

Figure 4. Excess Gibbs free energy for methyldiethylaminewater

Greek Letters

$\gamma=$ activity coefficient $=f / f^{0} X$
$\Phi=$ ratio of fugacity coefficient of pure component to component fugacity coefficient in mixture

Subscripts

$a=$ amine
$w=$ water
$1=$ Component 1
$2=$ Component 2

Superscript

$0=$ pure component

LITERATURE CITED

(1) Copp, J. L., Trans. Faraday Soc., 51, 1056 (1955).
(2) Copp, J. L., Everett, D. H., Discuss. Faraday Soc., 15, 174 (1953).
(3) Copp, J. L., Everett, D. H., Trans. Faraday Soc., 53, 9 (1957).
(4) Davison, R. R., J. Chem. Eng. Data, 13, 348 (1968).
(5) Davison, R. R., Smith, W. H., Chem. Eng. Sci., 24, 1589 (1969).
(6) Davison, R. R., Smith, W. H., J. Chem. Eng. Data, 14, 296 (1969).
(7) Davison, R. R., Smith, W. H., Chun, K. W., AIChE J., 13, 590 (1967).
(8) "International Critical Tables," Vol 3, McGraw-Hill, New York, N.Y., 1928, p 215.
(9) Kohler, R., Monsatsch, 82, 913 (1951).
(10) Krichevskii, I. R., Khazanova, N. E., Svetlova, G. M., Panina, R. S., Russ. J. of Phys. Chem., 34 (10), 1027-30 (1960).
(11) Lange, N. A., "Handbook of Chemistry," 10th ed., McGrawHill, New York, N.Y., 1961, p 1458.
(12) Lattey, R. T., J. Chem. Soc., 91, 1959 (1907).
(13) Prausnitz, J. M., Eckert, C. A., Orye, R. V., O'Connell, V. P., "Computer Calculations for Multicomponent VaporLiquid Equilibria," Prentice-Hall, Englewood Cliffs, N.J., 1967, p 13.
(14) Roberts, L. D., Mayer, J. E., J. Chem. Phy., 9, 852 (1941).
(15) Storonkin, A. V., Markuzin, N. P., Vestn. Leningrad. Univ., Ser. Fiz. Khim., 13 (4), 100-16 (1958).

Received for review August 14, 1970. Accepted June 28, 1971. Tables V (five manuscript pages, triethylamine-water) and VI (six manuscript pages, methyldiethylamine-water) will appear following these pages in the microfilm edition of this volume of the Journal. Single copies may be obtained from the Reprint Department, American Chemical Society, 1155 Sixteenth St., N.W., Washington, D.C. 20036, by referring to author, title of article, volume, and page number. Remit by check or money order $\$ 4.00$ for photocopy or $\$ 2.00$ for microfiche.

Vapor-Liquid Equilibrium for System Toluene-n-Amyl Alcohol

LEON Y. SADLER III, DAVID W. LUFF, ${ }^{1}$ and MARVIN D. McKINLEY ${ }^{2}$
Department of Chemical and Metallurgical Engineering, University of Alabama, University, Ala. 35486

TCotal vapor pressures of mixtures of toluene and n-amyl alcohol were measured at temperatures from $30^{\circ} \mathrm{C}$ to the normal boiling point for liquid solutions of known compositions. These data were used to calculate isothermal vaporliquid equilibrium compositions at five different temperatures from $30-110^{\circ} \mathrm{C}$. The calculation procedure to convert the vapor pressure-temperature-liquid composition data to isothermal vapor-liquid equilibrium compositions is discussed.

[^0]
CALCULATION METHODS

The approach outlined by Van Ness (13) was used to calculate the equilibrium compositions from the total vapor pressure data. The general coexistence equation is rigorous and derived from the Gibbs-Duhem equation. For a binary system, this equation is

$$
\begin{equation*}
\psi d P+\Omega d T=\left(y_{1}-x_{1}\right) d \ln \left(\frac{\gamma_{1}{ }^{v}}{\gamma_{2}^{V}}\right)+\frac{\left(y_{1}-x_{1}\right)}{y_{1}\left(1-y_{1}\right)} d y_{1} \tag{1}
\end{equation*}
$$

Total vapor pressures for toluene-n-amyl alcohol solutions of 11 different compositions including the pure components were measured over the range $30^{\circ} \mathrm{C}$ to the normal boiling point with an isoteniscope-mercury barometer system. These data were used to calculate isothermal vapor-liquid equilibrium compositions at $30^{\circ}, 50^{\circ}, 70^{\circ}, 90^{\circ}$, and $110^{\circ} \mathrm{C}$ by numerical integration of the isothermal coexistence equation.

$$
\begin{align*}
& \psi=\frac{V^{V}-V^{L}+\left(y_{1}-x_{1}\right)\left(V_{2}^{V}-V_{1}^{V}\right)}{R T} \tag{2}\\
& \Omega=\frac{H^{V}-H^{L}+\left(y_{1}-x_{1}\right)\left(H_{2}^{V}-H_{1}^{V}\right)}{R T^{2}} \tag{3}
\end{align*}
$$

For isothermal conditions and for low pressures, Equation 1 can be reduced to

$$
\begin{equation*}
\frac{d y_{1}}{d P}=\frac{\psi-\left(1-2 y_{1}\right)\left(y_{1}-x_{1}\right)\left(\delta_{12} / R T\right)}{\frac{\left(y_{1}-x_{1}\right)}{y_{1}\left(1-y_{1}\right)}-\left(y_{1}-x_{1}\right)\left(2 P \delta_{12} / R T\right)} \tag{4}
\end{equation*}
$$

Equation 2 becomes

$$
\begin{equation*}
\psi=\frac{y_{1} y_{2} \delta_{12}-V^{L}+x_{1} B_{11}+x_{2} B_{22}}{R T}+\frac{1}{P} \tag{5}
\end{equation*}
$$

In Equations 4 and 5, the virial equation of state truncated after the second term is used to represent the $P V T$ behavior of the gas phase. Only moderate accuracy is required for the second virial coefficients because of the low pressure application. Hence, if experimental data are not available, existing correlations can be used with satisfactory accuracy. B_{11}, B_{22}, and δ_{12} were calculated using procedures suggested by O^{\prime} Connell and Prausnitz (8). The critical properties for toluene required for estimating the second virial coefficient were taken from the data of Rossini (10). The critical constants for n amyl alcohol were calculated by Lydersen's method as suggested by Gold and Ogle (3)
The liquid molar volume was assumed to be a linear function of mole fraction between the values of molar volume for the pure components. This assumes negligible volume change upon mixing. The volume change of mixing for other alcoholhydrocarbon systems has been measured by Pardo and Van Ness (9) and Van Ness and coworkers (14, 15). For alcoholaromatic systems, the volume change on mixing was less than 0.2% of the mixture volume. Because of the relative magnitudes of the numbers in Equation 5, the effect of neglecting the volume change of mixing is entirely negligible. In addition, the small variation in molar volume caused by pressure changes was neglected. Liquid molar volumes were derived from the data of Timmermans (12)
The experimental data to be used with Equations 4 and 5 are most convenient if in the form of total vapor pressure vs. liquid composition at constant temperature. Thus, P is a function of x_{1}. To get y_{1} as a function of x_{1}, we can integrate the equation

$$
\begin{equation*}
\frac{d y_{1}}{d x_{1}}=\frac{d y_{1}}{d P} \cdot \frac{d P}{d x_{1}} \tag{6}
\end{equation*}
$$

$d P / d x_{1}$ can be obtained from the experimental data by differentiation of the P vs. x_{1} data. $d y_{1} / d P$ is obtained from Equation 4. Experimental data, combined with Equations 4-6 can then be used to calculate equilibrium y_{1} vs x_{1} values by numerical integration. In this study, the fourth-order RungeKutta integration technique given by Lapidus (6) was used with an IBM 360/50 digital computer to perform the integrations. The procedure will now be summarized in a stepwise manner.

For 11 solutions of different and known liquid composition, total vapor pressures were measured at temperatures from
$30^{\circ} \mathrm{C}$ to the normal boiling point. For each mixture, the total vapor pressure data were fitted by a nonlinear least-squares technique to the following integrated form of the ClausiusClapeyron equation

$$
\begin{equation*}
\log _{10} P=A-B / T-C \log _{10} T \tag{7}
\end{equation*}
$$

The set of Equations 7 represented the experimental data and could be used to calculate the vapor pressure for each of the liquid mixtures at any given temperature.
A set of isothermal vapor pressure data as a function of x_{1} was calculated from the fitted Equations 7. The calculated data points were used because the experimental measurements could not be made exactly at each temperature desired. This procedure also smoothed the data. A seventh-degree polynomial in x_{1} was fitted to the P vs. x_{1} data using a linear leastsquares technique. This latter equation was then differentiated analytically to yield $d P / d x_{1}$ values.
Equation 6 was integrated numerically, making use of Equations 4 and 5 and the experimentally derived $d P / d x_{1}$ data to yield y_{1} vs. x_{1} at constant temperature. Because of the nature of the system, all integrations were started at the pure component compositions to obtain proper convergence.

EXPERIMENTAL

The materials used were both of relatively high purity as obtained from the suppliers. Gas chromatographic analysis, however, revealed some impurities, especially in the alcohol. Therefore, the materials were redistilled at high reflux ratio in a $100-\mathrm{cm}$ tall distillation column packed with $1 / 8-\mathrm{in}$. glass helices. The samples were taken from heart cuts in which no impurities other than air could be detected by the gas chromatograph.
The toluene used was purchased from the Phillips Petroleum Co., with a specified purity of $99+$ mol $\%$. After distillation the refractive index at $20^{\circ} \mathrm{C}$ was 1.4967 compared to 1.4961 from the literature (4).
The n-amyl alcohol was purchased from Baker Chemical Co., with a specified boiling range of $137.4-8.0^{\circ} \mathrm{C}$. After distillation, the refractive index at $20^{\circ} \mathrm{C}$ was 1.4099 compared to 1.4101 from the literature (4).
Despite the extensive initial purification, the materials contained appreciable amounts of dissolved gases, such as air, even though all sample transfers to the vapor pressure measuring cell were conducted in a glass apparatus from which air had been previously evacuated to 10μ absolute pressure. The alcohol was easily degassed by repeatedly freezing the liquid with liquid nitrogen, thawing, refreezing, and evacuating the vapor space above the frozen sample. When no gas bubbles were seen rising to the liquid surface on thawing, the degassing was complete as the vapor pressure showed. The toluene required much more extensive degassing. After drawing the toluene vapor first through a bed of Dehydrite and then through Ascarite, the toluene was condensed and subjected to the same degassing-by-freezing technique as the alcohol. The toluene was vacuum distilled into a specially designed glass still with a $21-\mathrm{cm}$ long packed section containing $1 / 4$-in. Intalox saddles.
Vaporization in the still pot was supplied by a thermosyphon reboiler made from $2-\mathrm{mm}$ id capillary tubing wound outside
with resistance heating wire. The thermosyphon reboiler eliminated the violent bumping that otherwise occurred when the toluene boiled. Toluene vapors were condensed by a water-cooled condenser built into the upper section of the still. Every few hours the vapor space above the condenser was isolated by closing a stopcock and was completely evacuated, thus removing any noncondensables that had collected there. The stopcock was reopened and the refluxing continued. Periodically, a portion of the toluene was removed from the still, and its vapor pressure was measured at several temperatures to check on the progress of the degassing. Table I shows the progress of the toluene degassing operation, essentially complete after 144 hr .

Vapor pressures were measured in a Booth-type isoteniscope (2) in a constant temperature bath. Pressure measurements were made by balancing the pressure exerted by the sample with dry air and measuring the air pressure with an absolute mercury manometer which was read by a cathetometer. After the isoteniscope was loaded, the sample was sealed in with mercury, connected to the absolute manometer system, and placed in a well-stirred constant-temperature bath. The sample inside the isoteniscope was stirred continuously by a magnetic stirring bar driven from beneath the bath. The sample temperature was measured using a copper-constantan thermocouple immersed in the bath near the isoteniscope. The thermocouple was calibrated against an NBS-certified platinum-resistance thermometer. The bath temperature could be controlled to within $\pm 0.05^{\circ} \mathrm{C}$, and no temperature gradients could be detected with the thermocouple near the isoteniscope.

For each sample, the first vapor pressure measurement was made at room temperature after which successive vapor pressures were determined at approximatly $10^{\circ} \mathrm{C}$ intervals up to the sample's normal boiling point. The sample was vacuum distilled from the isoteniscope into a trap and taken for composition analysis with a refractometer. The isoteniscope was so constructed that the uncertainty in liquid-phase composition introduced by assigning the composition of the entire sample to the liquid phase was less than ± 0.001 mole fraction. The following is a summary of the maximum expected experimental errors for this study: temperature, $\pm 0.05^{\circ} \mathrm{C}$; pressure, $\pm 0.2 \mathrm{~mm} \mathrm{Hg}$; composition, ± 0.005 mole fraction.

EXPERIMENTAL RESULTS

Table II gives the constants in the integrated ClausiusClapeyron equation (Equation 7) for the vapor pressures as functions of temperature for each mixture investigated. All barometric measurements were corrected for capillarity of the manometer and mercury vapor pressure and are given corrected to a mercury column at $0^{\circ} \mathrm{C}$ and gravity as at sea level and 45° latitude.

The pure-component data (Tables III and IV) are in good agreement with that of Rossini (10) in the case of toluene and with the data of Kemme and Krepps (5) for n-amyl alcohol.

Figure 1 shows the variation in total vapor pressure with liquid composition at the five temperatures for which the isothermal coexistence equation was solved. An azeotrope is evident at $110^{\circ} \mathrm{C}$ but not seen at the four lower temperatures.

Table V presents the isothermal vapor-liquid equilibrium compositions at five temperatures from $30-110^{\circ} \mathrm{C}$. In addition, the liquid-phase activity coefficient, vapor pressure, and excess free energy, ΔG^{E}, are tabulated. Values for ΔG^{E} were calculated using the equation

$$
\begin{equation*}
\Delta G^{E}=R T\left(x_{1} \ln \gamma_{1}^{L}+x_{2} \ln \gamma_{2}^{L}\right) \tag{8}
\end{equation*}
$$

Activity coefficients were calculated from the equation

$$
\begin{equation*}
\gamma_{i}^{L}=\frac{y_{i} P}{x_{i} P_{i}^{o}}+\frac{\left(B_{i i}-V_{i}^{L}\right)\left(P-P_{i} o\right)}{R T}+\frac{P \delta_{i j}}{R T} y_{i}^{2} \tag{9}
\end{equation*}
$$

Table I. Tolvene Degassing Times

	Vapor Pressure, ${ }^{a} \mathrm{~mm} \mathrm{Hg}$ after			
$\mathrm{t},{ }^{\circ} \mathrm{C}$	0 hr	72 hr	144 hr	170 hr
70.0	215.08	203.92	203.17	203.21
110.0	779.56	746.48	746.36	745.49

${ }^{a}$ Vapor pressures are smoothed values calculated from Equation 7 which was fitted to the particular set of experimental data.

Table II. Integrated Clausius-Clapeyron Equation ${ }^{\text {C }}$ Constants

Mole
fraction
Standard
fraction
toluene error

0.000	0.415	51.02254	4878.576	13.877430
0.125	0.698	6.23402	2018.146	-0.641210
0.295	0.389	8.77065	2015.623	0.300993
0.418	1.397	13.80306	2241.971	2.000000
0.528	0.320	13.35838	2197.996	1.866322
0.595	0.154	14.28155	2239.237	2.170832
0.717	0.321	17.37152	2390.385	3.206628
0.819	0.484	16.75390	2352.509	3.000000
0.880	0.088	18.83545	2458.569	3.75066
0.440	1.774	25.76370	2813.330	6.018566
1.000	0.471	21.36637	2573.199	4.559219

a The integrated Clausius-Clapeyron equation is given by Equation 7, where P is in mm Hg and T is degrees Kelvin. The multiple correlation coefficient was $0.999+$ for each data set, indicating excellent correlations. The standard error of estimate is defined as follows: $S E=P h i /(n-k)$ where

$$
P h i=\sum_{i=1}^{n}(\text { observed pressure }- \text { predicted pressure })^{2}
$$

Table III. Tolvene Vapor Pressures

- Vapor pressure, mm Hg , from the data of

	Vapor pressure, mm Hg, from the data of		
Temp., ${ }^{\circ} \mathrm{C}$	Rossini $(10)^{a}$	Van Ness $(15)^{a}$ et al.	Sadler (11) ${ }^{\text {b }}$
30.0	36.67	37.95	36.64
50.0	92.10	93.32	91.78
70.0	203.72	204.67	203.21
90.0	406.65	408.66	406.20
110.0	746.41	754.76	745.49

a Vapor pressures were calculated from the Antoine equation fitted by the investigator to his experimental data. ${ }^{b}$ Vapor pressures were calculated from a fit of the experimental data to the integrated form of the Clausius-Clapeyron equation by the indicated investigator.

Table IV. n-Amyl Alcohol Vapor Pressures

	Vapor pressure, mm Hg, from the data of		
Temp., ${ }^{\circ} \mathrm{C}$	Butler (1) ${ }^{\text {a }}$	Kemme $(5)^{b}$ and Krepps	Sadler (11) ${ }^{\text {a }}$
30.0	3.65	3.17	3.10
50.0	14.22	12.92	12.64
70.0	45.18	42.06	41.66
90.0	121.46	115.06	115.15
110.0	284.14	274.16	275.03
130.0	591.65	584.36	581.25

a Vapor pressures were calculated from a fit of the experimental data to the integrated form of the Clausius-Clapeyron equation by the indicated investigator. ${ }^{b}$ Vapor pressures were calculated from the Antoine equation fitted by the investigator to his experimental data.

Table V. Isothermal Vapor-Liquid Equilibrium Compositions

Vapor-Liquid Equilibrium at $30^{\circ} \mathrm{C}$						Vapor-Liquid Equilibrium at $70^{\circ} \mathrm{C}$ (Contd.)							
Toluene mole fraction		Liquid activity	phase efficient	Total pressure, mm Hg	Excess free energy, $\mathrm{cal} / \mathrm{g} \mathrm{mol}$	Toluene mole fraction		Liquid-phase activity coefflcient		Total pressure, mm Hg	Excess free energy, cal/g mol		
Liquid	Vapor	Toluene	alcohol			Liquid	Vapor	Toluene	alconol				
0.010	0.323	4.010	0.999	4.53	7.67	0.650	0.876	1.217	1.539	193.16	189.91		
0.050	0.674	3.358	1.004	9.09	38.96	0.700	0.887	1.169	1.674	187.18	179.88		
0.100	0.783	2.813	1.019	13.12	72.22	0.750	0.898	1.127	1.842	191.00	165.31		
0.150	0.832	2.466	1.038	16.25	100.39	0.800	0.911	1.091	2.064	194.58	146.20		
0.200	0.861	2.238	1.059	18.99	124.80	0.850	0.924	1.058	2.381	197.78	121.64		
0.250	0.883	2.077	1.083	21.51	145.88	0.900	0.939	1.029	2.910	200.38	90.29		
0.300	0.899	1.949	1.108	23.80	163.89	0.950	0.959	1.005	3.917	202.19	49.59		
0.350	0.911	1.836	1.141	25.82	179.77	Vapor-Liquid Equilibrium at $90^{\circ} \mathrm{C}$							
0.400	0.920	1.730	1.182	27.54	192.58								
0.450	0.927	1.630	1.236	28.95	202.42								
0.500	0.934	1.535	1.306	30.13	209.39	0.010	0.091	2.881	1.000	125.59	7.86		
0.550	0.938	1.450	1.390	31.14	212.41	0.050	0.313	2.529	1.004	160.68	36.37		
0.600	0.942	1.376	1.492	32.08	211.69	0.100	0.454	2.207	1.015	194.12	67.03		
0.650	0.947	1.312	1.617	32.98	207.51	0.150	0.539	1.983	1.031	220.86	92.78		
0.700	0.951	1.256	1.769	33.85	199.14	0.200	0.599	1.824	1.049	243.94	114.51		
0.750	0.956	1.204	1.975	34.62	186.42	0.250	0.647	1.706	1.070	264.79	132.83		
0.800	0.959	1.152	2.306	35.19	168.69	0.300	0.686	1.614	1.093	283.94	148.30		
0.850	0.961	1.095	2.933	35.47	143.78	0.350	0.718	1.536	1.119	301.40	161.02		
Vapor-Liquid Equilibrium at $50^{\circ} \mathrm{C}$						0.400	0.745	1.465	1.151	317.04	171.08		
						0.450	0.768	1.399	1.191	330.77	178.39		
0.010	0.208	3.617	1.000	15.81	8.26	0.500	0.788	1.337	1.241	342.64	182.59		
0.010 0.050	0.539	3.617 3.100	1.005	26.21	39.17	0.550	0.805	1.278	1.305	352.87 361.82	183.67		
0.100	0.675	2.646	1.018	35.75	72.54	0.600 0.650	0.821 0.836	1.223	1.384 1.481	361.82 369.89	181.04 174.67		
0.150	0.741	2.337	1.036	43.18	100.95	0.650 0.700	0.836 0.852	1.175 1.133	1.481	369.89 378.45	174.67 164.35		
0.200	0.783	2.123	1.057	49.53	124.99	0.700 0.750	0.852 0.868	1.099	1.732	384.71	149.92		
0.250	0.814	1.966	1.080	55.23	145.78	0.750 0.800	0.868 0.887	1.099 1.070	1.896	384.71 391.65	149.92 131.45		
0.300	0.837	1.842	1.108	60.41	168.68	0.800 0.850	0.887 0.907	1.046	1.896 2.110	391.65	108.53		
0.350	0.855	1.736	1.140	65.03	178.58	0.850 0.900	0.929	1.025	2.449	403.04	108.53 80.37		
0.400 0.450	0.870 0.882	1.640 1.551	1.179 1.229	69.07 72.53	190.49	0.950	0.956	1.006	3.097	406.10	44.61		
0.500	0.891	1.468	1.292	75.47	205.54	Vapor-Liquid Equilibrium at $110^{\circ} \mathrm{C}$							
0.550	0.899	1.392	1.371	78.01	207.87								
0.600	0.907	1.324	1.466	80.27	206.38	0.010			1.000	291.76	7.56		
0.650	0.914	1. 264	1.584	82.36	201.05	0.010 0.050	0.065 0.238	2.644 2.293	1.0005	291.76 346.90	7.56 34.88		
0.700	0.922	1.211	1.733	84.33	191.84	0.050 0.100	0.238 0.361	2.293 1.992	1.005	346.90 398.46	34.88 63.30		
0.750	0.929	1.163	1.924	86.15	177.93	0.150	0.361 0.444	1.795	1.031	398.40 440	66.54		
0.800	0.936	1.119	2.201	87.73	159.10	0.150 0.200	0.444 0.509	1.795 1.666	1.031	440.06 477.00	86.54 105.85		
0.850	0.943	1.076	2.659	88.96	133.97	0.200 0.250	0.509 0.563	1.666	1.047 1.064	477.00 511.42	105.85 122.12		
0.900	0.950	1.033	3.548	89.81	99.97	0.250 0.300	0.563 0.609	1.506	1.083	543.66	135.81		
0.950	0.962	0.999	5.345	90.50	53.24	0.300 0.350	0.649	1.446	1.104	573.31	147.30		
Vapor-Liquid Equilibrium at $70^{\circ} \mathrm{C}$						0.400	0.682	1.389	1.131	599.82	156.38		
						0.450	0.711	1.334	1.166	622.92	162.84		
0.010	0.135	3.227	1.000	47.75	8.15	0.500	0.735	1.279	1.210	642.77	166.45		
0.050	0.414	2.813	1.005	68.10	38.19	0.550	0.757	1.228	1.267	659.88	166.96		
0.100	0.561	2.436	1.016	87.28	70.57	0.600	0.778	1.181	1.335	675.03	164.00		
0.150	0.641	2.171	1.033	102.39	98.03	0.650	0.798	1.141	1.415	688.97	157.57		
0.200	0.693	1.982	1.053	115.25	121.45	0.700	0.820	1.107	1.504	702.25	147.62		
0.250	0.733	1.840	1.076	126.73	141.40	0.750	0.843	1.081	1.604	714.97	134.29		
0.300	0.764	1.729	1.101	137.17	158.06	0.800	0.867	1.059	1.722	726.72	117.55		
0.350	0.789	1.635	1.132	146.61	172.11	0.850	0.893	1.039	1.888	736.59	97.06		
0.400	0.810	1.551	1.168	155.00	183.15	0.900	0.918	1.018	2.179	743.43	71.42		
0.450	0.827	1.473	1.213	162.33	191.33	0.950	0.951	1.003	2.612	746.36	38.44		
0.500	0.842	1.401	1.269	168.64	196.33	0.970	0.969	1.001	2.741	746.42	23.49		
0.550	0.854	1.334	1.341	174.08	197.98	0.980	0.979	1.000	2.797	746.24	15.79		
0.600	0.865	1.272	1.430	178.85	195.93	0.990	0.982	0.992	4.948	745.96	6.22		

To calculate the vapor composition, $d P / d x_{1}$ must be evaluated by differentiating a seventh-degree polynomial that was fitted to isothermal $P-x$ data by a least-squares technique. Differentiation of a high-degree polynomial can give erratic derivatives if the fitted data are not smooth. Two checks were made to be certain that the calculated derivatives were reasonable. First, the computer terminated integration whenever a zero derivative occurred, indicating an azeotrope. The only isotherm for which an azeotrope was indicated was at $110^{\circ} \mathrm{C}$. Second, values of $d P / d x_{1}$ were printed by the com-
puter and were checked to be certain the derivatives were reasonable. Figure 2 gives $d P / d x_{1}$ as a function of x_{1} for the $110^{\circ} \mathrm{C}$ isotherm as obtained by differentiation of the polynomial. Individual points are not shown on the figure because they were calculated from the equation at intervals of 0.01 in x_{1}. This figure shows the derivatives $d P / d x_{1}$ to be reasonably smooth.
In addition to the equilibrium data calculated from the total vapor pressure measurements, some direct equilibrium measurements at atmospheric pressure were made using an equilib-

Figure 1. Isothermal total vapor pressure-composition curves

Figure 2. Slope of total vapor pressure curve from seventh degree polynomial
rium still. The materials were the same as previously described, and the still was essentially the same as that used by Nagata (7). The results of the measurements with the equilibrium still are given in Table VI. No data are presented for compositions below $x_{1}=0.465$ because as the liquid became more concentrated in n-amyl alcohol, severe bumping occurred and it was not possible to obtain reliable data.

The data from the equilibrium still are compared with the data from the total vapor pressure measurements in Figure 3.

Table VI. Isobaric Vapor-Liquid Equilibrium Data

x_{1}	y_{1}	Temp, ${ }^{\circ} \mathrm{C}$	$P, \mathrm{~mm} \mathrm{Hg}$	$\gamma_{1}{ }^{L}$	$\gamma_{2}{ }^{L}$
0.465	0.685	116.8	760	1.257	1.214
0.530	0.725	115.8	761	1.198	1.257
0.593	0.757	113.4	752	1.177	1.390
0.600	0.765	114.3	763	1.164	1.342
0.635	0.776	113.2	762	1.147	1.460
0.685	0.800	112.4	754	1.108	1.545
0.710	0.825	112.0	757	1.118	1.499
0.767	0.847	111.4	760	1.083	1.678
0.826	0.875	111.0	760	1.050	1.870
0.863	0.900	110.5	758	1.045	1.936
0.920	0.935	110.1	756	1.026	2.191
0.960	0.975	110.2	752	1.018	1.677
0.995	0.995	110.7	762	1.001	2.191

Figure 3. Isobaric equilibrium at 1 atm
The highest isotherm calculated from the total vapor pressure measurements was $110^{\circ} \mathrm{C}$, but the isobaric data from the equilibrium still covered a temperature range of $110.1-16.8^{\circ} \mathrm{C}$. For a liquid solution of a given composition, the effect of temperature on the vapor composition was not large, and it was easy graphically to extrapolate the data from the total vapor pressure measurements to the temperature observed in the isobaric measurements with the equilibrium still. These extrapolated values are plotted in Figure 3 along with data from the equilibrium still. The agreement is good, and the validity of the calculations from the total vapor pressure measurements is confirmed.

The activity coefficients at $110^{\circ} \mathrm{C}$ calculated from the total vapor pressure measurements were fitted by nonlinear least squares to the following three equations:
Van Laar

$$
\begin{align*}
& \ln \gamma_{1}=\frac{A_{12}}{\left(1+\frac{x_{1}}{x_{2}} \frac{A_{12}}{A_{21}}\right)^{2}} \tag{9}\\
& \ln \gamma_{2}=\frac{A_{21}}{\left(1+\frac{x_{2}}{x_{1}} \frac{A_{21}}{A_{12}}\right)^{2}}
\end{align*}
$$

3-Suffix Margules

$$
\begin{align*}
& \ln \gamma_{1}=x_{2}{ }^{2}\left[A_{12}+2 x_{1}\left(A_{21}-A_{12}\right)\right] \tag{10}\\
& \ln \gamma_{1}=x_{1}{ }^{2}\left[A_{21}+2 x_{2}\left(A_{12}-A_{21}\right)\right]
\end{align*}
$$

Wilson
$\ln \gamma_{1}=-\ln \left(x_{1}+\Lambda_{12} x_{2}\right)+x_{2}\left[\frac{\Lambda_{12}}{x_{1}+\Lambda_{12} x_{2}}-\frac{\Lambda_{21}}{\Lambda_{21} x_{1}+x_{2}}\right]$
$\ln \gamma_{2}=-\ln \left(x_{2}+\Lambda_{21} x_{1}\right)-x_{1}\left[\frac{\Lambda_{12}}{x_{1}+\Lambda_{12} x_{2}}-\frac{\Lambda_{21}}{\Lambda_{21} x_{1}+x_{2}}\right]$

Table VII. Correlating Parameters for Activity Coefficient at $110^{\circ} \mathrm{C}$

Eq	Parameters	Standard error estimate	Correlation coefficient
Van Laar	$A_{12}=0.92639$	0.0796	0.992
	$A_{21}=0.83855$		
3-Suffix Margules	$A_{12}=0.92144$	0.0802	0.992
	$A_{21}=0.84992$		
Wilson	$\Lambda_{12}=0.55283$	0.0737	0.993
	$\Lambda_{21}=0.65866$		

Table VII shows how well each equation represents the activity coefficients at $110^{\circ} \mathrm{C}$. Although all three equations correlate the data well, the Wilson equation fits slightly better and is recommended for the toluene- n-amyl alcohol binary system.

The equipment, procedures, and raw data can be found in more detail in the work of Sadler (11). The original data (Table VIII) have been placed on deposit with the ACS Microfilm Depository Service.

ACKNOWLEDGMENT

The computer facilities were provided by the University of Alabama Computer Center.

NOMENCLATURE

$A=$ constant in the integrated Clausius-Clapey-
ron equation
$A_{12}, A_{21}=$ parameters in the Van Laar and 3-suffix
Margules equations
$B=$ constant in the integrated Clausius-Clapey-
ron equation
$B_{i i}, B_{i j}, B_{j j}=$ second virial coefficient for pure component
i, a mixture of components i and j, and for
pure component j, respectively, cc/g mol
$C=$ constant in the integrated Clausius-Clapey-
ron equation
$\Delta G^{E}=$ excess Gibbs Free energy, cal $/ \mathrm{g} \mathrm{mol}$
$H^{L}=$ enthalpy of liquid solution, cal/g mol
$H^{V}=$ enthalpy of vapor mixture, cal $/ \mathrm{g} \mathrm{mol}$
$H_{i}{ }^{L}=$ enthalpy of pure component in liquid state,
$\mathrm{cal} / \mathrm{g} \mathrm{mol}$
$H_{i}{ }^{V}=$ enthalpy of pure component in vapor state,
$\mathrm{cal} / \mathrm{g} \mathrm{mol}$
$i=$ index of summation
$k=$ number of adjustable parameters in corre-
lating equation
$P=$ total vapor pressure, mm Hg
$P_{i}{ }^{\circ}=$ vapor pressure of pure component i
$n=$ number of data points
$R=$ gas constant, $62,361 \mathrm{~mm} \mathrm{Hg}, \mathrm{cc} / \mathrm{g} \mathrm{mol},{ }^{\circ} \mathrm{K}$
$t=$ temperature, ${ }^{\circ} \mathrm{C}$
$T=$ absolute temperature, ${ }^{\circ} \mathrm{K}$
$V^{L}=$ molar volume of liquid solution, cc/g mol
$V^{v}=$ molar volume of vapor mixture, $\mathrm{cc} / \mathrm{g} \mathrm{mol}$

$$
\begin{aligned}
V_{i} L & =\underset{\text { cc }}{\text { liquid molar } / \mathrm{g} \mathrm{~mol}} \\
V_{i} v & =\begin{array}{c}
\text { vapor molar volume of pure component, } i, \\
\mathrm{cc} / \mathrm{g} \mathrm{~mol}
\end{array} \\
x_{i} & =\begin{array}{c}
\text { mole fraction of component } i \\
\text { phase }
\end{array} \\
y_{i} & =\begin{array}{c}
\text { mole fraction of component } i \\
\text { phase }
\end{array}
\end{aligned}
$$

Greek Letters

$\boldsymbol{\gamma}_{i}{ }^{\boldsymbol{L}}=$| liquid-phase |
| :--- |
| ponent i |

$\boldsymbol{\gamma}_{\boldsymbol{i}}^{\boldsymbol{V}}=$ vapor-phase ponent i
$\delta_{i j}=2 B_{i j}-B_{i i}-B_{j j}, \mathrm{cc} / \mathrm{g} \mathrm{mol}$
$\psi=$ parameter in the coexistence equation
$\Omega=$ parameter in the coexistence equation
$\Lambda_{12}, \Lambda_{21}=$ parameters in the Wilson equation

Subscripts

$$
\begin{aligned}
& 1=\text { toluene } \\
& 2=n \text {-amyl alcohol } \\
& i, j=\text { general index denoting either component } 1 \text { or } \\
& \quad \text { component } 2
\end{aligned}
$$

LITERATURE CITED

(1) Booth, H. S., Halbedel, H. S., J. Amer. Chem. Soc. 68, 2652 (1946).
(2) Butler, J. A. V., J. Chem. Soc. 138, 280 (1935).
(3) Gold, P. I., Ogle, G. J., Chem. Eng. (New York) 75, 185 (Nov. 4, 1968).
(4) "Handbook of Chemistry and Physics," 50th ed., Chemical Rubber Co., Cleveland, Ohio (1969).
(5) Kemme, H., Krepps, S. I., J. Chem. Eng. Data, 14, 98 (1969).
(6) Lapidus, L., "Digital Computation for Chemical Engineers," McGraw-Hill, New York, N. Y., 1962, p. 189.
(7) Nagata, I., J. Chem. Eng. Data, 10, 106 (1965).
(8) O'Connell, J. P., Prausnitz, J. M., Ind. Eng. Chem. Prooess Des. Develop., 6 (2), 245 (1967).
(9) Pardo, F., Van Ness, H. C., J. Chem. Eng. Data, 10, 163 (1965).
(10) Rossini, F. D., Amer. Petrol. Inst., Project No. 44, Carnegie Press, Pittsburgh, Pa., (1953).
(11) Sadler, III, L. Y., M.S. Thesis, University of Alabama, University, Ala., 1970.
(12) Timmermans, J., "Physico-Chemical Constants of Pure Organic Compounds," Elsevier, New York, N. Y., 1950, pp 152, 326.
(13) Van Ness, H. C., "Classical Thermodynamics of Nonelectrolyte Solutions," Macmillan, New York, N. Y., 1964, pp 136-150.
(14) Van Ness, H. C., Soczek, C. A., Kochar, N. K., J. Chem. Eng. Data, 12, 346 (1967).
(15) Van Ness, H. C., Soczek, C. A., Peloquin, G. L., Machado, R. L., ibid., 12, 217 (1967).

Recerved for review August 20, 1970. Accepted March 22, 1971. Table VIII (data on total vapor pressure from 1.000 mole fraction toluene to 0.000 , three manuscript pages) will appear following these pages in the microfilm edition of this volume of the Journal. Single copies may be obtained from the Reprint Department, American Chemical Society, 1155 Sixteenth St., N.W., Washington, D. C. 20036, by referring to author, title of article, volume, and page number. Remit by check or money order $\$ 3.00$ for photocopy or $\$ 2.00$ for microfiche.

[^0]: ${ }^{1}$ Present address, Tennessee Eastman Corp., Kingsport, Tenn.
 ${ }^{2}$ To whom correspondence should be addressed.

