

Figure 1. Dependence on concentration of the osmotic coefficients of cupric perchlorate (3), calcium perchlorate (6), calcium chloride (12), and cupric chloride (5)

perchlorate (3), and cupric chloride (5). The curves for the first three salts are typical of fully dissociated, highly solvated electrolytes; that for cupric chloride is such as to suggest incomplete dissociation. Spectrophotometric measurements of cupric chloride in lithium chloride solution (1) suggest that formation of $CuCl^+$ is likely. Any such reduction in the number of Cu^{2+} ions in a CuCl₂ solution suffices to explain, at least qualitatively, why b_{01} is different in the $CaCl_2-Ca(ClO_4)_2$ and $CuCl_2-Cu(ClO_4)_2$ systems.

NOMENCLATURE

- ϕ = osmotic coefficient of a mixed salt solution
- = osmotic coefficients of solutions of salts A and B,

respectively, at ionic strength equal to the total ionic strength of the mixed salt solution, I

- $y_A = m_A/m, y_B = m_B/m$
- m_A and m_B = molalities (mole kg⁻¹) of A and B, respectively, in the mixed salt solution

 $m = m_A + m_B$ $\Delta \equiv \nu (\phi - y_A \phi_A^0 - y_B \phi_B^0)$

In this paper, $A = \text{CaCl}_2$, $B = \text{Ca}(\text{ClO}_4)_2$, $\nu = 3$

LITERATURE CITED

- Brown, J. B., Trans. Roy. Soc. New Zealand, 77, 19 (1948). (1)
- Covington, A. K., Lilley, T. H., Robinson, R. A., J. Phys. (2)Chem., 72, 2759 (1968).
- Libus, Z., Sadowska, T., ibid., 73, 3229 (1969). (3)
- Robinson, R. A., J. Phys. Chem., 65, 662 (1961). (4)
- Robinson, R. A., Trans. Faraday Soc., 36, 1137 (1940). (5)
- (6)Robinson, R. A., Lim, C. K., Ang, K. P., J. Amer. Chem. Soc., 75, 5130 (1953).
- (7)Robinson, R. A., Stokes, R. H., J. Phys. Chem., 65, 1954 (1961).
- (8)Rush, R. M., Oak Ridge National Laboratory Report 4402, p 6 (1969).
- (9)Rush, R. M., Robinson, R. A., J. Tenn. Acad. Sci., 43, 22 (1968)
- (10)Scatchard, G., J. Amer. Chem. Soc., 83, 2636 (1961).
- Scatchard, G., ibid., 90, 3124 (1968). (11)
- (12)Stokes, R. H., Trans. Faraday Soc., 41, 637 (1945).
- (13)Yoest, R. L., PhD Thesis, Massachusetts Institute of Technology, 1964.

RECEIVED for review April 27, 1970. Accepted December 4, 1970.

Densities of Some Nitrate and Sulfate Melts

L. G. BOXALL¹ and K. E. JOHNSON²

Department of Chemistry, University of Saskatchewan, Regina, Sask., Canada

The densities of NaNO₃-KNO₃ (45:55 mol %), LiNO₃-KNO₃ (41:59), KNO₃-LiNO₃ (41:59), and NaNO₃–LiNO₃ (46:54) melts are reported for a temperature range of some 200° together with that of Li₂SO₄-Na₂SO₄-K₂SO₄ eutectic at 550°C. Molar volumes of the nitrate mixtures are additive to within 1.3%.

Although the densities of several molten nitrate mixtures are recorded in the literature, the data for four mixtures, employed in a series of electrochemical investigations, are not known. It was therefore necessary to make density measurements of these, and the values have been compared with those calculated upon the assumption of additivity of molar volumes. The density of a ternary sulfate eutectic, also a common solvent, was also measured and is recorded here.

EXPERIMENTAL

Densities were measured by the buoyancy method favored for its simplicity coupled with accuracy (3). A silver bob (about 2 cm length), susp ided on a 1-mm diameter silver wire below an analytical balance, was immersed to 10 \pm 1 mm below the surface of the melt in a glass container.

¹Present address, Department of Chemistry, Colorado State University, Fort Collins, Colo. 80521.

To whom correspondence should be addressed.

The ± 1 -mm error represents a volume error of $\pm 8 \times 10^{-4}$ cc or $\pm 0.02\%$. Temperatures were measured by a chromelalumel thermocouple immersed in the melt and were controlled by a Proportio Null, 1300 Series, controller (Cole-Parmer Instrument and Equipment Co.) connected to the power circuit of a simple box furnace.

In making temperature measurements, the zero point was ice water, and recordings were taken from a Cropico Type P3 potentiometer. The thermocouples were calibrated against the fixed points (mp of ice, Sn, Cd, Pb, and Zn, bp of water) used to define the International Temperature Scale of 1948 (4), a pressure correction being included. In taking measurements, a constancy of ± 0.0005 gram and $\pm 0.25^{\circ}\,\mathrm{C}$ for 15 min was required, and both heating and cooling cycles were used for each system. The volume of the silver bob as a function of temperature from 325° to 475° C was obtained by measuring the density of sodium nitrate which is given by ref. 6:

$$\rho = 2.125 - 7.15 \times 10^{-4} T (^{\circ}C)$$

Table I. Densities (ρ , Grams Cm⁻³) as a Function of Temperature (T, °C)

0.54 LiNO ₃ ,	0.46 NaNO ₃	0.41 LiNO	, 0.59 KNO₃	0.59 LiNO;	3, 0.41 KNO3	0.45 NaNO	₃, 0.55 KNO₃	0.78 LiSO4, 0 0.135	0.085 Na2SO4, K2SO4
T	ρ	T	ρ	T	ρ	Т	ρ	T	ρ
207.6	1.8887	158.8	1.9639	209.7	1.8957	252.2	1.9328	549.8	2.1267
228.1	1.8727	182.0	1.9406	232.1	1.8754	260.0	1.9266	549.9	2.1222
263.9	1.8467	208.9	1.9260	265.0	1.8585	268.5	1.9187	550.0	2.1235
284.9	1.8317	244.0	1.8975	286.6	1.8251	287.0	1.9019	550.1	2.1248
313.1	1.8130	257.8	1.8870	314.4	1.8064	318.2	1.8769	550.2	2.1280
315.0	1.8076	293.7	1.8466	344.3	1.7866	357.2	1.8481	550.2	2.1280
334.4	1.7984	317.4	1.8258	350.2	1.7771	374.6	1.8334	Av 550.0	2.125°
361.6	1.7751	344.2	1.8017	391.8	1.7531	375.6	1.8352		
391.0	1.7506	365.1	1.7916	418.0	1.7346	401.9	1.8131		
		399.7	1.7666			428.3	1.7958		
						449.8	1.7752		
						476.5	1.7606		
						501.7	1.7437		

- - - 4 -

^{\circ} Literature value 2.2 by a crude method (2).

.

I able II. L	Pensity Parameter	ers for ρ	$= \alpha - \beta X$	10 1
Melt	α	β	Std dev	Range, ° C

		1-		+	
0.45 NaNO ₃ , 0.55 KNO ₃	2.122	7.648	0.002	250550	
0.46 NaNO ₃ , 0.54 LiNO ₃	2.042	7.399	0.002	200 - 400	
0.41 LiNO ₃ , 0.59 KNO ₃	2.099	8.436	0.005	150 - 400	
0.59 LiNO ₃ , 0.41 KNO ₃	2.058	7.842	0.005	200 - 400	

and was checked by measuring the density of lithium potassium sulfate at 550° C. The volume of the bob in cm³ with T in °C was

$\gamma = 3.6916 + 3.2 \times 10^{-4} T$

with a standard deviation of 0.0018 cm³. For 0.80 Li₂SO₄- 0.20 K_2 SO₄, our value was 2.117 grams cm⁻³ compared to the previousvalue of 2.120 grams cm⁻³ (5).

The nitrates were recrystallized from water and dried at a pressure of <2 mm Hg at 100° to 120°C. Mixtures were made up, melted, and purged with dry nitrogen for 2 hr prior to cooling and storing over P_2O_5 .

The sulfates were vacuum dried at 120° C for 24 hr, the mixtures melted and purged with dry nitrogen, and then any cloudiness was removed by the addition of Na₂S₂O₇.

The mixtures were analyzed for alkali metals by atomic absorption spectrophotometry with a Techtron AA 100 instrument and all values fell well within the 1% error limits of the analyses.

RESULTS AND DISCUSSION

The measured densities are presented in Table I. The values for the nitrate melts were fitted by a least-squares method to the linear equation

$$\rho = \alpha - \beta \times 10^{-4} T$$

where ρ is the density in grams cm⁻³ at $T^{\circ}C$. The coefficients α and β for each system appear in Table II.

The molar volumes of simple mixtures are often the sums of those of the constituents to within 1% (1, 5, 10, 11). This has been used to estimate densities of several mixtures, even including extrapolations of data for single salts to the low temperatures of melting of mixtures. We have tested this assumption for the mixtures studied here and find the calculated values higher by amounts up to 1.3%. A similar result was obtained by Powers et al. (9) for other alkali nitrate mixtures.

The previous literature includes densities for four nitrate mixtures close in composition to those studied here, and

Table III.	Densities	in Grams	Cm ⁻³ of	Some	Nitrate	Melts
	at 3	Selected T	emperat	ures		

Temp, ° C	This wo	ork	Literature			
	Mixture	Density	Density	Mixture	Ref.	
300	0.54 LiNO₃	1.820	1.854	0.60 LiNO3	7	
350	0.46 NaNO₃	1.783	1.822	0.40 NaNO_3		
400		1.746	1.790			
300	0.41 LiNO_3	1.846	1.877	0.43 LiNO ₃	8	
350	0.59 KNO ₃	1.804	1.838	0.57 KNO_3		
400		1.762	1.799			
300	0.59 LiNO ₃	1.823	1.836	0.60 LiNO ₃	7	
350	0.41 KNO ₃	1.784	1.802	0.40 KNO ₃		
400		1.744	1.765			
300	0.45 NaNO_3	1.893	1.891	0.43 NaNO_3	8	
350	0.55 KNO3	1.854	1.825	0.57 KNO ₃		
400		1.816	1.758			

the appropriate pairs are compared in Table III. For the first three, the differences are small but one would anticipate a lower density for a mixture containing more of the lighter component. For the fourth pair, the temperature coefficient given by Papaioannou and Harrington (13×10^{-4}) seems inordinately large so that their results for this system are suspect.

LITERATURE CITED

- Bloom, H., Knaggs, I. W., Molloy, J. J., Welch, D., Trans. Faraday Soc., 49, 1458 (1953).
- (2) Dickinson, J. R., Johnson, K. E., J. Mol. Spectros., 36, 1 (1970).
- (3) Forland, T., in "Fused Salts," B. R. Sundheim, Ed., McGraw-Hill, New York, N. Y., 1964.
- International Temperature Scale of 1948, D.S.I.R., H.M.S.O., Great Britain, 1950.
- (5) James, D. W., Liu, C. H., J. Chem. Eng. Data., 8, 469 (1963).
 (6) Janz, G. J., "Molten Salts Handbook," Academic Press, New
- York, N. Y., 1967. (7) Murgulescu, I. G., Volanchi, C., Rev. Chim. Acad. Repub.
- Pop. Roum., 6, 45 (1961).
 (8) Papaioannou, P. C., Harrington, G. W., J. Phys. Chem., 68, 2424 (1964).
- (9) Powers, B. F., Katz, J. L., Kleppa, O. J., ibid., 66, 103 (1962).
- (10) Smith, G. P., Petersen, G. F., J. Chem. Eng. Data, 6, 493 (1961).
- (11) Van Artsdalen, E. R., Yaffe, I. S., J. Phys. Chem., 59, 118 (1955).

RECEIVED for review May 1, 1970. Accepted December 11, 1970. We are grateful to the Defence Research Board of Canada for support of this work under Grant No. 5412-07 and to the National Research Council of Canada for a Scholarship (to L.G.B.).

Journal of Chemical and Engineering Data, Vol. 16, No. 2, 1971 205