Synthesis and Nmr Data of Some Variously Substituted Diphenylmethanes and Dibenzylbenzenes

GIORGIO MONTAUDO¹, PAOLO FINOCCHIARO, SALVATORE CACCAMESE, and FRANCESCO BOTTINO Institutes of Industrial and Organic Chemistry, University of Catania, Viale A. Doria, Catania, Italy

Fifty-four new compounds—methyl and halo derivatives of diphenylmethane and o,m,p-dibenzylbenzene—were prepared under mild conditions. The identity of compounds prepared was established by nmr, and spectral assignments are reported.

In connection with a study on the conformational properties of molecules containing substituted diarylmethane units (11), a number of such compounds were prepared. Compounds in Tables I-VII, hitherto unreported by other authors, were prepared through Friedel and Crafts reactions starting from appropriate aromatic hydrocarbon and chloromethyl derivatives.

The choice of mild conditions (low temperature and reaction time, catalyst, solvent, excess of hydrocarbon, and nitrogen steam) was crucial to avoid or minimize isomerization and disproportionation. This was pointed out also by Olah (14, 15). Nmr spectra were used to provide unequivocal structure proof for our compounds—i.e., to test for eventual rearrangements of methyl groups which occurred during the alkylation reaction.

To build up reliable assignment maps from the analysis of the spectra, a number of diphenylmethane and dibenzylbenzene derivatives already known (prepared by other authors by different synthetic procedures) were used as references. These compounds, reported in Table VIII, were prepared and their nmr spectra were recorded and analyzed, together with the other compounds which were synthesized.

In our opinion, the Friedel and Crafts reaction represents a satisfactory route to the synthesis of diphenylmethane and dibenzylbenzene derivatives, and is somewhat simpler with respect to alternative methods (ketone reduction, Grignard synthesis).

EXPERIMENTAL

Nitroethane and aromatic hydrocarbons—commercial products of high purity—were dried, distilled, or crystallized before use. Chloromethyl derivatives, where not available commercially, were prepared according to the literature (13).

Aluminum chloride was sublimed, stannic chloride was vacuum distilled, and zinc chloride was fused before use.

Melting points (uncorrected) were obtained in glass capillary tubes sealed under vacuum, and checked with a Kofler hot stage microscope.

The following instruments were used in the present work: Varian A-60, X-100 and Jeol C-60HL nmr spectrometers, Mechrolab V.P.O. 302, and Perkin-Elmer 237 infrared spectrometer.

Elemental analyses were obtained commercially (Institute of Organic Chemistry of the University, Milan). Infrared data, although omitted here, are available on request. **Criteria of Purity.** The characteristics and specific reaction conditions used in the preparation of all compounds reported are listed in Tables I-VII.

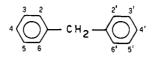
All compounds described analyzed correctly for elemental analysis. It has to be realized, however, that in many cases the presence of sizable impurities (hydrocarbons of higher or lower molecular weight) could be masked by small deviations in the analytical data. Under these circumstances, in judging the purity of a product, we have relied more upon the molecular weight determinations.

NMR SPECTRA

The identity of the compounds prepared was established by their nmr spectra. The spectra consist of three types of signals corresponding to methyl, methylene, and nuclear aromatic protons. Methyl and methylene peaks appear as sharp singlets. Aromatic protons have various appearances according to the nuclear substitution pattern. In many cases, peak assignments follow in a straightforward manner from the relative intensities and positions of signals. This is the case of polysubstituted rings (1,2,4,5; 1,2,3,4,5; 1,2,3,5)where nuclear protons appear as singlets. In less substituted rings, aromatic protons may show up as multispin systems.

For nuclear protons, in 1,2,4- and 1,2,5-trisubstituted rings (strictly AA'B), no sensible $J_{AA'}$ was detected, and the analysis was carried out as for a pure AB system. Aromatic protons in 1,4-disubstituted rings (strictly A_2B_2) were also analyzed as AB systems, a particularly good approximation due to the absence of extra lines. Aromatic protons in 1,2,6-trisubstituted rings (halo-derivatives) showed the characteristic pattern of AB₂ systems. $\Delta\nu/J$ values were estimated according to standard procedures (8).

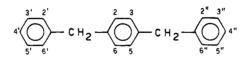
Aromatic protons in 1,2-disubstituted and monosubstituted rings appear, in general, as complex multiplets and, in these cases, no complete analysis was attempted.


Sometimes, however, the analysis of this type of spectra becomes, for reasons discussed elsewhere (11), simpler

(Continued on page 254)

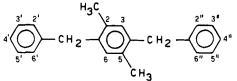
Journal of Chemical and Engineering Data, Vol. 16, No. 2, 1971 249

Method. A mixture of chloromethyl derivative and hydrocarbon, dissolved in nitroethane, was added to the catalyst under stirring, and a nitrogen stream was maintained through the reaction, at constant temperature. Workup consisted of pouring the reaction mixture into an excess of methanol or water, filtering the solvent, washing the residue with diluted HCl and water, and vacuum drying. Liquid products were purified by chloroform extraction, drying-off the solution, evaporation of the solvent, and vacuum distillation.


¹To whom correspondence should be addressed.

	Position of	Mp, °C or	Mol wt ^b (calcd)						Nmr ^{c, d}					
Ν	methyl groups	$K_p/\mathrm{mm}~\mathrm{Hg}$	found	H_2	H_3	H_4	H_5	H_6	$H_{2^{\prime}}$	$H_{3^{\prime}}$	$H_{4'}$	$H_{5'}$	$H_{6'}$	CH_2
1	2,3,5,6	54-55	(224.3)	135	143		143	135						261
			225.1	124	131	408^{e}	131	124	425'	425^{\prime}	425'	425'	425'	242
2	2,4,6,2',5'	102 - 103	(238.4)	137		147		137	152			135		247
			240.0	126	409^{e}	135	409 ^e	126	139	406^{g}	418^{s}	126	377^{e}	227
3	2,3,5,6,2′,5′	115 - 116	(252.4)	133	146		146	133	154			137		252
			260.0	121	134	417^{e}	134	121	142	406^{s}	417^{s}	128	374	232
4	2,4,6,2'	55-56	(224.3)	138		148		138	155					247
			227.0	126	410^{e}	135	410^{e}	126	142	420'	420'	420'	388′	229
5	2,3,5,6,2',4',6'	133-135	(266.4)	133	142		142	133	133		133		133	254
			264.0	122	131	401^{e}	131	122	122	401°	122	401^e	122	235
6	2,3,5,6,3′	72-73	(238.4)	137	144		144	137		144				260
	-, , , ,		240.0	124	131	411^{t}	131	124	411^{i}	131	411^{i}	411'	411'	240
7	2,3,5,6,4′	102 - 103	(238.4)						_					
	,,_,_,_		242.0	124	132	408 ^e	132	124	408°	414^{h}	135	414^{h}	408	240
8	2-Cl,2′,5′	140/0.3	(230.7)											
•	,_ ,_		235.0		434'	420'	420^{i}	403 ^e	134	412'	412'	126	403'	234
9	2'-Cl,4-Br,2,3,5,6	160 - 163	(337.7)											
Ū	2 01,1 21,2,0,0,0	100 100	341.7	126	145		145	126		435'	418^{t}	418'	390/	240
10	2'-F,4-Br,2,3,5,6	139-141	(321.2)	120	110		140	120		100	110	110	000	210
10	2 -1,4-01,2,0,0,0	105-141	320.3	130	146		146	130	ı	426'	416'	416 [/]	393′	243
11	2,6-Cl ₂ ,2′,5′	89-91	(265.2)	100	140	• • •	140	100		740	410	410	000	2-10
11	2,0-012,2,0	03-91			437^{i}	423^{i}	437'		140	405*	415*	127	372°	247
			273.0		437'	423^{i}	437'		140	405^{*}	415^{*}	127	372^{e}	247

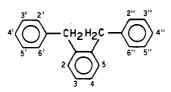
[°]Experimental details have been submitted for review and have been deposited with the ASIS Service. Data include: molar amounts of reagents, catalyst, and solvent; temperature and time of reaction; yield and crystallization; elemental analyses for carbon, hydrogen, and halogens. [°]Measured by V.P.O. in *o*-dichlorobenzene at 130° C. [°]H chemical shifts measured in cps downfield from TMS as internal standard, at 60 MHz; values in the first row refer to spectra in CHCl₃ at 38° C; values in the second row refer to spectra in CCl₄ at 38° C (compound 10: spectrum in CDCl₃). ^dValues in italics denote methyl singlets. ^eSinglet. ^fComplex multiplet. ^eAB system: $J_{3'4'}$, 8 cps; $\Delta\nu/J \sim 1.4$. ^hAB system: $J_{2'3'} = 8$ cps; $\Delta\nu/J \sim 0.75$. ^{i i B}F spectrum: 63.9 ppm from CFCl₃ as internal standard, measured at 94 MHz, in CDCl₃ at 30° C. ^fAB₂ system: $J_{3'4'} = 8$ cps; $\Delta\nu/J \sim 1.7$. ^{*}AB system: $J_{3'4'} = 7.5$ cps; $\Delta\nu/J \sim 1.3$.


Table II. Derivatives of Dibenzylbenzene of General Formula^a

	Position of methyl groups		Mol wt [°] (calcd)					N	mr ^{c, d}				
Ν	in the side rings	Mp, ° C	found	$\overline{H_2}$	H ₃	H ₅	H ₆	H _{2',2"}	H _{3',3″}	H _{4',4"}	$H_{5',5''}$	H _{6',6″}	CH_2
1	2',4',2",4""	101-102	$(314.5) \\ 314.0$	420'	420 [†]	420'	420 ^{<i>f</i>}	137	417 ^g	144	417 ^g	417 ^s	246
2	2',5',2",5"	95-96	(314.5) 314.0	420'	420 [′]	420'	420'	140	414 ^g	414 ^g	145	414	248
3	2',4',6',2",4",6"	165 - 166	(342.5) 342.3	416 [/]	416′	416′	416′	138	407′	143	407′	138	252
4	2',3',5',6',2",3",5",6"	210 - 211	$(370.6) \\ 368.2$	416'	416 ^t	416'	416′	135	142	408 [/]	142	135	258
5	2',3',4',5',6',2",3", 4",5",6"	278-279	(398.6) 396.0	416'	416'	416 [/]	416 ^t	137	142	142	142	137	256
6	2′,2″-Cl ₂	87.5-88.5	(327.2) 322.7	421^{\prime}	421^{f}	421^{t}	421^{t}	•••	430 ^s	418′	418′	418	238
7	$2',6'-Cl_2,2'',6''-Cl_2$	182-183	(396.1) 396.0	420'	420 ^f	420'	420'	•••	442*	428*	442 [*]		255
8	4',4"- Br ₂ ,2',3',5', 6',2",3",5",6"	250-251	(528.4) 526.1	418 [/]	418′	418'	418 [/]	140	156		156	140	256

[°]Experimental details have been submitted for review and have been deposited with the ASIS service. Data include: molar amounts of reagents, catalyst, and solvent; temperature and time of reaction; yield and crystallization; elemental analyses for carbon, hydrogen and halogens. [°]Measured by V.P.O. in *o*-dichlorobenzene at 130° C. [°]H chemical shifts measured in cps downfield from TMS as internal standard at 60 MHz, in CDCl₃ at 38° C (compound 6 and 7 at 60° C). [°]Values in italics denote methyl singlets. [°]Reported recently also by Moshchinskaya and Karateev (12). [′]Singlet. [«]Complex multiplet. [^]AB₂ system: $J_{3',4'}$, 8 cps; $\Delta \nu/J \sim 1.7$.

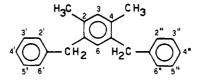
Table III. Derivatives of Dibenzylbenzene of General Formula⁴


			$Mol wt^{\flat}$			5							
	Position of methyl groups		(calcd)					N	mr ^{c, d}				
Ν	in the side rings	Mp, °C	found	H_2	H ₃	H ₅	H ₆	H _{2',2"}	H _{3',3"}	H _{4',4"}	H _{5',5″}	H _{6',6"}	CH_2
1	2′,2″	110-111	$(314.5) \\ 312.0$	134	404 ^e	134	404°	143	423′	423 ′	423'	423′	245
2	2′,4′,2″,4″	157-158	(342.5) 343.7	136	396°	136	396'	143	410′	146	410'	410′	244
3	2′,5′,2″,5″	152.5-153.5	(342.5) 341.0	140	397'	140	397'	145	410 ^s	418 ^g	145	397'	247
4	2',4',6',2",4",6"	292-294	(370.5) 371.6	137	378'	137	378'	139	414 ^e	147	414 ^e	139	242
5	2′,3′,5′,6′,2″3″,5″,6″	322-323	(398.6) 397.2	140	375'	140	375'	132	145	410 ^e	145	132	247
6	2',3',4',5',6',2",3", 4",5",6"	370-372	(426.7) 425.5	h									
7	2′-Cl,2″-Cl	131-133	(355.3) 357.0	126	406′	126	406′	•••	436′	423′	423'	406′	238
8	$2',6'-Cl_2,2'',6''-Cl_2$	282-284	(424.2) 418.4	132	374°	132	374°		442 ⁱ	428 ⁱ	442 ⁱ	•••	247
9	4'-Br,4"-Br,2',3',5', 6',2",3",5",6"	369-371	(556.4) 561.6	h									

^o Experimental details have been submitted for review and have been deposited with the ASIS Service. Data include: molar amounts of reagents, catalyst, and solvent; temperature and time of reaction; yield and crystallization; elemental analyses for carbon, hydrogen, and halogens. ^b Measured by V.P.O. in o-dichlorobenzene at 130° C. ^c¹H chemical shifts measured in cps downfield from TMS as internal standard, at 60 MHz in CDCl₃ at 38° C (compound 7: spectrum in CCl₄ at room temperature; compound 8: in CCl₄ at 60° C; compound 5: in CDCl₃ at 60° C). ^d Values in italics denote methyl singlets. ^eSinglet. ^f Complex multiplet. ^gAB system: $J_{3'4'}$, 8 cps; $\Delta \nu/J \sim 1.7$.

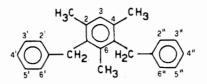
	Table IV. Derivatives of Dibenzylbenzene of General Formula ^a												
		4' \	3' 2' C)	H ₃ C H ₂		-сн ₂ -	-(C	3") 4" 5"					
	Position of methyl groups		Mol wt [*] (calcd)					Nı	nr ^{c, d}				
Ν	in the side rings	Mp, °C	found	H_2	H ₃	H ₅	H ₆	H _{2',2"}	H _{3′,3″}	H _{4',4"}	H _{5',5″}	H _{6′,6″}	CH_2
1	2′,2″	234-236	$(342.5) \\ 347.0$	136	136	136	136	156	426'	426	426 ^e	394'	255
2	2',4',2",4"	223-224	(370.6) 370.0	136	136	136	136	153	420′	136	404 ^s	386 ^s	251
3	2′,5′,2″,5″	268-270	(370.6) 372.1	138	138	138	138	154	409*	425*	136	381′	255
4	2',4',6',2",4",6"	178–179	(398.6) 397.6	130	130	130	130	133	401'	142	401'	133	263
5	2',3',4',5',6',2",3", 4",5",6"	293-295	(454.7) 449.1	i									
6	4'-Br,4"-Br	216-217	(472.3) 463.6	127	127	127	127	4 11 ^{<i>i</i>}	438 [/]	• • • •	438	411 ^{<i>j</i>}	243
7	4′-Cl,4″-Cl	212-213	(383.4) 388.6	129	129	129	1 2 9	411 [/]	429 ^{<i>i</i>}	•••	429′	411 ⁱ	246
8	$2',6'-Cl_2,2'',6''-Cl_2$	233–235	(452.2) 450.3	123	123	123	123	•••	433*	419*	433*	•••	260
9	2′-Cl,2″-Cl	194–196	(383.4) 383.3	126	126	126	126	•••	440 ^e	423 ^e	423°	395'	246
10	4′,4″-Br ₂ -2′,3′,5′, 6′,2″,3″,5″,6″	303-305	(584.5) 586.0	128	128	128	128	131	148	••••	148	131	269

^a Experimental details have been submitted for review and have been deposited with the ASIS service. Data include: molar amounts of reagents, catalyst, and solvent; temperature and time of reaction, yield and crystallization; elemental analyses for carbon, hydrogen, and halogens. ^b Measured by V.P.O. in *o*-dichlorobenzene at 130° C. ^c'H chemical shifts measured in cps downfield from TMS as internal standard at 60 MHz, in CDCl₃ (compound 8: spectrum in CCl₄ at 60° C; compound 9: in CCl₄ at room temperature; compound 10: in CDCl₃ at 80° C). ^d Values in italics denote methyl singlets. ^eComplex multiplet. ^fSinglet. ^sAB system: $J_{3'4'}$, 8 cps; $\Delta\nu/J \sim 4.4$. ^hAB system: $J_{3'4'}$, 8 cps; $\Delta\nu/J \sim 2.3$. ^fInsoluble. ^fAB system: $J_{3'4'}$, 8 cps; $\Delta\nu/J \sim 1.7$.


Table V. Derivatives of Dibenzylbenzene of General Formula^a

	Position of methyl groups		Mol wt' (calcd)					N	mr ^{c, d}				
Ν	in the side rings	Mp, °C	found	H_2	H ₃	H ₄	H ₅	H _{2′,2″}	H _{3',3"}	H _{4',4"}	$H_{5',5''}$	H _{6′,6″}	CH_2
1	2',4',2",4"	79–81	(314.5) 311.0	420°	420'	420°	420 ^e	132	420°	140	420^{e}	420°	236
2	2′,5′,2″,5″	77–79	(314.5) 317.0	414 ^e	414 ^e	414 ^e	414 ^e	126	414 ^e	414 ^e	130	414 ^e	228
3	2',3',5',6',2",3",5",6"	226-228	(370.6) 370.1	389′	410′	410 [/]	389′	132	143	408	143	132	245
4	2',3',4',5',6',2",3", 4",5",6"	264-266	(398.6) 398.2	3 9 1′	412'	412 ^{<i>t</i>}	389⁄	131	143	150	143	131	246
5	4′,4″-Br ₂ -2′,3′,5′, 6′,2″,3″,5″,6″	316-318	(528.4) 520.1	390′	411′	411′	390′	132	149	•••	149	132	245

⁶ Experimental details have been submitted for review and have been deposited with the ASIS Service. Data include: molar amounts of reagents, catalyst, and solvent; temperature and reaction time; yield and crystallization; elemental analyses for carbon, hydrogen, and halogens. ⁵ Measured by V.P.O. in o-dichlorobenzene at 130° C. ^{c1} H chemical shifts measured in cps downfield from TMS as internal standard at 60 MHz, in CDCl₃ at 38° C (compound 5: spectrum at 60° C). ^d Values in italics denote methyl singlets. ^cComplex multiplet. ^fA₂B₂ system: estimated $\Delta\nu/J \sim 5$. ^e Singlet.


Table VI. Derivatives of Dibenzylbenzene of General Formula^a

	Position of methyl groups		Mol wt' (calcd)					Nı	mr ^{c, d}				
Ν	in the side rings	Mp, °C	found	H ₂	H_3	H_4	H_6	H _{2′,2″}	H _{3′,3″}	H _{4',4"}	$H_{5',5''}$	H _{6′,6″}	CH_2
1		70-71	(286.4) 286.2	137	414 ^e	137	4 30'	430′	430'	43 0'	430′	43 0 ⁷	250
2	2′,2″	106-108	$(314.5) \\ 315.0$	139	420'	139	389'	139	420′	420'	420⁄	420'	242
3	2′,4′,2″,4″	96-97	(342.5) 342.3	138	413′	138	387'	135	413′	143	413′	413′	239
4	2′,5′,2″,5″	98–99	(342.5) 343.0										
5	2',4',6',2",4",6"	201-202	(370.6) 371.5	145	408°	145	328'	119	394'	145	394'	119	233
6	2',3',5',6',2",3",5",6"	181–182	(398.6) 389.6	148	418'	148	327'	112	135	403°	135	112	237
7	2',3',4',5',6',2",3", 4",5",6"	251-252	(426.7) 425.0	150	412'	150	328'	115	132	142	132	115	240
8	4′,4″-Br₂,2′,3′,5′, 6′,2″,3″,5″,6″	328-330	$(556.4) \\ 559.0$	134	4 12°	134	326'	106	134		134	106	217

^a Experimental details have been submitted for review and have been deposited with the ASIS Service. Data include: molar amounts of reagents, catalyst, and solvent; temperature and reaction time; yield and crystallization; elemental analyses for carbon, hydrogen, and halogens. ^b Measured by V.P.O. in *o*-dichlorobenzene at 130° C. ^{c1}H chemical shifts measured in cps downfield from TMS as internal standard at 60 MHz, in CDCl₃ at 38° C (compound 8: spectrum at 60° C). ^d Values in italics denote methyl singlets. ^c Singlet. ^l Complex multiplet.

Table VII. Derivatives of Dibenzylbenzene of General Formula^a

	Desition of mothed means		Mol wt ^{b}	Mol wt ^b Nmr ^{c, d}									
Ν	Position of methyl groups in the side rings	Mp, °C	found	H_2	H_3	H_4	\mathbf{H}_{6}	H _{2',2"}	${\bf H}_{3',3''}$	H _{4',4"}	$\mathbf{H}_{5',5''}$	$H_{6',6''}$	CH_2
1	2',2"	137-139	(328.5) 327.0	140	412 ^e	140	125	153	425'	425'	425^{\prime}	391 ^f	252
2	2',4',2",4"	155-156	(356.6) 354.5	140	4 12 ^e	140	126	152	420°	144	404 ^g	386*	249
3	2',5',2",5"	157-158	(356.6) 356.0	141	412 ^e	141	126	151	406"	418 [*]	137	378'	251
4	2',4',6',2",4",6"	150-152	(384.6) 380.0	135	412°	135	120	131	412 ^e	140	412^{e}	131	255

⁶ Experimental details have been submitted for review and have been deposited with the ASIS Service. Data include: molar amounts of reagents, catalyst, and solvent; temperature and reaction time; yield and crystallization; elemental analyses for carbon, hydrogen, and halogens. ⁶ Measured by V.P.O. in *o*-dichlorobenzene at 130° C. ^{c1}H chemical shifts measured in cps downfield from TMS as internal standard at 60 MHz, in CDCl₃ at 38° C. ^d Values in italics denote methyl singlets. ^eSinglet. ^f Complex multiplet. ^gAB system: $J_{5'6'} = 4 \text{ cps}; \Delta \nu/J \sim 4.5$. ^hAB system: $J_{3'4'}$, 8 cps; $\Delta \nu/J \sim 1.4$.

	Table VIII. Nmr Data of Some Diphenylmethane and Dibenzylbenzene Derivatives ^a												
	$4 \left\langle \bigcup_{5=6}^{3} \right\rangle^{2} - CH_{2} - \left\langle \bigcup_{6'=5'}^{2'} \right\rangle^{4'}$												
N	Position of methyl groups	H_2	H_3	H_4	H_5	H_6	$H_{2^{\prime}}$	$\mathbf{H}_{3'}$	$H_{4'}$	$\mathbf{H}_{5'}$	$\mathbf{H}_{6'}$	CH_2	Ref.
1	2^{b}	144 124	427°	427°	427°	427°	427°	427°	427°	427°	427°	$\begin{array}{c} 250 \\ 229 \end{array}$	(15)
2	4 ^{<i>b</i>}		422 ^d	144 130	422 ^d	422 ^d	430°	430°	430°	430°	430°	247 230	(15)
3	$2,4,6^{\circ}$	422⁴ 140		145		140			423	423°	423°	255 236	(6)
4	2,4,6,4''	$125 \\ 141$	407 ^d	129 145	407 ^d	$\begin{array}{c} 125\\141 \end{array}$	423°	423°	145			254	(10)
5	2,4,6,2',4',6'*	128 133	407^d	134 142	407 ^d	$128 \\ 133$	$\frac{410^{e}}{133}$	416 ^e	$\frac{134}{142}$	416	410 ^e 133	239 255	(17)
6	2,5,2',5'*	$121 \\ 143$	401 ^d	130	401^{d} 143	121	121 143	401 ^d	130	401 ^d 143	121	236 245	(7)
7	2,3,5,6,2'	$132 \\ 132$	411^\prime 145	419′	$132 \\ 145$	399^{d} 132	$132 \\ 156$	411'	419	132	399ª	$\begin{array}{c} 226 \\ 252 \end{array}$	(4)
8	2,3,5,6,2',3',5',6'	121 129	$\frac{133}{142}$	4 10 ^d	133 142	121 129	144 129	420° 142	420°	420° 142	386° 129	233 268	(17)
	2.Cl ^s	117	129 427°	404^d 427^c	129 427°	$117 \\ 427^{\circ}$	117 427°	129 427°	404 ^d 427°	129 427°	$rac{117}{427^\circ}$	$245 \\ 245$	(1)
9 10	2-CF 2-F ⁸	 h	428°	428°	428°	428°	428	428	428°	428°	428^{e}	240 2″ 3″	(1)
									4' K		.H₂C(0) •"	
			H_2	H_3	H_4	H_5	$H_{2^{\prime},2^{\prime\prime}}$	$H_{3^\prime,3^{\prime\prime}}$	$\mathbf{H}_{4',4''}$	$\mathrm{H}_{5',5''}$	$H_{6',6''}$	CH_2	Ref.
$\frac{11}{12}$	⁸ 2′,4′,6′,2″,4″,6″ ⁸		427° 396'	427° 414'	427° 414'	427° 396'	$rac{427^{\circ}}{130}$	427° 412^{d}	$rac{427^\circ}{138}$	427° 412₫	$rac{427^\circ}{130}$	$\begin{array}{c} 235\\ 240 \end{array}$	(16) (5)
								*				\sim	3''') 5'''
			H_2	H_3	H_5	\mathbf{H}_{6}	$\mathbf{H}_{2',2''}$	H _{3′,3″}	H _{4′,4″}	${\rm H}_{5',5''}$	H _{6′,6″}	CH_2	Ref.
13 14 15	2,5" 2,3,5,6" 2,3,5,6,2',3',5',6',2",3",5",6"	8	137 139 130	425° 139 130	137 139 130	425° 139 130	$425^{\circ} 420^{\circ} 128$	425° 420° 142	$425^{\circ} 420^{\circ} 404^{d}$	425° 420° 142	425° 420° 128	250 266 267	(2) (3) (9)
								1 -+ 00	NATT -	The second			

^a¹H chemical shifts measured in cps downfield from TMS as internal standard at 60 MHz. ^bFirst row: spectrum in CHCl₃ at 38°C; second row: spectrum in CCl₄ at 38°C. ^cComplex multiplet. ^dSinglet. ^cAB system: $J_{2'3'}$, 8 cps; $\Delta\nu/J \sim 0.75$. ^fAB system: J_{34} , 8 cps; $\Delta\nu/J \sim 10$. ^dSpectrum in CDCl₃ at 38°C. ^{b19}F spectrum: 64.5 ppm from CFCl₃ as internal standard, measured at 94 MHz, in CDCl₃ at 30°C. ^cA₂B₂ system: estimated $\Delta\nu/J \sim 5$.

because the *ortho* aromatic protons of some compounds are found several cps (15-40) upfield with respect to the other (*meta* and *para*) protons.

In fact, when the shielded ortho protons belong to 1,2disubstituted central ring—i.e., Table V: compounds 3-5 the four central nuclear protons show the characteristic pattern of the A_2B_2 system and $\Delta\nu/J$ values were then estimated according to standard procedures (8).

In another case, when the shielded *ortho* protons belong to a 1,2-disubstituted side ring—i.e., Table I: compounds 4, 8-10—they appear shifted upfield in the spectrum.

As far as the assignments of methyl signals are concerned, they were usually assigned on the basis of the relative peak intensities. Where this criterion proved insufficient because of the presence of peaks of equal intensity, opportune correlation maps were built up using, as references, compounds in which methyl peaks were unequivocally assigned.

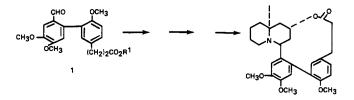
LITERATURE CITED

- (1) Blackwell J., Hickinbottom, W. J., J. Chem. Soc., 1406 (1961).
- (2) Chel'tsova, M. A., Lubuzh, E. D., Petrov, D. A., Neftekhimiya, 6 (5) 702, 9 (1966); CA 66, 37518p (1967).
- (3) Fuson, R. C., McKusick, B. C., J. Amer. Chem. Soc., 65, 60 (1943).
- (4) Fuson, R. C., McKusick, B. C., J. Org. Chem., 11, 60 (1946).
- (5) Fuson, R. C., Speck, W. H., Hatchard, J. A., *ibid.*, 10, 55 (1945).

- (6) Hauser, C. R., Hoffenberg, D. S., Puterbaugh, W. H., Frostick, F. C., *ibid.*, 20, 1531 (1955).
- (7) Huston, R. C., Ewing, D. T., J. Amer. Chem. Soc., 37, 2394 (1915).
- (8) Jackman, L. M., Sternhell, S., "Application of Nmr Spectroscopy in Organic Chemistry," Chapt. 2-3, 2nd ed., Pergamon Press, Oxford, 1969.
- (9) Kaemmerer, H., Harris, M., Makromol. Chem., 66, 215 (1963).
- (10) Meyerson, S., Drews, H., Field, E. K., J. Amer. Chem. Soc., 86, 4964 (1964).
- (11) Montaudo, G., Caccamese, S., Finocchiaro, P., Bottino, F., Tetrahedron Lett., 1970, 877.
- Moshchinskaya, N. K., Karateev, A. P., Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Technol., 10 (9), 1062 (1967); CA 68, 13641 (1968).
- (13) Olah, G. A., "Friedel-Crafts and Related Reactions," Vol. II, Part 2, pp 659-784, Interscience, New York, N. Y., 1964.
- (14) Olah, G. A., Kuhn, S. J., Flood, S. H., J. Amer. Chem. Soc., 84, 1688 (1962).
- (15) Olah, G. A., Olah, J. A., J. Org. Chem., 32, 1612 (1967).
 (16) Shishido, K., Udo, Y., Nakamura, T., Nozaki, H., *ibid.*, 26, 1368 (1961).
- (17) Welch, C. M., Smith, H. A., J. Amer. Chem. Soc., 73, 4391 (1951).

RECEIVED for review June 23, 1970. Accepted November 2, 1970. For complete versions of Tables I through VII, order NAPS Document No. 01244 from ASIS National Auxiliary Publications Service, % CCM Information Sciences, Inc., 909 Third Avenue, New York, N. Y. 10022; remitting \$2.00 for microfiche or \$5.00 for photocopies.

Synthesis of Biphenyl Portion of Decinine


BENJAMIN BLANK¹ and PRAFUL D. VAIDYA

Research and Development Division, Smith Kline & French Laboratories, Philadelphia, Pa. 19101

The syntheses and characterization of intermediates leading to 3-[3-(2-formyl-4,5dimethoxyphenyl)-4-methoxyphenyl] propionic acid (1a), a possible precursor in the total synthesis of decinine methyl ether, are described.

The Lythraceae alkaloids have been of continuing interest to our laboratories—first, as problems in structure determination (10, 11, 14, 37) and, more recently, as structures with possible medicinal utility as anti-inflammatory (25) and diuretic agents (36).

In recent years (3, 10, 14, 16, 17, 21, 37), not only have the structures of several of these quinolizidine alkaloids been elucidated, but Ferris et al. (15) have proposed a possible biogenetic route for their syntheses. Subsequently, Matsunaga et al. (26) demonstrated the chemical feasibility of forming 2-oxo-4-quinolizidines from benzaldehyde and isopelletierine. Recently, Rosazza et al. (31) described a synthesis of Lythraceae alkaloids which required only a convenient method for forming the biphenyl linkage found in several members of this family of alkaloids—e.g., decinine, 2—in order to be considered a total synthesis. Therefore, the preparation of biphenyls—e.g., 1—containing substituents which could be used in the preparation of decinine, 2 is described.

The synthesis of 1 was undertaken as shown in Chart I. The intermediates used in this synthesis are new, and are listed in Table I, together with appropriate physical constants.

3,4-Dimethoxyphenylacetone was prepared from 3,4dimethoxyphenylacetic acid and acetic anhydride. In our hands, attempts to prepare the acetone from 3,4-dimethoxyphenylacetonitrile via the acetoacetonitrile (33) led chiefly to the recovery of unchanged dimethoxyphenylacetoacetonitrile. Ring closure of the acetone with nitromalondialdehyde (13), to give 3, was effected in aqueous base (4, 6, 22-24). Etherification to give the methyl ether,

¹To whom correspondence should be addressed.