NOTE ADDED IN PROOF: The Ni-Cd data of R. A. Schaefer and F. Hovorka [*Trans. Electrochem. Soc.*, **87**, 479 (1945)], should have been mentioned. These data do not agree with the present work, but several problems seem evident: (a) Most serious, Schaefer and Hovorka made no analysis of, or corrections for, differences in the CdCl₂ concentration in the Li-KCl-CdCl₂ electrolyte in the two H-cell legs. (b) The reported solubility of nickel in cadmium at their lowest temperature was exceeded. (c) The stabilities of NiO and CdO are close enough so that oxidative side reactions were perhaps possible.

ACKNOWLEDGMENT

Advice given by Barton L. Houseman and Guy R. B. Elliott has been greatly appreciated.

LITERATURE CITED

- Brewer, L., Bromley, L. A., Gilles, P., Lofgren, N. L., Paper 6 in NNES, Vol 19B, L. L. Quill, Ed., McGraw-Hill, New York, N.Y., 1950.
- York, N.Y., 1950. (2) Conant, D. R., Los Alamos Scientific Laboratory Report LA-4102, 1969.
- (3) Conant, D. R., Elliott, G. R. B., J. Chem. Eng. Data, 13, 354 (1968).
- (4) Corbett, J. D., Von Winbush, S., Albers, F. C., J. Amer. Chem. Soc., 79, 3020 (1957).
- (5) Crawford, G. A., Tomlinson, J. W., Trans. Faraday Soc., 62, 3046 (1966).

- (6) Elliott, G. R. B., J. Electrochem. Soc., 115, 1143 (1968).
- (7) Elliott, G. R. B., Conant, D. R., Swofford, H. S., Jr., Houseman, B. L., Third International Symposium on High Temperature Technology, Asilomar, Calif., September 1967, Paper 28, D. D. Cubicciotti, Ed., IUPAC Supplement, Butterworths, London, England, 1969, pp 511-23, 743-6.
- (8) Elliott, G. R. B., Lemons, J. F., J. Electrochem. Soc., 114, 935 (1967).
- (9) Elliott, G. R. B., Lemons, J. F., Los Alamos Scientific Laboratory Report LA-3733, 1967.
- (10) Elliott, G. R. B., Lemons, J. F., Swofford, H. S., Jr., J. Phys. Chem., 69, 933 (1965).
- (11) Herzog, Von W., Klemm, A., Z. Naturforsch., 15a, 1100 (1960).
- (12) Houseman, B. L., Elliott, G. R. B., J. Electrochem. Soc., 116, 1363 (1969).
- (13) Mashovets, V. P., Poddymov, V. P., Zh. Prikl. Khim. (Eng. Ed.), 37, 1268 (1964).
- (14) Roeser, W. F., Wenzel, H. T., J. Res. Nat. Bur. Stand., 10, 275 (1933).
- (15) Scatchard, G., Prentiss, S. S., J. Amer. Chem. Soc., 55, 4355 (1933).
- Schenker, H., Lauritzen, J. I., Corruccini, R. J., Lonberger, S. T., Nat. Bur. Stand. (U.S.), Circ., 561 (April 27, 1955).
- (17) Swofford, H. S., Elliott, G. R. B., Inorg. Chem., 7, 666 (1968).
- (18) Topol, L. E., Landis, A. L., J. Amer. Chem. Soc., 82, 6291 (1960).
- (19) Von Hevesy, G., Lowenstein, E., Z. Anorg. Allg. Chem., 187, 266 (1930).

RECEIVED for review June 26, 1970. Accepted May 27, 1971. This work was performed under the auspices of the U. S. Atomic Energy Commission.

Vapor-Liquid Equilibrium at Atmospheric Pressure

JOSETTE MESNAGE and ANDRÉ A. MARSAN¹ Faculty of Applied Science, University of Sherbrooke, Sherbrooke, Que., Canada

Vapor-liquid equilibrium of the three binary systems cyclohexane-cyclohexene, cyclohexane-1,2-dichloroethane, and cyclohexene-1,2-dichloroethane and the ternary system cyclohexane-cyclohexene-1,2-dichloroethane were measured at atmospheric pressure using an Ellis recirculation still. Experimental data were tested for thermo-dynamic consistency, and Wilson's equation provided a good correlation.

Published data (1, 3) show the two binary systems cyclohexane-cyclohexene and cyclohexane-1,2-dichloroethane inadequate in thermodynamic consistency tests. This work is an investigation of these systems plus the binary system cyclohexene-1,2-dichloroethane and the ternary system cyclohexane-cyclohexene-1,2-dichloroethane.

EXPERIMENTAL

Materials and Physical Constants. Cyclohexane, cyclohexane, and 1,2-dichloroethane were supplied as chromatography grade and used without further purification. The four-parameter equation, $\ln P_{i^{s}} = C_1 + C_2/T + C_4T + C_6 \ln T$, was used to correlate vapor pressure and temperature. The parameters C_1-C_4 were found by the method of least squares, and the best value of C_6 was obtained by trial and error.

¹ To whom correspondence should be addressed.

434 Journal of Chemical and Engineering Data, Vol. 16, No. 4, 1971

The agreement between published and calculated vapor pressure data is good. The mean absolute percentage deviation, defined as

$$D = \sum_{i=1}^{N} \left| \frac{P_i^{*} (\exp) - P_i^{*} (\text{calcd})}{P_i^{*} (\exp)} \right| \times 100$$

gave values ranging from 0.008 for cyclohexane to 0.043 for 1,2-dichloroethane.

The necessary physical constants were found in the literature and are reported in Table I.

Apparatus. Experimental vapor-liquid equilibrium data were determined by using a conventional glass Ellis recirculation still fully described in the literature (2). Pressure was regulated by a damping reservoir followed by a Cartesian monostat (2). Variation of pressure in the system was estimated to be, at the most, 1 mm of mercury.

Temperatures were measured by a calibrated ASTM thermometer. The probable error in the temperature is 0.05° C. The whole system was kept in a heated box, and a total load

Table I. Physical Constants of Pure Component

		$Cyclohexane C_8H_{12}$	$\begin{array}{c} Cyclohexene \\ C_6 H_{10} \end{array}$	1,2-Dichloroethane CH ₂ Cl-CH ₂ Cl
Boiling point (7), °C		80.70	82.98	83.47
Molecular weight (7) , grams		84.16	82.14	98.97
Critical properties (7)	P_{c} , atm	40.57	41.82	64.52
	$T_{c}^{\prime\prime}$ °K	554.15	559.15	579.15
	$V_{\rm c}$ ml	307.3	301.3	200.5
	$D_{c}, g/ml$	0.272	0.288	0.517
Dipole moment (4)		0.0	0.28	2.98
Acentric factor (6)		0.2103	0.2046	0.2351
Parameters for Equation (7)	C_1	65.95	143.77	96.38
P = f(T)	$\vec{C_2}$	-6011.1	-8201.5	-7014.2
2)(2)	$\overline{C_3}$	0.0	0.0	0.0
	C.	0.0067	0.028	0.015
	C_{5}	0	0	0
	\tilde{C}_i	-8.75	-22.24	-13.98

of 250 cc was used for each experiment. After about 2 hr of gentle boiling, the steady state was established, and liquid and vapor samples were taken simultaneously and directly analyzed.

Analytical Method. The equilibrium samples were analyzed by gas chromatography with a flame detector. The marker method, used for the calibration, consists in adding a known amount of a compound in the sample. This compound acts as a reference whose chromatographic peak must be near the peak of the marked compound but must not overlap. A calibration curve must be made for each compound of the ternary system; toluene and acetone are the two selected markers.

The chromatographic column was recalibrated regularly to account for possible column degradation. The statistical error in the chromatographic analysis of the sample was at the most 2%.

Activity Coefficients from Experimental Data (x_i, y_i, P, T) . Activity coefficients were calculated for each component using equation

$$\gamma_i = \frac{y_i \phi_i P}{x_i f_i^{OL}} \tag{1}$$

With a general thermodynamic function for the fugacity coefficient (δ) ,

$$\ln \phi_i = \frac{1}{RT} \int_v^{\infty} \left[\left(\frac{\partial P}{\partial n_i} \right)_{T,V,n_j} - \frac{RT}{v^V} \right] dv - \ln z \qquad (2)$$

and the virial equation of state truncated after the second term

$$z = \frac{Pv^v}{RT} = 1 + \frac{B\min}{v^v}$$
(3)

where B mix = mixture virial coefficient and is given by

$$B \text{ mix} = \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} y_{j} B_{ij}$$
(4)

The fugacity coefficient for any component i in a mixture of components is obtained by substitution of Equations 3 and 4 in Equation 2. After differentiating and integrating, one obtained

$$\ln \phi_{i} = \frac{2}{v^{v}} \sum_{j}^{N} y_{j} B_{ij} - \ln z$$
 (5)

The fugacity coefficient ϕ_i was calculated with the help of Equation 5 and the standard state fugacity by

$$f_i^{oL} = \phi_i^{\ s} P_i^{\ s} \exp\left(-\frac{v_i^{\ L} P_i^{\ s}}{RT}\right) \tag{6}$$

The calculation of the virial coefficients B_{ij} is explained in the literature (6).

Correlation of Results. The Wilson equation

$$\ln \gamma_i = 1 - \ln \left[\sum_{j=1}^N x_j \Lambda_{ij} \right] - \sum_{k=1}^N \left[\frac{x_k \Lambda_{ki}}{\sum_{j=1}^N x_j \Lambda_{kj}} \right]$$
(7)

was selected for correlating the data. The Λ_{ij} is defined by

$$\Lambda_{ij} = \frac{v_j{}^L}{v_i{}^L} \exp\left[-\frac{(\lambda_{ij} - \lambda_{ii})}{RT}\right]$$
(8)

and $(\lambda_{ij} - \lambda_{ii})$ are Wilson's energy parameters, determined by successive approximation from isobaric or isothermal experimental data. Even for multicomponent systems, only binary parameters are needed for Wilson's equation.

The Wilson parameters are calculated as follows:

$$\Sigma y_i = 1.0 \tag{9}$$

 $P = (\Sigma y_i)P$ and for a binary system, $P = y_1P + y_2P$ (10) but

$$P = \frac{f_1^L}{\phi_1} + \frac{f_2^L}{\phi_2} = \frac{\gamma_1 x_1 f_1^{oL}}{\phi_1} + \frac{\gamma_2 x_2 f_2^{oL}}{\phi_2}$$
(11)

For a given $(\lambda_{ij} - \lambda_{ii})$, activity coefficients are calculated at the reference pressure of the standard state fugacity and the total pressure *P* of the system is evaluated by Equation 11. A comparison is made between calculated and experimental *P*:

$$SQ = \Sigma \left[\frac{(P_{exp} - P_{osled})}{P_{osled}} \times 100 \right]^2$$
(12)

Then, the minimum SQ is searched for. The vapor phase y_i is calculated by Equation 1. These computations were carried out using an IBM 360/40 computer.

Van Laar and Margules models were used for binary systems: Van Laar (3rd order)

$$\log \gamma_1 = A_{12}/(1 + A_{12}x_1/A_{21}x_2)^2$$
(13)

$$\log \gamma_2 = A_{21}/(1 + A_{21}x_2/A_{12}x_1)^2 \tag{14}$$

Margules (3rd order)

$$\log \gamma_1 = x_2^2 (2 A_{21} - A_{12}) + 2 x_2^3 (A_{12} - A_{21})$$
(15)

$$\log \gamma_2 = x_1^2 (2 A_{12} - A_{21}) + 2 x_1^3 (A_{21} - A_{12})$$
(16)

Ternary systems using Van Laar and Margules models were: Van Laar (3rd order)

$$\log \gamma_{i} = Z_{j}^{2} A_{ij} + Z_{k}^{2} A_{ik} + Z_{j} Z_{k} \left(A_{ij} + A_{ik} - \frac{A_{kj} A_{ik}}{A_{ki}} - C(1 - 2 Z_{i}) \frac{A_{i1}}{A_{1i}} \right)$$
(17)

Journal of Chemical and Engineering Data, Vol. 16, No. 4, 1971 435

with

$$Z_{i} = \frac{x_{i}A_{1i}/A_{1i}}{x_{1} + x_{2}A_{21}/A_{12} + x_{8}A_{31}/A_{13}}$$
(18)

$$ijk = 123, 231, 312$$

Margules (3rd order)

$$\log \gamma_{i} = x_{j}^{2} [A_{ij} + 2 x_{i} (A_{ji} - A_{ij})] + x_{k}^{2} [A_{ik} + 2 x_{i} (A_{ki} - A_{ik})] + x_{j} x_{k} [A_{ji} + A_{ik} - A_{kj} + 2 x_{i} (A_{ki} - A_{ik}) + 2 x_{k} (A_{kj} - A_{jk}) - C(1 - 2 x_{i})]$$
(19)

with

$$C = \frac{1}{2}(A_{21} - A_{12} + A_{31} - A_{13} + A_{32} - A_{23})$$
(20)

$$A_{ij} = \liminf_{x_i \to 0} \log \gamma_i \tag{21}$$

RESULTS FOR BINARY SYSTEMS

Thermodynamic Consistency of Experimental Data. The three binary systems have been tested thermodynamically by the method of Herington (\mathcal{P}) who proposed an equation for isobaric conditions derived from the Gibbs-Duhem equation:

$$\int_{0}^{1.0} \log \frac{\gamma_1}{\gamma_2} dx_1 = \int_{0}^{1.0} \frac{H^E}{2.30 RT^2} \frac{dT}{dx_1} dx_1$$
(22)

where $H^E = \text{molar heat of mixing.}$

For isobaric conditions this right-hand term is not negligible. From the graph log $(\gamma_1/\gamma_2) = f(x_1)$, the area under the curve is measured and compared with values given by Herington to take in account this second term of the integral. This entire method is reported by Hala et al. (2). For each system the plot of log $(\gamma_i/\gamma_j) = f(x_i)$ is presented in Figures 1-3.

The two systems cyclohexane-1,2-dichloroethane and cyclohexane-1,2-dichloroethane were consistent. The system cyclohexane-cyclohexene is not consistent although the positive and negative areas are nearly equal (positive area = 0.00199, negative area = 0.00158), but these numerical values are so small that actual experimental errors are sufficient to destroy the internal consistency of the data.

Figure 1. Herington consistency test

Positive area, 0.0020. Negative area, 0.0016. Test inconclusive

Cyclohexene (1)-1.2 Dichloroethane(2)

Positive area, 0.073. Negative area, 0.069. Results consistent

Correlation. Consistent experimental data were used to determine the various binary parameters used in conjunction with Wilson, Van Laar, and Margules equations. These parameters are reported in Table II. Following this determination, correlation was attempted for the cyclohexane (1)-cyclohexene (2) system. Experimental results are reported in Table III, and Figure 4 indicates nearly ideal behavior.

· ·	Table II	. Parameters Use	d in Three Equat	ions of Prediction		
	Cyclohexane (1) sys	-cyclohexene (2) tem	Cyclohexane (1 ethane (2	1)–1,2-dichloro- 2) system	Cyclohexene (1 ethane (2	1)–1,2-dichloro- 2) system
	A_{12}	A_{21}	A ₁₂	A 21	A_{12}	A_{21}
Wilson energy parameters $(\lambda_{ij} - \lambda_{ii}) = A_{ij}$ Van Laar	967.85 0.035	$\begin{array}{r}-487.15\\0.040\end{array}$	$\begin{array}{r} \textbf{426.27}\\\textbf{0.65}\end{array}$	$\begin{array}{c} 352.14 \\ 0.55 \end{array}$	$\begin{array}{c} 238.01 \\ 0.30 \end{array}$	$\begin{array}{c} 186.35\\ 0.36\end{array}$

436 Journal of Chemical and Engineering Data, Vol. 16, No. 4, 1971

Table III.	Experim Cycloł	ental Data f nexene (2) S	or Cyclohe» System	(ane(1)-
		P = 1 atm		
<i>T</i> , °K	x_1	y_1	γ_1	γ_2
356.07	0.0281	0,0321	1.0729	1.0245
356.00	0.0276	0.0312	1.0638	1.0271
355.79	0.0627	0.0758	1.1453	1.0227
355.96	0.0997	0.1139	1.0777	1.0157
355.73	0.1742	0.1902	1.0379	1.0186
355.60	0.2211	0.2428	1.0485	1.0134
355.30	0.2939	0.3128	1.0258	1.0232
355.32	0.3149	0.3438	1.0521	1.0062
355.15	0.3770	0.4020	1.0332	1.0130
355.08	0.4291	0.4610	1.0437	1.0000
355.01	0.4538	0.4798	1.0193	1.0170
354.95	0.4886	0.5085	1.0153	1.0194
354.82	0.5395	0.5546	1.0070	1.0294
354.67	0.5776	0.5868	1.0000	1.0454
354.61	0.5998	0.6100	1.0027	1.0430
354.50	0.6547	0.6677	1.0090	1.0326
354.27	0.7070	0.7140	1.0061	1.0539

$$y_i = \frac{x_i P_i^s}{P}$$

Goodness of fit of the Raoult, Wilson, and Van Laar models are compared in Table IV. A mean error on the calculated vapor phase composition and on the calculated activity coefficients is evaluated in regard to experimental data. The assumption that this system is ideal is justified: The vapor phase compositions predicted by the Raoult-Dalton law differ slightly from the experimental values. In fact, the three methods are rather equivalent for this system.

Cyclohexane (1)-1,2-dichloroethane (2) and cyclohexene (1)-1,2-dichloroethane (2) systems present an azeotropic point (Figures 5 and 6). The comparison of experimental azeotropic compositions with those obtained by Wilson and Van Laar equations is tabulated (Table V). Experimental values are

Table IV. Comparison between Raoult, Wilson, and Van Laar Models for Cyclohexane (1)–Cyclohexene (2) System

	95% Confidence	e limits of errors
Equation	<u>y</u>	γ
Raoult- Dalton	$\Delta y_1 = 0.0052 \pm 0.0031$	
Wilson	$\Delta y_1 = -0.0045 \pm 0.0043$ $\Delta y_2 = \Delta y_1$	$\begin{array}{rcl} \Delta \gamma_1 = & 0.0146 \pm 0.0712 \\ \Delta \gamma_2 = & 0.0071 \pm 0.0797 \end{array}$
Van Laar	$\Delta y_1 = 0.0019 \pm 0.0022$ $\Delta y_2 = -0.0071 \pm 0.0049$	$\Delta \gamma_1 = 0.0017 \pm 0.0109 \\ \Delta \gamma_2 = -0.0094 \pm 0.0058$

Journal of Chemical and Engineering Data, Vol. 16, No. 4, 1971 437

tabulated (Tables VI and VII), and vapor-liquid equilibria data are plotted in Figures 5 and 6.

The predicted values of vapor phase composition and activity coefficients are again compared with experimental data, and the mean error on y and γ is tabulated in Tables VIII and IX. These results provide evidence that the Wilson equation gives a better correlation than the Van Laar model.

RESULTS FOR TERNARY SYSTEMS

All the results are tabulated in Table X. Three prediction methods have been tried. The Wilson method is again the best for this ternary system (Table XI).

Table V.	Azeotropic Composition for Cyclohexane-1,2-
	Dichloroethane and Cyclohexene-1,2-
	Dichloroethane Systems

	Experimental composition	Wilson compo- sition	Van Laar compo- sition
Cyclohexane (1)- 1,2-dichloroethane (2)	$x_1 = y_1 = 0.53$	0.53	0.62
1,2-dichloroethane (2)	0.505	0.500	0.655

Table VI. Experimental Data for Cyclohexane (1)–1,2-Dichloroethane (2) System

		P = 1 atm		
T, °K	x_1	y_1	γ_1	${oldsymbol{\gamma}}_2$
356.39	0.0065	0.0209	2.9823	1.0130
355.95	0.0113	0.0426	3.5422	1.0088
356.01	0.0123	0.0498	3.7984	1.0004
355.57	0.0165	0.0646	3.7203	1.0024
355.40	0.0206	0.0661	3.0639	1.0103
354.84	0.0321	0.0891	2.6944	1.0144
354.70	0.0326	0.0878	2.6247	1.0208
354.10	0.0537	0.1249	2.3078	1.0198
352.05	0.1165	0.2357	2.1349	1.0167
350.65	0.1804	0.2869	1.7501	1.0685
349.62	0.2582	0.3712	1.6334	1.0750
348.85	0.3533	0.4478	1.4752	1.1091
348.23	0.5631	0.5489	1.1574	1.3664
348.57	0.6979	0.6170	1.0398	1.6576
348.85	0,7473	0.6560	1.0242	1.7628
349.53	0.8103	0.7158	1.0105	1,8960
349.90	0.8395	0.7579	1.0128	1.8850
350.75	0.8826	0.8015	1.0025	2.0547
351.85	0.9280	0.8598	1.0000	2.2826
352.47	0.9521	0.9007	1.0000	2,3810
353.45	0.9545	0.9024	1.0000	2.4651
353.95	0.9731	0.9369	1.0000	2.6517
353.15	0.9754	0.9424	1.0000	2.6301
353.65	0.9930	0.9771	1.0000	3.6148

Table VII.	Experimental Data for Cyclohexene (1)-1,2-
	Dichloroethane (2) System

		P = 1 atm		
<i>T</i> , °K	x_1	y_1	γ_1	${oldsymbol{\gamma}}_2$
356.05	0.9935	0.9852	1.0029	2.3363
355.87	0.9854	0.9672	1.0000	2.3189
355.65	0.9735	0.9514	1.0000	1.9065
355.25	0.9385	0.9010	1.0000	1.6961
354.75	0.9276	0.8835	1.0002	1.7224
354.35	0.8775	0.8270	1.0012	1.5324
353.95	0.8428	0.7918	1.0097	1.4561
353.63	0.8124	0.7598	1.0144	1.4226
353.37	0.7808	0.7251	1.0148	1.4057
353.05	0.7318	0.6743	1.0161	1.3761
352.90	0.7047	0.6547	1.0289	1.3317
352.60	0.6349	0.5944	1.0454	1.2784
352.25	0.5144	0.5040	1.1044	1.1899
352.33	0.5056	0.5059	1.1252	1.1613
352.53	0.4512	0.4629	1.1462	1.1307
352.70	0.3564	0.4042	1.2596	1.0645
352.70	0.3387	0.4079	1.3376	1.0296
352.87	0.2978	0.3752	1.3917	1.0180
353.35	0.2401	0.3382	1.5331	1.0000
353.97	0.1671	0.2560	1.6349	1.0000
354.65	0.1215	0.1886	1.6218	1.0011
354.95	0.0969	0.1590	1.6984	1.0002
355.35	0.0719	0.1214	1.7261	1.0044
355.95	0.0367	0.0673	1.8402	1.0087
356.43	0.0200	0.0398	1.9682	1.0058
356.80	0.0040	0.0078	1.9068	1.0112
356.80	0.0038	0.0069	1.7756	1.0119

Table VIII. Comparison between Wilson and Van Laar Models for Cyclohexane (1)–1,2-Dichloroethane (2) System

	95% Confiden	ce limits of errors
Equations	y	γ
Wilson	$\Delta y_1 = 0.0047 \pm 0.0046$ $\Delta y_2 = \Delta y_1$	$\Delta \gamma_1 = -0.0996 \pm 0.2959 \Delta \gamma_2 = -0.1581 \pm 0.3057$
Van Laar	$\Delta y_1 = 0.0357 \pm 0.0160 \Delta y_2 = 0.0249 \pm 0.0148$	$\begin{array}{rcl} \Delta \gamma_1 &=& 0.4619 \pm 0.2218 \\ \Delta \gamma_2 &=& 0.2735 \pm 0.1422 \end{array}$

Table IX. Comparison between Wilson and Van Laar Models for Cyclohexene (1)–1,2-Dichloroethane (2) System

95% Confidence limits of errors

Equations	y	γ
Wilson	$\Delta y_1 = -0.0023 \pm 0.0053 \\ \Delta y_2 = \Delta y_1$	$\Delta \gamma_1 = -0.0406 \pm 0.0678 \\ \Delta \gamma_2 = -0.0851 \pm 0.2045$
Van Laar	$\begin{array}{rcl} \Delta y_1 &=& 0.0165 \pm 0.0067 \\ \Delta y_2 &=& 0.0145 \pm 0.0063 \end{array}$	$\begin{array}{rcl} \Delta \gamma_1 &=& 0.0577 \pm 0.0214 \\ \Delta \gamma_2 &=& 0.0820 \pm 0.0485 \end{array}$

P = 1 atm							
γ_3	γ_2	γ_1	¥2	x_2	y_1	x_1	<i>T</i> , °K
1.5516	0.9996	1.1263	0.6690	0.7450	0.0845	0.0761	353 39
1.6757	0.9848	1.0790	0.6025	0.6852	0.1705	0.1614	53 20
1.5605	0.9977	1.1036	0.5333	0.6105	0.2144	0.2025	53 52
1.5373	0.9910	1.1134	0.4592	0.5394	0.2438	0.2326	51 88
1.5462	0.9808	1.1019	0.4076	0.4887	0.2681	0 2611	51 54
1.4389	0.9884	1.1483	0.3426	0.4136	0.3090	0.2931	51 05
1.4112	1.0094	1.4452	0.3573	0.4211	0.3124	0.2963	51 15
1.2755	0.9996	1.2692	0.2365	0.2884	0 3166	0 2774	50 34
1.3590	1.0173	1.0468	0.1939	0.2313	0.2471	0.2610	50 49
1.1091	1.1226	1.4935	0.1731	0.1863	0.2763	0.2038	50 63
1.1079	1.0828	1.5454	0.1588	0.1756	0.2543	0.1796	50.93

Table X. (Continued)								
P = 1 atm								
T, °K	x_1	y_1	x_2	y_2	γ_1	γ_2	γ_8	
351.13	0.1529	0.2297	0.1070	0.1154	1.6291	1.2834	1.0705	
350.34	0.2445	0.3172	0.1284	0.1198	1.4422	1.1370	1.1130	
349.75	0.3145	0.3528	0.1310	0.1240	1.2698	1.1743	1.1915	
349.51	0.3802	0.4083	0.1240	0.1171	1.2253	1.1799	1.2174	
349.61	0.4638	0.4465	0.1504	0.1320	1.0958	1.0930	1.3844	
350.34	0.4684	0.4549	0.2314	0.1995	1.0821	1.0501	1.4246	
349.71	0.3253	0.3461	0.1652	0.1494	1.2057	1.1234	1.2520	
350.10	0.2266	0.2916	0.1264	0.1213	1.4401	1.1782	1.1338	
350.39	0.1975	0.2771	0.1080	0.1153	1.5563	1.2992	1.0832	
350.89	0.1768	0.2781	0.0982	0.1106	1.7193	1.3499	1.0275	
351.52	0.1432	0.2295	0.0597	0.0720	1.7178	1.4182	1.0472	
350.55	0.4373	0.4253	0.2953	0.2561	1.0767	1.0499	1.4649	
350.84	0.3726	0.3678	0.3549	0.2943	1.0827	0.9954	1.5114	
350.19	0.2557	0.2794	0.2536	0.2216	1.2197	1.0701	1.2668	
352.25	0.7928	0.7509	0.1348	0.1223	1.0005	1.0398	2.0308	
353.19	0.7032	0.6773	0.2425	0.2285	0.9896	1.0510	1.9551	
353.78	0.6378	0.5999	0.3219	0.3302	0.9496	1.1253	1.9209	
352.99	0.5452	0.5085	0.3910	0.3582	0.9626	1.0299	2.3747	
352.75	0.4660	0.4254	0.4392	0.4140	0.9479	1.0680	1.9418	
353.19	0.3706	0.3580	0.5253	0.4740	0.9896	1.0095	1.8256	
353.19	0.3688	0.3582	0.5312	0.4836	0.9950	1.0185	1.7895	
352.99	0.4221	0.4621	0.4591	0.3681	1.1293	0.9017	1.6256	
353.09	0.3551	0.4108	0.5225	0.4124	1.1892	0.8853	1.6385	
353.29	0.3159	0.3432	0.5643	0.4804	1.1095	0.9505	1.6570	
353.53	0.2999	0.3218	0.5928	0.5159	1.080	0.9641	1.6934	
353.80	0.2931	0.2980	0.6145	0.5587	1.0226	0.9993	1.7219	
354.12	0.2524	0.2831	0.6677	0.5930	1.1176	0.9670	1.7047	
355.16	0.1848	0.1979	0.7570	1.7143	0.0346	0.9967	1.6064	
352.57	0.6413	0.6000	0.2866	0.2723	0.9783	1.0806	2.0375	
350.77	0.5494	0.5147	0.2626	0.2192	1.0315	1.0030	1.7262	
350.16	0.4864	0.4640	0.2470	0.2155	1.0688	1.0684	1.4960	
350.23	0.4470	0.4326	0.2663	0.2408	1.0816	1.1053	1.4149	

Table XI. Comparison between Wilson, Van Laar, and Margules Models for Ternary System							
	95% Confidence	95% Confidence limits of errors					
Equations	y	γ					
Wilson	$\Delta y_1 = -0.0036 \pm 0.0056$ $\Delta y_2 = -0.0056 \pm 0.0058$ $\Delta y_2 = 0.0056 \pm 0.0048$	$\Delta \gamma_1 = -0.0108 \pm 0.0193 \Delta \gamma_2 = 0.0065 \pm 0.0203 \Delta \gamma_2 = 0.0671 \pm 0.0347$					
Van Laar	$\begin{array}{rcl} \Delta y_1 &=& 0.0320 \pm 0.0094 \\ \Delta y_2 &=& 0.0047 \pm 0.0046 \\ \Delta y_3 &=& 0.0526 \pm 0.0067 \end{array}$	$\begin{array}{rcl} \Delta \gamma_{1} &=& 0.1322 \pm 0.0527 \\ \Delta \gamma_{1} &=& 0.1322 \pm 0.0527 \\ \Delta \gamma_{2} &=& 0.0464 \pm 0.0160 \\ \Delta \gamma_{3} &=& 0.3470 \pm 0.0684 \end{array}$					
Margules	$\Delta y_1 = -0.0071 \pm 0.0063$ $\Delta y_2 = -0.0002 \pm 0.0048$ $\Delta y_3 = -0.0334 \pm 0.0051$	$\Delta \gamma_1 = -0.0480 \pm 0.0251 \Delta \gamma_2 = -0.0364 \pm 0.0188 \Delta \gamma_3 = -0.2184 \pm 0.0478$					

CONCLUSION

The Van Laar and Margules equations, although easier to use than Wilson's do not yield a good prediction. The method of search for the Wilson parameters is lengthy but the Wilson equation seems more powerful for fitting the binary data featuring azeotropic points. For multicomponent systems the Wilson equation has a real advantage over the others because only binary parameters are needed.

NOMENCLATURE

- A = coefficient for Van Laar or Margules equation
- B = second virial coefficient, cm³/g-mol
- f = fugacity, atm
- n = number of moles, g/mol
- P = pressure, atm
- $R = \text{gas constant, cm}^{3}-\text{atm/g-mol, }^{\circ}\text{K or cal/g-mol, }^{\circ}\text{K}$
- $T = \text{temperature}, \,^{\circ}\text{K}$
- $V = \text{total volume of gaseous mixture, cm}^3$
- v = liquid or vapor molar volume, cm³/g-mol

- x = liquid mole fraction
- y = vapor mole fraction
- z = compressibility factor
- $\gamma = \text{activity coefficient}$
- λ = Wilson energy parameters, cal/g-mole
- ϕ = fugacity coefficient

Superscripts

- L =liquid state
- 0 =standard state
- s = saturation
- V = vapor state

Subscripts

i, j = ith, or *j*th component

LITERATURE CITED

- (1) Fordyce, C. R., Simonsen, D. R., Ind. Eng. Chem., 41, 104 (1949).
- Hala, E., Pick, J., Fried, V., Vilim, O., "Vapor-Liquid Equilibria," Pergamon Press, Oxford, England, 1958, pp 203, 276, 292.
- (3) Harrison, J. M., Berg, L., Ind. Eng. Chem., 38, 117 (1946).
- (4) McClellon, A., "Tables of Experimental Dipole Moments," W. H. Freeman, San Francisco, Calif., 1963, pp. 62, 210, 212.
 (5) Prausnitz, J. M., "Molecular Thermodynamics of Fluid-Phase
- (5) Prausnitz, J. M., "Molecular Thermodynamics of Fluid-Phase Equilibria," Prentice-Hall, Englewood Cliffs, N.J., 1969, p 41.
- (6) Prausnitz, J. M., Eckert, C. A., Orye, R. V., O'Connell, J. P., "Computer Calculations for Multicomponent Vapor-Liquid Equilibria," Prentice Hall, Englewood Cliffs, N.J., 1967, pp 215, 217-20.
- (7) Timmermans, J., "Physico-Chemical Constants of Pure Organic Compounds," Macmillan, New York, N.Y., 1964, pp 193, 205, 236.

RECEIVED for review July 13, 1970. Accepted June 18, 1971. The authors are indebted to the National Research Council of Canada for this research grant.

Journal of Chemical and Engineering Data, Vol. 16, No. 4, 1971 439