Vapor-Liquid Equilibrium Relationships of Binary Systems

Propane-n-Alkane Systems, n-Hexane and n-Heptane

WEBSTER B. KAY
Department of Chemical Engineering, The Ohio State University, Columbus, Ohio 43210

Abstract

The $P-V-T-x$ relationships of the propane-n-hexane system and the $P-T-x$ relationships of the propane-n-heptane system have been determined. The experimental results cover a range from about 200 psia and room temperature to the highest pressure and temperature at which liquid and vapor can coexist. The data are presented in tabular form. $P-T-x$, density- $T-x$, and T-x diagrams are given.

This investigation of the P-V-T-x relationships of binary systems composed of the n-alkanes with propane was undertaken to study the effect of the relative size of the molecules on the phase behavior of their mixtures. In a previous paper (2) these data were reported for the binary systems composed of n-butane and n-pentane with propane. In this paper, a summary of the $P-V-T-x$ data for the propane-n-hexane and the P-T-x data for the propane- n-heptane systems are given.

EXPERIMENTAL

The $P-V-T-x$ relationships were obtained by the experimental determination of the $P-T$ border curves of a series of mixtures of each of the binary systems. The relationships between any set of variables were then derived by appropriate cross plots of the curves.

The static method of measuring vapor pressure and the orthobaric densities of the liquid and vapor phases was employed. An air-free sample of known composition was enclosed over mercury in the sealed end of a precisionbore glass capillary of $2-\mathrm{mm}$ i.d. The tube was fastened in a mercury-filled compressor and heated by the vapors of pure boiling liquids confined in a jacket surrounding the tube. The liquids were vaporized in a side-arm flask attached to the jacket. By controlling the pressure over the boiling liquid, the temperature of the condensing vapors was held constant to $0.02^{\circ} \mathrm{C}$, as measured with a copperconstantan thermocouple with the aid of a sensitive potentiometer. The couple was calibrated by comparing it with a platinum resistance thermometer, which had been certified by the National Bureau of Standards, at a series of temperatures covering the temperature range of the measurements. From these data, a deviation curve was constructed for correcting the thermocouple reading. The pressure was indicated by a precision spring gage, marked in 2 psi divisions and read to within 0.2 psi . It was checked at $20-\mathrm{lb}$ intervals by means of a calibrated dead weight gage. A deviation curve was constructed which was used to correct the indicated pressure. The length of the tube occupied by the sample was measured with a cathetometer reading to 0.02 mm . The total volume of the tube was expressed analytically as a function of the distance from the sealed end. The coefficients of the equation were determined by a least-square procedure using experimental values of the mass of mercury required to fill the tube to various levels. Equilibrium between the liquid and vapor phases was attained by moving a small steel ball, enclosed in the tube, by means of a magnet around the outside of the jacket.

MATERIALS AND PREPARATION OF MIXTURES

The propane, n-hexane, and n-heptane had a purity of $99.5 \mathrm{~mol} \%$ or better. They were used without further purification except that each was degassed by freezing with liquid nitrogen, pumping off the noncondensable gas until

Figure 1. Pressure-temperature diagram of propane-n-hexane system

Figure 2. Pressure-temperature diagram of propane-n-heptane system

Table I. Summary of Temperature, Pressure and Density Relationships at Phase Boundaries

			Pr	hexan	a by Por	(6)			
Press, $\mathrm{lb} / \mathrm{in} .{ }^{2}$ abs	Temp, ${ }^{\circ} \mathrm{C}$	Density, g / cc	Temp, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Density, } \\ \mathrm{g} / \mathrm{cc} \end{gathered}$	Press, lb/in. ${ }^{2}$ abs	Temp, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Density, } \\ \mathrm{g} / \mathrm{cc} \end{gathered}$	Temp, ${ }^{\circ} \mathrm{C}$	Density, g/cc

Composition: 21.98 Mol \% Propane

150	110.3	0.509	158.3	\ldots	350
200	129.5	0.486	171.4	\ldots	400
250	145.7	0.478	182.0	\ldots	450
300	159.5	0.441	191.2	\ldots	500
350	171.8	0.419	199.4	\ldots	550
400	183.0	0.395	207.0	0.093	600
450	193.8	0.367	213.5	0.115	650
500	204.2	0.333	217.5	0.1458	700
540	213.8	0.278	\ldots	\ldots	724

Composition: 45.98 Mol \% Propane					
200	82.5	0.515	150.5	\ldots	
250	98.0	0.495	160.2	\ldots	200
300	111.1	0.478	168.5	\ldots	250
350	123.2	0.459	175.7	\ldots	300
400	134.8	0.441	182.1	\ldots	350
450	145.3	0.421	187.8	\ldots	400
500	155.6	0.399	192.4	0.1024	450
550	165.5	0.375	195.8	0.1265	500
600	174.8	0.348	197.4	0.156	550
650	185.5	0.300	193.8	0.225	600
655	187.5	0.287	192.5	0.241	650
					700
					718

Composition:	81.29 Mol \% Propane		
51.8	0.502	106.7	\ldots
63.2	0.486	114.3	\ldots
73.0	0.470	120.7	\ldots
81.8	0.455	126.2	\ldots
89.8	0.439	131.3	\ldots
97.6	0.422	135.7	\ldots
104.7	0.404	139.5	\ldots
111.6	0.384	142.2	0.2000
118.4	0.361	144.4	0.1730
124.8	0.335	145.7	0.1550
132.5	0.391	145.0	0.120
138.0	0.244	142.5	0.0945

Composition: 91.76 Mol \% Propane

55.2	0.464	90.1	\ldots
64.6	0.448	96.2	\ldots
72.6	0.433	101.8	\ldots
80.3	0.416	106.6	\ldots
87.1	0.399	110.5	\ldots
93.6	0.381	114.1	0.0800
99.6	0.360	117.0	0.0927
105.4	0.337	119.4	0.1112
11.4	0.299	121.1	0.150
117.0	0.239	120.4	0.180

the pressure was less than 10^{-6} torr, followed by melting and freezing. This cyclic process was repeated $8-10$ times. The effectiveness of the deaerating process was checked by measuring the isothermal pressure change between the bubble and dew point of a sample of the pure liquid. The purity was considered satisfactory if the pressure change was no greater than 1.5 psi .
Mixtures of propane with either n-hexane or n-heptane were prepared by loading the experimental tube with a sample of pure n-hexane, calculating the weight from the measured volume and density, and then adding a measured volume of propane gas to make a mixture of known concentration. The apparatus and procedure have been described in previous publications $(1,3)$.

EQUILIBRIUM DATA

Measurements of the pressure and temperature at the bubble and dew points were made for a series of mixtures of known composition of both propane- n-hexane and propane- n-heptane. The data were plotted and are shown
in Figures 1 and 2. Figure 3 shows the density-temperature curves for the six mixtures of propane and n-hexane. Largescale plots of these diagrams were constructed from which values of the temperature and density at the bubble and dew points were read at regular intervals of the pressure. These are listed in Tables I and II. T- x data were obtained from cross plots of Figures 1 and 2; Tables III and IV list the temperatures at the bubble and dew points at regular intervals of the composition. From the $T-x$ diagrams, vapor-liquid equilibrium ratios, $K=y / x$, for each of the components in each of the systems were calculated and are given in Tables V and VI. The pressure and temperature at the critical point, maximum pressure point, and maximum temperature point on the $P-T$ border curves of each of the mixtures are listed in Tables VII and VIII. Densities are given only for the propane- n-hexane system. The critical point was determined visually by the disappearance-of-themeniscus method, whereas the pressure and temperature at the maximum pressure and maximum temperature points were obtained graphically from large plots of the $P-T$ border curves in the critical region of the mixture. The

Table II. Summary of Temperature and Pressure Relationships at Phase Boundaries

Propane-n-heptane system, data by Ng (5)					
Press, $\mathrm{lb} / \mathrm{in}$. ${ }^{\text {. }}$ abs	Liquid temp, - C	Vapor temp, ${ }^{\circ} \mathrm{C}$	Press, $\mathrm{lb} / \mathrm{in}$. abs	Liquid temp, ${ }^{\circ} \mathrm{C}$	Vapor temp, ${ }^{\circ} \mathrm{C}$
Compn: 21.39 Mol \% Propane			Compn: 71.54 Mol \% Propane		
300	180.0	229.5	700	150.4	189.5
350	194.0	236.0	750	158.8	186.1
400	208.1	243.0	Compn: 85.06 Mol \% Propane		
450	221.4	248.3			
500	234.0	250.3	300	69.6	
			350	79.1	
Compn: 51.87 Mol \% Propane			400	87.0	
350	120.2	209.2	450	94.7	
400	131.2	214.3	550	101.8	156.0
450	142.0	217.7	600	114.8	157.9
500	152.2	219.9	650	120.7	159.2
550	163.5	220.6	700	126.7	159.2
600	172.6	220.8	750	136.8	156.6
650	183.6	219.9			
700	214.0	193.8	Compn: 90.90 Mol \% Propane		
Compn: $71.54 \mathrm{Mol} \%$ Propane			300	65.2	119.2
350			350	73.6	125.2
400	100.8		400	81.4	130.4
450	109.4			88.4	134.3
500	117.6	18.6	50	94.	136.7
550					
	127.6	188.1	600	107.2	138.2
600	133.8	188.9	650	113.7	138.0
650	142.3	189.8	700	120.7	136.5

Table III. Isobaric Temperature-Composition Relationships
of Propane-n-Hexane System

Compn, mol \% propane	Temperature, ${ }^{\circ} \mathrm{C}$					
	Press lb/in. ${ }^{2}$ abs					
	300		400		500	
	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
0	209.0	209.0	228.2	228.2		
10	186.0	200.9	206.6	218.7		
20	164.0	192.8	185.7	209.0	208.4	219.6
30	142.7	184.2	165.6	199.1	187.9	210.0
40	122.4	174.7	146.5	188.8	167.6	199.6
50	106.8	164.5	129.6	177.7	148.1	187.8
60	94.2	153.2	114.6	165.5	132.2	174.7
70	83.4	139.8	102.0	151.2	118.5	160.0
80	74.0	123.2	91.1	133.8	106.4	142.6
90	65.8	101.4	81.7	111.4	95.5	119.1
100	59.0	59.0	73.2	73.2	85.1	85.1

	600		700		723.8	
40	187.8	203.2	\ldots		\ldots	
50	166.5	192.8				
60	149.0	180.0	169.4	175.8		
70	133.7	164.9	149.6	164.5		
76.0					148.9	148.9
80	120.2	146.8	134.6	148.2		
88.3			126.4	126.4		
90	107.6	124.2				
100	95.1	95.1				

Table IV. Isobaric Temperature-Composition Relationships of Propane-n-Heptane System

Compn, $\mathrm{mol} \%$ propane	Temperature, ${ }^{\circ} \mathrm{C}$					
	Press, lb/in. ${ }^{2}$ abs					
	300		400		500	
	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
0	246.0	246.0	266.0	266.0		. . \cdot
10.0	214.2	238.8	239.5	258.7		
16.8					252.0	252.0
20	184.0	231.0	211.8	249.0	238.5	253.8
30	150.6	223.0	185.0	239.0	209.7	244.0
40	131.3	214.5	159.2	228.1	182.4	233.5
50	110.5	205.2	135.4	216.2	157.0	222.0
60	95.9	193.0	117.2	202.0	137.0	207.4
70	83.0	174.4	103.0	183.6	119.8	190.2
80	74.0	151.2	91.9	160.0	107.5	168.6
90	67.0	118.5	81.8	127.0	96.7	137.0
100	58.5	58.5	73.8	73.8	84.8	84.8
	600		700			
33.0	235.0	235.0				
40	202.0	235.8				
49.2			214.0	214.0		
50	177.0	223.8	201.5	216.8		
60	155.5	209.0	172.7	206.0		
70	136.3	192.0	152.8	192.0		
80	121.2	171.2	135.0	173.0		
90	108.0	141.8	199.0	141.8		
100	95.2	95.2	117.0	117.0		

Table V. Vapor-Liquid Equilibrium Ratios for Propane-n-Hexane System

Figure 3. Density-temperature relationships of propane-nhexane system

${ }^{0}$ Ref. 2. ${ }^{b}$ Ref. 1.
experimental data have been deposited with ASIS. The coordinates of the maximum pressure point in the $P-T$. x space are as follows:

Propane-n-hexane: $P=724 \pm 1.0 \mathrm{psia} ; T=148.9 \pm 0.5^{\circ} \mathrm{C} ; \mathrm{mol}$ $\%$ propane, 76 ± 1.0
Propane-n-heptane: $P=786 \pm 1.0 \mathrm{psia} ; T=163.5 \pm 0.5^{\circ} \mathrm{C} \mathrm{mol}$ $\%$ propane, 77 ± 1.0
The accuracy of the tabulated data is estimated to be as follows: Temperature, $\pm 0.5^{\circ} \mathrm{C}$; pressure, $\pm 2.0 \mathrm{psi}$; density, $\pm 0.001 \mathrm{~g} / \mathrm{cc}$ for the liquid; and $\pm 0.0001 \mathrm{~g} / \mathrm{cc}$ for the vapor. However, in the critical region, the uncertainty in the values reported may be somewhat greater because of the difficulty in assessing the accuracy of the measurements in this region.

ACKNOWLEDGMENT

Acknowledgment is made to John D. Porthouse and to Soon Ng for their efforts in obtaining the experimental
data and in the reduction of the data, and to the Phillips Petroleum Co. for samples of pure hydrocarbons.

LITERATURE CITED

(1) Kay, W. B., J. Amer. Chem. Soc., 68, 1336 (1946).
(2) Kay, W. B., J. Chem. Eng. Data, 15, 46 (1970).
(3) Kay, W. B., Rambosek, G. M., Ind. Eng. Chem., 45, 221 (1953).
(4) McMicking, J. H., Kay, W. B., Proc. Amer. Inst., Section III, 45 (3) 75 (1965).
(5) Ng, Soon, MS thesis, Ohio State University, Columbus, Ohio, 1961.
(6) Porthouse, J. D., ibid., 1962.

Received for review May 25, 1970. Accepted September 22, 1970. For the experimental data, order NAPS Document No. 01221 from ASIS National Auxiliary Publications Service, $\%$ CCM Information Services, Inc., 909 Third Ave., New York, N. Y. 10022; remitting $\$ 2.00$ for microfiche or $\$ 5.00$ for photocopies.

