the differences between the compressibilities of $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ also agree with this suggestion (3, 4, 12).

In future work, we plan to investigate the temperature dependence of other pure solvents and hopefully use these results to obtain a better understanding of the structural properties of water by comparison.

LITERATURE CITED

(1) Arnett, E., McKelvey, D., "Solute-Solvent Interactions," p 653. edited by Coetzee, J.. and Ritchie, C., Marcel Dekker, New York, N. Y. (1969).
(2) Baker. W. N., LaMer, V. K., J. Chem. Phvs., 3, 406 (1935).
(3) Davis. C. M., Jr., Bradley, D. L., Ibid., 45, 2461 (1966).
(4) Feates, F. S.. Ives, D. J. G., J. Chem. Soc., (London) 1956 p 2798.
(5) Greyson, J.. J. Phvs. Chem., 71, 2210 (1967).
(6) Hardy, R. C., Cottington, R. L., J. Res. Natl. Bur. Stds., 42, 573 (1949).
(7) Jones, G., Fornwalt, H. J., J. Chem. Phys., 4, 30 (1936).
(8) Kell, G. S., J. Chem. Eng. Data, 12, 66 (1967).
(9) Korson, L., Drost-Hansen, W., Millero, F. J., J. Phvs. Chem., 73, 34 (1969).
(10) Lewis, G. N., MacDonald, R. T., J. Amer. Chem. Soc., 55, 4730 (1933).
(11) Millero, F. J., Rev. Sci. Instrum., 38, 1441 (1967).
(12) Millero, F. J., Lepple, F. K., J. Chem. Phys., in press (1971).
(13) Nemethy, G., Scheraga, H. A., J. Chem. Phys., 41, 680 (1964).
(14) Swain, C. G., Badar, R. F. W., Tetrahedron, 10, 182 (1960).
(15) Taylor, H. S.. Selwood, P. W., J. Amer. Chem. Soc., 56, 998 (1934).
(16) Thomas, M. R., Scheraga, H. A., Schrier, E. E., J. Phys. Chem., 69, 3722 (1965).
(17) Timrot, D. L., Shiuskaya, K. P., At. Energ., 7, 459 (1959).
(18) Whalley, E., "Proceedings of 1957 IUPAC Joint Conference on Thermodynamics and Transport Properties of Fluids," pub. by Inst. Mech. Eng., London, 1959, p 15-25.

Received for review June 18, 1970. Accepted October 7, 1970. The authors wish to acknowledge the support of the Office of Naval Research (NONR 4008-02) and the National Science Foundation (GA-17386) for this study. Contribution number 1283 from the Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Fla. 33149

Heats of Combustion, Heats of Formation and Vapor Pressures of Some Organic Carbonates

Estimation of Carbonate Group Contribution to Heat of Formation

JONG KWON CHOI ${ }^{1}$ and MICHAEL J. JONCICH ${ }^{2}$

Department of Chemistry, Northern Illinois University, Dekalb, III. 60115

Abstract

Heats of combustion were measured, using oxygen bomb calorimetry, for some organic carbonates-i.e., ethylene carbonate, diethyl carbonate, propylene carbonate, vinylene carbonate, di-(p-phenylbenzyl)carbonate. Sublimation pressure of low vapor pressure compounds-i.e., ethylene carbonate-were measured by the Knudsen effusion method. High vapor pressure compounds-i.e., propylene carbonate, diethyl carbonate, and vinylene carbonate-were measured using a modified manometric apparatus. The gaseous phase heats of formation were used to estimate the carbonate group contribution to the heat of formation. A value of $-133 \pm 1 \mathrm{kcal} / \mathrm{mole}$ was obtained.

S_{i}

 Simple methods of calculating thermodynamic properties of organic compounds readily and with a minimum of data have been developed by a number of workers, and have been reviewed critically by Reid and Sherwood (11), Janz (6) and Benson (1). From the various possibilities, the additive-atomic group method was selected to calculate the organic carbonate group contribution to the heat of formation in the gaseous state. An additive-atomic group contribution method for heats of formation (gas) has been developed by Franklin (4) for hydrocarbons and other organic compounds such as simple free radicals. The method of Franklin is based on the extension of the relations and principles developed by Pitzer (10) for the long-chain paraffins.[^0]
EXPERIMENTAL

Vapor Pressure Measurements. The Knudsen effusion method (7,12) was employed to measure the sublimation pressure of low vapor pressure compounds, whereas a modified manometric method was employed for high vapor pressure compounds.
Knudsen Effusion Method. The measurement of weight loss in a known period of time at a known constant temperature allows the calculation of the vapor pressure, using the effusion formula, and assuming that the pressure in the vacuum above the effusion hole is negligibly small compared to the vapor pressure of compounds to be measured. A high vacuum system is required when using this method; details of this system are available elsewhere (3).

The following Knudsen effusion formula was used to calculate the sublimation pressure after insertion of proper values for the constants:

$$
\begin{equation*}
P_{\mathrm{mm} \mathrm{Hg}}=17143 . \overline{5}(G / A \cdot t)(T / M)^{: 2} \tag{1}
\end{equation*}
$$

where P is the pressure of the saturated vapor inside the Knudsen cell, G is the weight in grams lost by effusion, A is the orifice area of Knudsen cell in cm^{2}, t is the time in seconds for loss of G grams, T is the absolute temperature in ${ }^{\circ} \mathrm{K}$, and M is the molecular weight of sample.

Modified Manometric Method. It was necessary to devise a different method and apparatus for the measurement of vapor pressures of compounds which have high vapor pressure at room temperature. The modified manometric method was employed for this purpose, and a schematic diagram of the apparatus employed is shown in Figure 1. In this diagram, R_{t} and R_{b} represent the reaction chamber, top and bottom, respectively. $R_{\text {in }}$ is the water inlet to $R_{\mathrm{t}} ; R_{\text {out }}$ is the water outlet to the bath. $B_{\text {out }}$ is the water outlet of the bath connected to R_{in}. I_{s} is the sample inlet to $R_{\mathrm{b}} ; F$, is a frit covered with mercury; P_{i} is a clamp holding R_{t} and R_{b} together.
The over-all height of the reaction chamber is 160 cm and the inside diameter of the chamber is 5 cm . The closed-end U-type mercury manometer is fastened to the top of the reaction chamber, R_{t}. An accurate, mercuryfilled thermometer (the range of accuracy $\pm 0.05^{\circ} \mathrm{C}$) is attached to the manometer. A fine frit, covered with mercury, forms the closed end of the manometer. This allows the lower pressure arm of the manometer to be evacuated without difficulty. Such a frit is also employed for the sample inlet, I_{s}. The reaction chamber consists of two parts, top part, R_{t}, and the bottom part, R_{b}. These two parts are joined together with an O-ring held by clamp P_{j}. This design provides many advantages with regard to such items as handling and filling.
After the reaction chamber as shown in Figure 1 is assembled, the entire system was evacuated and the bottom part was immersed in the constant-temperature bath (Haake Gebroede, Berlin-Steglitz, West Germany). $R_{\text {in }}$ was connected to $B_{\text {oux }}$, and water was allowed to circulate around the top part of the reaction chamber. Since the constanttemperature water bath employed is equipped with a strong water pump as a component part, the rate of water circulation was rapid enough that the temperature difference

Figure 1. Schematic diagram of the modified vapor pressure measurement apparatus for liquid compounds
R_{t} and R_{b} Reaction chamber top and battom, respectively
$R_{\text {in }}$ Water inlet ta R_{T}
$R_{\text {out }}$ Water outlet to the bath
Bout Water outlet of the bath connected to $R_{\text {in }}$
Is Sample inlet to R_{b}
F Frit cavered with mercury
P_{f} Clamp holding R_{+}and R_{b} tagether
between the inside and the outside of the bath was less than $\pm 0.1^{\circ} \mathrm{C}$, the range of accuracy of temperature measurement. The temperature can be changed very easily and quickly by using the adjustable thermoregulator.
The reaction chamber was evacuated to a pressure of less than 0.1 micron Hg by using a mechanical pump and a one-stage glass oil-diffusion pump. The system was tested by a vacuum maintained for more than 12 hr when isolated from the pumping. After the system was evacuated, the sample was introduced through the sample inlet, I_{s}, at the end of which a frit is attached. After thermal equilibrium was established, the vapor pressure was measured. The vapor pressure was simply the difference in height between the two mercury columns as measured by a cathetometer (Griffin \& George Ltd., London, England).
When a constant pressure was obtained at one temperature, the temperature was changed and the same procedure was repeated at the new temperature. Before one compound was changed to the next, the whole system was evacuated as completely as possible. The entire system was then cleaned thoroughly to remove any contamination of the mercury manometer by sample and also to prevent the contamination of one sample by another.

Measurement of Heat of Combustion. An adiabatic oxygen bomb calorimeter (Parr Instrument Co. Inc., Moline, Ill.) was employed for measuring heats of combustion of organic carbonates. The internal volume of this double-valved oxygen bomb, whose cylinder and head are made of Durimet 20 , was 360 ml . The initial oxygen pressure was 30 atm . Temperature rise was measured by Dymec model 2801 A quartz thermometer (Dymec, A Division of HowlettPackard Co., Palo Alto, Calif.). The calorimetric system was calibrated with National Bureau of Standards benzoic acid which had a heat of combustion of 6317.8 defined thermochemical calories per gram.

Seven experiments gave a calorimetric equivalent of $-2538.2 \pm 0.8 \mathrm{cal} /{ }^{\circ} \mathrm{C}$. The correction for the formation of nitric acid which was titrated with standard solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.0725 \mathrm{~N})$ never exceeded more than 0.5 cal and was based on a value of $-14.0 \mathrm{kcal} / \mathrm{mole}$ for the heat of formation of nitric acid from nitrogen, oxygen, and water. The ice point was taken as $273.15^{\circ} \mathrm{K}$. Whenever the combustion was carried out, the inside of the bomb was carefully examined for soot due to the incomplete combustion. The $\Delta n R t$ terms were applied for obtaining ΔH_{t}°.

Materials. The zone refining method (9) using commercial zone refiner (Material Research Co., Orangeburg, N.Y.) was employed for purification of ethylene carbonate

(mol wt 88.06, mp $39-42^{\circ} \mathrm{C}$, Aldrich Chemical Co. Inc. Milwaukee, Wis.). The solid sample was usually dried under high vacuum to remove volatile impurities and moisture. Purity of liquid samples was checked using a Bausch \& Lomb refractometer. Agreement with values given by manufacturers was quite good-for example, propylene carbonate

(mol wt 102.09, bp $241.7^{\circ} \mathrm{C}$, Jefferson Chemical Co., Inc., Houston, Tex.), $n_{\mathrm{D}}^{225}=1.4201\left(n_{\mathrm{D}}^{20}=1.4209\right)$; vinylene carbonate

(mol wt 86.05, Aldrich Chemical Co. Inc., Milwaukee, Wis.), $n_{1}^{23}=1.4225\left(n_{\mathrm{D}}^{23}=1.4228\right)$; diethyl carbonate, $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2}-$ CO , (mol wt 118.13 , bp $126.8^{\circ} \mathrm{C}$, FMC Co., New York, N. Y.), $n_{1}^{2 \pi}=1.3882\left(n_{D}^{25}=1.3852\right)$. Values in parenthesis are given by manufacturers.

RESULTS AND DISCUSSION

Heats of combustion, formation, vaporization, or sublimation are given in Table I. Heats of formation (solid or liquid) were obtained according to the relationship between heats of formation (solid or liquid) and heats of combustion
for the general organic compound, $\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{N}_{c} \mathrm{O}_{\mathrm{d}}$, where
 $=-68.315 \mathrm{kcal}$ per mole were employed (13).

The heat of formation (gas), $\Delta \dot{H}_{i|g|}$, has the following relation to the heat of formation (solid or liquid) and with the heat of sublimation or vaporization.

The Clausius-Clapeyron equation was employed for calculation of the heat of sublimation or vaporization from vapor pressure data-i.e.

$$
\begin{equation*}
d \ln P=-(\Delta H R) d(1 T) \tag{4}
\end{equation*}
$$

$\ln P$ was plotted as a function of $1 / T$. The slope of the straight line obtained is $-\Delta H R$, where ΔH is the heat of vaporization or sublimation. The graph for such a plot is shown in Figure 2. The vapor pressure data are given in Table II. No ideal gas correction was performed because of lack of data (2). The Knudsen effusion method was employed to measure the vapor pressure for low vapor pressure compounds whereas the modified manometric method was employed for the high vapor pressure compounds.

The group contribution of the carbonate group to the heat of formation (gas) was calculated by using the Franklin's method (4,5). The heat of formation in the gaseous state of ethylene carbonate consists of the group contribution of two methylene groups and a carbonate group. According to the Franklin's method, the group contribution to the heat of formation in the gaseous state of the methylene group. CH_{2}, is $-4.93 \mathrm{kcal} /$ mole at $298^{\circ} \mathrm{K}$. Therefore the following equation is readily obtained:

$$
\begin{equation*}
\Delta H_{i(G)}=2 \Delta H_{\cdot} \mathrm{H}+(1) \Delta H \tilde{\gamma} \mathrm{O} \tag{4}
\end{equation*}
$$

Therefore

$$
\Delta H_{i}^{(0}=\Delta H_{(W)}-2 \Delta H_{\overline{(} \cdot H}=-144.43-2(-4.93)=
$$

-134.58 kcal mole

			Unit: kcal mole	
Compounds	ΔH^{*}	$\Delta H_{\text {fin }}$ il	$\Delta H_{\text {vap, wib }}$	$\Delta \hat{f}_{\mid \underline{q}}$
Ethylene carbonate	-255.58	-163.20	18.77	-144.43
Propylene carbonate	-430.14	-151.01	7.33	-143.68
Diethyl carbonate	-638.75	-173.08	9.35	-163.53
Vinylene carbonate	-240.56	-109.91	9.86	-100.55
Di-(p-phenylbenzyl! carbonate	-3214.15	-76.69	$26.7{ }^{\circ}$	-50.0°

"Heats of combustion data are the average values more than tour experiments. "The estimated values (for further details, refer to Discussion section).

Figure 2. Plot in P vs $1 / T$

- Propylene carbonate (pressure in mm Hg)

4 Diethyl carbonate ($\mathrm{mm} \mathrm{Hg} \times 10^{\text {i }}$)
(4) Vinylene corbonate (mm Hg)

- Ethylene carbonate ($\mathrm{mm} \mathrm{Hg} \times 10^{3}$)
where ΔH_{c}° and $\Delta H_{i} \mathrm{H}$, are the group contribution to the heat of formation (gas) from the carbonate and methylene groups, respectively. According to the same procedure. carbonate group contribution from propylene carbonate, diethyl carbonate and vinylene carbonate were estimated to be $-130.9,-133.4$, and $-118.9 \mathrm{kcal} / \mathrm{mole}$, respectively.

The average carbonate contribution to the heat of formation (gas) was estimated to be $-133 \pm 1 \mathrm{kcal} / \mathrm{mole}$. However, this is not the case for the carbonate group

Table II. Vapor Pressures of Organic Carbonates

Compounds	Temp, ${ }^{\circ} \mathrm{K}$	Av, mm Hg
Ethylene carbonate	273.9	2.15×10
	286.1	7.39×10
Propylene carbonate	296.6	21.72×10
	328.2	1.20
	338.6	1.78
	358.6	3.14
Vinylene carbonate	369.6	5.07
	308.2	5.12
	318.7	8.42
	328.0	14.07
	338.2	20.84
	348.2	33.06
	399.8	73.31
	308.3	21.97
	317.3	32.68
	318.4	34.45
	324.9	46.98
	328.4	55.61
	338.1	86.23
	339.2	89.68
	348.0	130.82
	348.9	135.26
	358.2	195.75
	358.5	197.98
	367.8	280.18
	368.4	286.22

for vinylene carbonate unless suitable corrections are employed. The carbonate group contribution for vinylene carbonate calculated according to the Franklin's method turned out to be $-118.9 \mathrm{kcal} / \mathrm{mole}$ without using any correction factor when the

was assumed to have the cis- configuration. It was a wellknown fact that the calculations for monoolefins are complicated by hyperconjugation (8) and cis-trans isomerism and proved not to be strictly additive. If it is assumed that there is resonance between the double bond in

group then the resonance correction factor, $12.04 \mathrm{kcal} /$ mole, must be added $(4,5)$. This correction leads to a revised value for the carbonate contribution of vinylene carbonate to be $-130.9 \mathrm{kcal} /$ mole. This corrected value is in good agreement with the calculated value.
The heat of formation (solid) of di-(p-phenylbenzyl) carbonate was calculated to be $-76.69 \mathrm{kcal} /$ mole from the heat of combustion according to Equation 2. The vapor pressure of this compound could not be measured because of lack of sample compound. Therefore, the heat of sublimation and the heat of formation (gas) could not be obtained. By utilizing our estimated value for carbonate group contribution to the heat of formation (gas), the heat of formation (gas) of this carbonate compound might be estimated to be $-50.0 \mathrm{kcal} /$ mole, if the heat of formation (gas) was assumed to consist of contributions from $18 \leftrightarrows \mathrm{CH}$ groups, six $\leftrightarrows \mathrm{C}$ - groups and two CH_{2} groups, and a carbonate group, where contributions from $\mathrm{a} \leftrightarrows \mathrm{CH}$ and a $\leftrightarrows \mathrm{C}-$ and $\mathrm{a} \mathrm{CH}_{2}$ were $+3.30,+5.57$, and $-4.926 \mathrm{kcal} /$ mole, respectively, and a $\leftrightharpoons \mathrm{CH}$ and a $\leftrightharpoons \mathrm{C}$ - indicate a resonating structuree.g., one of the CH groups in benzene according to the Franklin's method $(4,5)$. The heat of sublimation of this compound was estimated to be $+26.7 \mathrm{kcal} /$ mole from the heat of formation (solid) and the estimated heat of formation (gas) according to Equation 3.

The Knudsen effusion system and the modified manometric apparatus were calibrated using mercury and water, respectively, whose vapor pressures were well-known and in good agreement with the literature value (14) within the experimental error.

NOMENCLATURE

$A=$ orifice area of the Knudsen cell in cm^{2}
$B_{\text {out }}=$ water outlet of the bath connected to $R_{\text {in }}$
$\mathrm{bp}=$ boiling point, ${ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
& F_{r}=\text { frit covered with mercury } \\
& G=\text { weight lost by effusion, grams } \\
& \Delta H_{\%}^{2}=\text { heat of combustion, kcal/mole } \\
& \Delta H_{\mathcal{P}}^{(\mathrm{g}, \mathrm{l} . \mathrm{s})}=\text { heat of formation (gas. liquid, or solid), kcal/ } \\
& \Delta H_{\text {vap or sub }}=\text { heat of vaporization or sublimation, kcal/mole } \\
& \Delta H_{8 O}, \mathrm{CH}_{2} \text { etc }=\text { group contribution to the heat of formation } \\
& \text { (gas) from the carbonate group. } \mathrm{CH}_{3} \text {, etc.. } \\
& \text { respectively, kcal/mole } \\
& I_{\mathrm{s}}=\text { sample inlet to the reaction chamber } \\
& \mathrm{ml}=\text { mililiter } \\
& \mathrm{mp}=\text { the melting point } \\
& n=\text { the refractive index } \\
& P=\text { pressure. } \mathrm{mm} \mathrm{Hg} \\
& P_{F}=\text { clamp which holds } R_{\mathrm{t}} \text { and } R_{\mathrm{h}} \text { together } \\
& R=\text { universal gas constant } \\
& R_{\mathrm{t}}, R_{\mathrm{b}}=\text { the reaction chamber, top and bottom, respec- } \\
& \text { tively } \\
& R_{\text {in }}, R_{\text {out }}=\text { water inlet to } R_{\mathrm{t}} \text { and the water outlet to the } \\
& \text { bath. respectively } \\
& t=\text { time, sec } \\
& T=\text { abs temp, }{ }^{\circ} \mathrm{K}
\end{aligned}
$$

LITERATURE CITED

(1) Benson, S. W., Cruickshank, F. R.. Golden, D. M., Haugen. G. R., O'Neal. H. E., Rodgers, A. S., Shaw, R., Walsh, R.. Chem. Rev, 69, 279 (1969).
(2) Bratton, W. K.. Szillard, I.. Cupas. C. A.. J. Org. Chem.. 32, 2019 (1967).
(3) Choi. J. K., MS thesis, Northern Illinois University. DeKalb. Ill., 1970.
(4) Franklin, J. L., Ind. Eng. Chem., 41, 1047 (1949).
(5) Franklin, J. L., J. Chem. Phvs., 21, 2129 (1958).
(6) Janz, G. J., "Thermodynamic Properties of Organic Compounds," revised ed., p 58. Academic Press, New York, 1968.
(7) Knudsen, M., "The Kinetic Theory of Gases," p 1, Methuen Co., London, 1950.
(8) Mulliken, R. S., Rieke, C. A., Brown, W. G., J. Amer. Chem. Soc., 63, 41 (1941).
(9) Pfann, W. G., "Zone Melting," 2nd ed., p 27, Wiley. New York, ‥ Y., 1966.
(10) Pitzer, K. S., J. Chem. Phys., 8, 711 (1940).
(11) Reid, K. C., Sherwood, T. K., "The Properties of Gases and Liquids," 2nd ed., p 160, McGraw-Hill, New York. N. Y.. 1966.
(12) Thomson, G. W., in "Techniques of Organic Chemistry," p 461, 3rd ed., Part I, Vol. I, Weissberger, A., Ed., Interscience. New York, N. Y., 1952.
(13) Wagman, D. D., Evans, W. H., Halow. I., Parker, V. B.. Bailey, S. H., Shumm, R. H., Natl. Bur. Standards (U. S.) Tech. Note, 270-1, Part I, U. S. Dept, of Commerce. Oct. 1, 1965.
(14) Weast. R. C., Sielby, S. M., Hodgman, C. D.. Eds.. "CRC Handbook of Chemistry and Physics," 46th ed., D-94, D-96, The Chemical Rubber Co., Cleveland, Ohio, 1966.

Received for review July 6, 1970. Accepted October 12. 1970.

[^0]: ${ }^{\text {I }}$ To whom correspondence should be addressed.
 ${ }^{2}$ Present address, Special Training Division, Oak Ridge Associated Universities, Oak Ridge, Tenn. 37830

