- (11) Johnson, D. A., Sen, B., J. Chem. Eng. Data, 13, 376 (1968).
- (12) Paabo, M., Bates, R. G., Robinson, R. A., J. Phys. Chem., 70, 247 (1966).
- (13) Parker, A. J., Quart. Rev. (London), 16, 163 (1962).
- (14) Ritson, D. M., Hasted, J. B., J. Chem. Phys., 16, 11 (1948).
- (15) Roy, R. N., Bothwell, A., J. Chem. Eng. Data, 15, 548 (1970).
- (16) Roy, R. N., Sen. B., *ibid.*, **12**, 584 (1967).
- (17) Roy, R. N., Sen, B., ibid., 13, 79 (1968).
- (18) Roy, R. N., Vernon, W., Bothwell, A. L. M., J. Chem. Therm., in press, 1971.
- (19) Sen, B., Johnson, D. A., Roy, R. N., J. Phys. Chem., 71, 1523 (1967).
- (20) Stern, J. H., Nobilione, J. M., ibid., 72, 3937 (1968).
- (21) Weaver, W., Hutchinson, J., J. Amer. Chem. Soc., 86, 261 (1964).
- (22) Woodhead, M., Paabo, M., Robinson, R. A., Bates, R. G., J. Res. Natl. Bur. Stand., 69A, 263 (1965).

RECEIVED for review September 8, 1970. Accepted March 11, 1971.

Vapor-Liquid Equilibria for Fourteen Systems Consisting of Chlorinated Hydrocarbons and Alcohols

MICHELE SAGNES¹ and VICTOR SANCHEZ

Laboratoire de Chimie-Physique et Electrochimie, Université Paul Sabatier, 118, route de Narbonne 31, Toulouse 04, France

Vapor-liquid equilibrium of 14 binary systems was determined with the help of a dynamic ebulliometer "Cathala," at the pressure of 760 mm Hg. Nine systems were constituted only with chlorinated solvents and the other five systems with chlorinated solvents and ethyl, methyl, or *n*-propyl alcohol. The tests of a thermodynamic consistency were carried out, and all the systems yielded smooth curves of (y - x) plotted against x.

An ebulliometric study of nine binary systems composed of chlorinated solvents and five binary systems of chlorinated solvents with methyl, ethyl, and n-propyl alcohol was undertaken for the purpose of developing a method

¹ To whom correspondence should be addressed.

Table I. Binary Systems

Carbon tetrachloride- ethylene chloride°	Trichloroethene- tetrachloroethene
Carbon tetrachloride-	Trichloroethene-
trichloroethene	n-propyl alcohol
Ethylene chloride-	Tetrachloroethene-
trichloroethene	methyl alcohol
Ethylene chloride-	Tetrachloroethene-
trichloroethene	<i>n</i> -propyl alcohol
Ethylene chloride ^a	1,2-trans-Dichloroethene-
ethyl alcohol	1,2-cis-dichloroethene
Ethylene chloride-	1,1,1-Trichloroethane-
n-propyl alcohol	1,2-trans-dichloroethene
Ethylene chloride-	1,2-cis-Dichloroethene-
1,1,1-trichloroethane	1,1,1-trichloroethane
^a Ethylene chloride of Ma	theson, Coleman and Bell.

of predicting the distillation curves of the binary and ternary systems of these compounds. These data are of interest in the vinylic polymer industry. With regard to these 14 systems, only the following ones have already been studied (1, 2, 9, 14), at a pressure of 760 mm Hg: carbon tetrachloride and ethylene chloride, carbon tetrachloride and trichloroethene, and trichloroethene and tetrachloroethene. These 14 systems are quoted in Table I.

CHEMICALS

The boiling points, the refractive indices at 20°C, and the grades of each pure compound are given in Table II. Alcohols were distilled with sodium through a reflux column. The ethylene chloride of Matheson, Coleman and Bell used in various systems is not pure enough even after distillation. Therefore, the experiments were carried out using the reagent grade ethylene chloride of Merck, whose physical properties draw nearer to those which are in the tables.

The dichloroethenes 1,2-cis and -trans, and trichloroethane-1,1,1 were distilled before their use to obtain a grade material of 99.8%. The gas chromatographic analysis did not reveal impurities in the other compounds; therefore, they were used without further purifications.

Table II. Physical Properties of Chemicals

		Boilin	g point, °C	Refractive index, $n_{ m D}^{\scriptscriptstyle 20}$		
Materials	Grade	Exptl	Lit. (7)	Exptl	Lit. (7)	
Carbon tetrachloride	Prolabo, Reagent Grade	76.7	76.7	1.4607	1.4604	
Tetrachloroethene	Merck, Reagent Grade	120.9	121.0	1.5058	1.5044	
Ethylene chloride	Matheson, Coleman and Bell	82.7	82.7	1.4450	$1.4448 \\ 1.44476 (5)$	
Ethylene chloride	Merck, Reagent Grade	83.4	84.0 83.47 (5)	1.4450	1.4448 1.44476(5)	
Trichloroethene	Merck, Reagent Grade	86.7	87.0	1.4777	1.4784	
1,2-cis-Dichloroethene	Pechiney Saint Gobain, 99.8%	60.0	60.3	1.4491	1.4490	
1,2-trans-Dichloroethene	Pechiney Saint Gobain, 99.8%	47.4	47.5	1.4458	1.4454	
1,1,1-Trichloroethane	Pechiney Saint Gobain, 99.8%	73.9	74.0 74.05 (8)	1.4381	1.43838 (11)	
Methyl alcohol	Pure Grade	64.7	64.96	1.3290	1.3288	
Ethyl alcohol	Pure Grade	78.3	78.5	1.3621	1.3611	
n-Propyl alcohol	Prolabo, Pure Grade	97.1	97.1	1.3851	1.3850	

able III. Experimental Vapor-Liqu	d Equilibrium Data	at 760 Mm of Hg Pressure
-----------------------------------	--------------------	--------------------------

t	\boldsymbol{x}_1	y_1	t	\boldsymbol{x}_1	\mathcal{Y}_1	t	\boldsymbol{x}_1	\mathcal{Y}_1	t	\boldsymbol{x}_1	\mathcal{Y}_1
Carb et	Carbon tetrachloride- ethylene chloride trichloroethene		et	Ethyl alcohol– ethylene chloride			1,1,1-Trichloroethane- ethylene chloride				
91.0	0.052	0 100	95 7	0.050	0.079	70.0	0.020	0 1 2 0	99.4	0.025	0.060
80.0	0.055	0.160	84.8	0.050	0.072	79.9	0.030	0.130	81 Q	0.055	0.000
79.3	0.100	0.100	84.0	0.110	0.100	76.7	0.042	0.133	81.2	0.035	0.032
78.6	0.140	0.210	83.7	0.100	0.130	74.1	0.075	0.200	80.6	0.125	0.142
78.0	0.100	0.200	83.4	0.235	0.339	79.6	0.110	0.360	79.8	0.183	0.107
77.4	0.213	0.357	829	0.260	0.000	70.9	0.152	0.300	79.4	0.100	0.201
76.9	0.315	0.398	82.8	0.388	0.432	70.5	0.345	0.452	78.8	0.210	0.200
76.3	0.388	0.468	82.6	0.000	0.463	70.2	0.425	0.478	78.2	0.315	0.395
75.8	0.493	0.543	82.3	0.428	0.513	70.1	0.488	0.498	77.8	0.352	0.666
75.4	0.568	0.598	82.2	0.547	0.567	70.2	0.598	0.535	77.2	0.406	0.495
75.3	0.595	0.618	82.2	0.610	0.630	70.8	0.705	0.582	76.1	0.520	0.400
75.2	0.200	0.700	82.2	0.772	0.762	71.4	0.765	0.628	75.6	0.587	0.655
75.2	0.758	0.750	82.3	0.800	0.790	72.1	0.817	0.670	75.0	0.662	0.000
75.3	0.795	0.783	82.5	0.862	0.852	74 7	0.923	0.817	74.5	0.736	0.800
75.5	0.860	0.843	82.7	0.900	0.890	75.7	0.948	0.865	74.0	0.845	0.895
76.0	0.938	0.928	83.0	0.948	0.940	77.3	0.978	0.945	73.8	0.917	0.955
Con	ubinations of	f feed	Com	binations of	f feed	Con	nbinations o	f feed	Com	binations of	f feed
78.6	0.188	0.268	83.4	0.280	0.312	71.6	0.210	0.295	81.4	0.080	0.120
76.8	0.325	0.405	82.2	0.731	0.725	70.1	0.528	0.513	76.6	0.465	0.552
75.3	0.805	0.787	82.4	0.850	0.840	72.9	0.862	0.715	74.3	0.795	0.835
Carb t	oon tetrachle richloroethe	oride- ne	Eth tet	nylene chlor trachloroeth	ide– ene	Et n	hylene chlor -propyl alco	ide- hol	Tı tet	richloroether trachloroeth	ne- ene
86.0	0.060	0.075	117.8	0.020	0.115	94 4	0.047	0.131	117.0	0.075	0.178
85.1	0.147	0.176	114.0	0.050	0.217	92.9	0.075	0.198	115.7	0.100	0.228
84.4	0.202	0.250	110.9	0.092	0.315	91.6	0.092	0.250	112.8	0.162	0.338
84.2	0.224	0.278	108.0	0.120	0.388	90.3	0.126	0.300	110.5	0.217	0.420
83.5	0.274	0.344	106.0	0.150	0.437	89.0	0.156	0.352	109.1	0.250	0.468
83.1	0.315	0.380	103.3	0.200	0.512	87.4	0.194	0.412	106.9	0.308	0.537
82.5	0.376	0 445	100.5	0.264	0.592	85.5	0.250	0.480	105.7	0.336	0.572
81.3	0.490	0.565	98.5	0.311	0.629	84.3	0.300	0.525	103.4	0.394	0.627
81.0	0.525	0.589	95.2	0.400	0.696	83.4	0.350	0.565	101.0	0.462	0.698
80.5	0.580	0.650	93.7	0.450	0.725	82.0	0.457	0.626	100.0	0 493	0.718
80.0	0.600	0.000	92.2	0.400	0.725	80.8	0.407	0.693	98.4	0.550	0.710
79.1	0.706	0.780	89.9	0.594	0.804	80.5	0.695	0.725	96.3	0.614	0.800
78.5	0.767	0.829	88.2	0.679	0.842	80.5	0.790	0.771	94.4	0.685	0.843
78.1	0.804	0.866	86.8	0.750	0.875	80.8	0.875	0.830	93.4	0.000	0.872
77.3	0.918	0.000	85.5	0.100	0.016	81.6	0.935	0.886	92.1	0.769	0.888
76.9	0.965	0.980	84.2	0.938	0.970	82.3	0.969	0.931	89.5	0.875	0.950
Com	ibinations of	f feed	Com	binations of	f feed	Con	nbinations o	f feed	Com	binations of	feed
85.1	0.148	0.180	1023	0 222	0.535	81.0	0.587	0.680	113.8	0 142	0 297
81 7	0.140	0.100	98.9	0.222	0.000	80.4	0.307	0.000	104.4	0.142	0.201
78.1	0.808	0.873	88.8	0.632	0.822	81.8	0.944	0.899	91.0	0.809	0.919
M	lethyl alcoho	ol-	1,2-trai	ns-Dichloroe	ethene-	Т	richloroethe	ne-	n-l	Propyl alcoh	ol-
tei	trachloroeth	ene	1,2-c	is-dichloroe	thene	n	-propyl alco	hol	tet	rachioroeth	ene
117.2	0.001	0.074	58.7	0.064	0.100	95.3	0.030	0.089	116.0	0.015	0.150
113.2	0.003	0.210	57.9	0.110	0.169	93.5	0.059	0.175	113.0	0.024	0.229
107.7	0.003	0.335	57.0	0.160	0.237	91.8	0.092	0.230	109.1	0.050	0.335
102.7	0.003	0.445	56.1	0.224	0.320	90.8	0.112	0.292	104.4	0.082	0.430
97.6	0.008	0.530	55.4	0.252	0.356	89.3	0.147	0.351	102.8	0.100	0.460
93.0	0.011	0.588	54.3	0.325	0.432	87.8	0.188	0.412	99.9	0.150	0.516
87.0	0.017	0.660	53.0	0.411	0.524	86.7	0.222	0.457	98.1	0.200	0.560
80.5	0.024	0.724	52.3	0.465	0.574	85.0	0.300	0.523	97.1	0.240	0.577
70.2	0.066	0.800	51.5	0.542	0.639	84.0	0.360	0.560	95.7	0.336	0.618
65.3	0.215	0.837	50.7	0.602	0.687	83.0	0.434	0.605	95.0	0.400	0.630
64.4	0.533	0.848	50.1	0.655	0.734	82.4	0.507	0.641	94.7	0.476	0.638
63.9	0.776	0.859	49.3	0.747	0.804	82.0	0.577	0.671	94.2	0.600	0.665
63.5	0.883	0.883	48.5	0.838	0.872	81.7	0.742	0.729	94.0	0.703	0.702
63.6	0.937	0.913	48.2	0.877	0.911	82.9	0.916	0.833	94.3	0.827	0.773
63.8	0.950	0.927	48.0	0.900	0.919	83.3	0.930	0.852	95.0	0.900	0.845
64.2	0.979	0.958	47.7	0.944	0.957	84.6	0.964	$0.90\overline{7}$	95.9	0.949	0.910
Com	binations of	feed	Con	binations of	feed	Con	nbinations o	f feed	Com	binations of	feed
116.5	0.001	0.110	57.4	0.137	0.206	86.8	0.221	0.452	110.6	0.037	0.291
64.2	0.656	0.852	51.6	0.535	0.636	81.8	0.636	0.689	94.5	0.504	0.646
63.6	0.931	0.910	48.0	0.901	0.923	82.1	0.861	0.782	94.8	0.873	0.818

(Continued on next page)

Table III. (Continued)							
t	<i>x</i> :	\mathbf{y}_1	t	x_1	\mathbf{y}_1		
1,2-trans-Dichloroethene- 1,1,1-trichloroethane			1,2-ci 1,1,	1,2-cis-Dichloroethene– 1,1,1-trichloroethane			
72.4	0.038	0.079	73.1	0.048	0.074		
71.0	0.075	0.158	72.3	0.100	0.143		
70.1	0.094	0.188	70.9	0.186	0.256		
69.1	0.122	0.239	70.3	0.221	0.302		
66.3	0.200	0.371	69.4	0.282	0.372		
63.2	0.291	0.485	68.0	0.367	0.467		
61.9	0.338	0.544	67.4	0.408	0.513		
60.7	0.372	0.591	66.6	0.464	0.568		
58.9	0.446	0.660	65.8	0.522	0.625		
56.1	0.560	0.745	65.0	0.584	0.681		
53.2	0.681	0.828	64.1	0.662	0.748		
52.3	0.734	0.867	63.5	0.697	0.776		
51.3	0.787	0.901	63.0	0.737	0.808		
50.0	0.843	0.930	62.2	0.807	0.861		
49.2	0.890	0.947	61.6	0.856	0.901		
48.6	0.926	0.966	61.2	0.899	0.929		
Combinations of feed		Combinations of feed					
70.0	0.096	0.196	69.3	0.289	0.381		
53.3	0.677	0.825	65.0	0.582	0.677		
49.1	0.889	0.947	61.0	0.908	0.933		

Figure 1. Cathala still

Table IV. Refractive Index–Composition Data at 20° C

x_1	$n_{ m D}^{_{20}}$	\boldsymbol{x}_1	$n_{ m D}^{ m _{20}}$	x_1	$n_{ m D}^{ m 20}$	x_1	$n_{ m D}^{_{20}}$	
Carbon tetrachloride- ethylene chloride		Ethylene tetrachle	Ethylene chloride- tetrachloroethene		Ethylene chloride– 1,1,1-trichloroethane		Tetrachloroethene- methyl alcohol	
0.092	1 4462	0.068	1.5020	0.061	1.4385	0.100	1.3630	
0.199	1.4479	0.194	1.4949	0.141	1.4388	0.143	1.3766	
0.302	1.4494	0.306	1.4886	0.228	1.4392	0.248	1.4062	
0.420	1.4511	0.421	1.4817	0.348	1.4399	0.365	1.4329	
0.450	1.4515	0.515	1.4761	0.455	1.4406	0.413	1.4429	
0.552	1.4530	0.611	1.4702	0.584	1.4414	0.545	1.4658	
0.666	1.4546	0.712	1.4636	0.702	1.4424	0.652	1.4797	
0.723	1.4555	0.791	1.4586	0.818	1.4434	0.740	1.4883	
0.801	1.4568	0.882	1.4527	0.907	1.4442	0.816	1.4948	
0.892	1.4584	0.953	1.4482	0.949	1.4446	0.920	1.5011	
Carbon te	trachloride-	Ethylene	e chloride-	Trichlor	oethene-	Tetrachloroethene-		
trichlo	roethene	ethyl	alcohol	tetrachle	oroethene	n-propy	ropyl alcohol	
0.089	1.4759	0.050	1.3648	0.057	1.5044	0.050	1.3929	
0.155	1.4749	0.124	1.3749	0.125	1.5026	0.117	1.4033	
0.277	1.4727	0.216	1.3837	0.224	1.5001	0.197	1.4151	
0.365	1.4712	0.267	1.3883	0.329	1.4973	0.293	1.4284	
0.433	1.4701	0.348	1.3956	0.431	1.4945	0.376	1.4394	
0.539	1.4682	0.442	1.4035	0.534	1.4917	0.477	1.4513	
0.611	1.4672	0.520	1.4099	0.631	1.4890	0.576	1.4630	
0.691	1.4659	0.677	1.4222	0.728	1.4861	0.681	1.4752	
0.801	1.4641	0.809	1.4326	0.819	1.4831	0.793	1.4866	
0.872	1.4629	0.910	1.4394	0.912	1.4804	0.921	1.4990	
Ethylene	e chloride-	Ethylene	e chloride-	Trichlor	oethene-			
trichlo	roethene	n-propy	l alcohol	<i>n</i> -propy	l alcohol			
0.102	1.4743	0.044	1.3873	0.047	1.3903			
0.187	1.4713	0.143	1.3925	0.124	1.3988			
0.280	1.4682	0.240	1.3984	0.219	1.4092			
0.362	1.4655	0.340	1.4045	0.310	1.4181			
0.487	1.4615	0.434	1.4102	0.404	1.4273			
0.590	1.4581	0.540	1.4165	0.500	1.4359			
0.695	1.4547	0.639	1.4225	0.608	1.4457			
0.763	1.4524	0.741	1.4286	0.708	1.4539			
0.848	1.4496	0.845	1.4349	0.823	1.4635			
0.913	1.4475	0.948	1.4415	0.938	1.4727			

APPARATUS

Vapor-liquid equilibria were determined in a dynamic ebulliometer after Cathala (3, 4) (Figure 1). Heated liquid and superheated vapor enter the mixing chamber at a constant rate where they equilibrate. The two phases remaining are then separated, collected, and analyzed.

Thermocouples are inserted in the exit of the Cottrell pump to measure the vapor-liquid temperature, and in the vapor jacket to measure the exiting vapor temperature. The difference between the two thermocouple readings controls the feed conditions and ensures that there is no radial temperature gradient in the separator.

Preliminary experiments, with both entering streams in liquid and vapor states, were run to ensure that the feeds used in the equilibrium determinations were in true equilibrium. These control experiments were made with each binary system, reversing the feeds on several occasions. Only three points are shown in Table III. Composition variations were less than 0.005 mole fraction, the limits of experimental accuracy possible with this apparatus. The results from this apparatus were compared with those from other types of equilibrium stills in the case of acetic acidwater binary systems (6). The thermocouples were ironconstantan calibrated against a platinum resistance thermometer. Temperatures were accurate to $0.1^\circ\,C.$

About 20 min were necessary to achieve equilibrium, after which samples were collected. The use of a peristaltic pump to feed the apparatus limited the amount of feed necessary for a determination to about 100 ml.

ANALYSIS OF SAMPLES

An immersion refractometer, with sodium-D line illumination, was used to measure refractive indices. All measurements were made at $20^{\circ} \pm 0.1^{\circ}$ C. The maximum error possible was less than 0.003 mole fraction.

Refractive index-composition data were determined at 20°C for each of the 11 binary systems (Table IV). These data have not been previously published. However, refractometry is inadequate to determine composition of samples from the following systems:

> $1.2\ {\it trans-dichloroethene-1,2-cis-dichloroethene}$ 1,1,1-trichloroethane-1,2-trans-dichloroethene 1,2-cis-dichloroethene-1,1,1-trichloroethane

Measurements on these systems are made with gas chromatography and are accurate to 0.02 mole fraction.

RESULTS AND DISCUSSION

Vapor-liquid equilibria were determined at 760 mm Hg for each system in Table I. Seven of these binary mixtures had a positive azeotrope. The azeotropic coordinates were determined in this work and in the previous works (7, 10, 14) as indicated in Table V.

The consistency of the data was examined for each system by plotting (y - x) against x. In each case the curves were smooth, indicating no significant errors in the data. A stricter test for thermodynamic consistency is obtained by integrating the Gibbs-Duhem equation over the composition range at constant pressure. The appropriate equation is

$$\int_0^1 \ln\left(\frac{\gamma_1}{\gamma_2}\right) dx_1 = \int_0^1 \left(\frac{\Delta H_m}{RT^2}\right) (dT/dx_1) dx_1$$

where ΔH_m represents the heat of mixing per mole of mixture. The heats of mixing for these systems are not available in the literature. The thermodynamic consistency of the isobaric activity coefficient (γ_1, γ_2) at 760 mm Hg was tested by plotting log (γ_1/γ_2) against composition.

Table V. Azeotropic Coordinates

	($t^{\circ} C)_{AZ}$	$(x_1)_{AZ}$		
Systems	Exptl	Lit.	Exptl	Lit.	
Ethylene chloride- trichloroethene	82.1	82.3 (7)	67.5	65.8 (7)	
Ethylene chloride- n-propyl alcohol	80.4	80.5 (10)	75.0	73.5 (10)	
Trichloroethene- n-propyl alcohol	81.6	81.75 (<i>10</i>) 81.8 (7)	71.8	69.0 (<i>10</i>) 69.0 (7)	
<i>n</i> -Propyl alcohol– tetrachloroethene	94.0	94.0 (10) 94.05 (7)	70.5	$\begin{array}{c} 72.3 \ (10) \\ 71.7 \ (7) \end{array}$	
Carbon tetrachloride- ethylene chloride	75.2	$75.55 (10) \\ 75.3 (14)$	70.0	$70.7 (10) \\ 70.0 (14)$	
Ethylene chloride- ethyl alcohol	70.1	$\begin{array}{ccc} 70.5 & (10) \\ 71.0 & (7) \end{array}$	49.5	46.4 (<i>10</i>) 48.0 (7)	
Methyl alcohol- tetrachloroethene	63.5	63.75 (10)	88.3	89.8 (10)	

Except for the *n*-propyl alcohol-ethylene chloride system, where the difference in area was about 20%, the area difference in all systems was less than 10%. Since the heats of mixing are not negligible, the results are consistent.

CONCLUSION

The results obtained agree with other published results (1, 2, 9, 14). The data obtained in this work may be exploited to determine ternary vapor-liquid equilibrium data with the aid of such tools as van Laar, Margules, and Wilson's equations (12, 13).

ACKNOWLEDGMENT

The authors thank C. Dupuy for his contribution to this work.

NOMENCLATURE

- x = mole fraction of component in liquid phase
- y = mole fraction of component in vapor phase
- $t = \text{temperature}, \circ C$

LITERATURE CITED

- (1) Acharya, M. V. R., Venkata Rao C., Trans. Indian Inst. Chem. Eng., 6, 137 (1953-4).
- (2)Bachman, K. C., Zimmerli, A., Simons, E. L., Ind. Eng. Chem., 42, 2569 (1950).
- (3)Cathala, J., Hardie, D., Leclerc, R., Bull. Soc. Chim. Fr., 17, 1129 (1950).
- (4)Cathala, J., Hardie, D., Leclerc, R., Ind. Chem., 27, 565 (1951).
- (5)
- Dreisbach, R. R., Advan. Chem. Ser., 22, 202, 203 (1959). Hàla, E., Pick, J., Fried, V., Vilim, O., "Vapour Liquid (6)Equilibrium," 2nd ed., Pergamon Press, London, 1967.
- Handbook of Chemistry and Physics, 47e ed., 1966-67. (7)
- Hanson, D. O., Van Winkle, M., J. Chem. Eng. Data, 3, 12 (8)(1967).
- (9)Hollo, J., Lengyel, T., Period. Polytech., 4, 2 (1960).
- Lecat, M., "L'azéotropisme," 2nd ed., Bruxelles, 1959. (10)
- (11)Merck Index of Chemicals and Drugs, pp 412, 970, Merck and Co., Inc., Rahway, N. J., 1952.
- (12)Sanchez, V., Guiglion, G., Mahenc, J., Chim. Ind. Génie Chim., 101, 8, 1097 (1969)
- (13)Sanchez, V., Guiglion, G., Mahenc, J., ibid., 103, 10, 1278 (1970).
- Young, H. D., Nelson, O. A., Ind. Eng. Chem. Anal. Ed., (14)4, 67-9 (1932).

RECEIVED for review September 21, 1970. Accepted February 27, 1971.