Activity Coefficients of KCl in Several Mixed Electrolyte Solutions at 25°C

PETER G. CHRISTENSON¹ and JORIS M. GIESKES Scripps Institution of Oceanography, La Jolla, Calif. 92037

The mean activity coefficients of KCl in aqueous MgCl₂, CaCl₂, BaCl₂, MgSO₄, and K₂SO₄ mixtures have been calculated from emf measurements at 25°C, all at a total ionic strength of 1. Results for the CaCl₂ and BaCl₂ systems agree with those reported using isopiestic measurements. The activity coefficients of KCl follow Harned's rule in MgCl₂, deviate very slightly from linearity in CaCl₂ and BaCl₂, and display large curvatures in MgSO₄ and K₂SO₄ solutions at this ionic strength.

This study was undertaken to determine the mean ionic activity coefficient behavior of KCl in several aqueous mixed electrolyte solutions using cationic glass and Ag-AgCl electrodes. Systems studied were KCl-MgCl₂-H₂O, KCl-MgSO₄--H₂O, KCl-K₂SO₄-H₂O, KCl-CaCl₂-H₂O, and KCl-BaCl₂-H₂O, all at a total ionic strength of 1 at 25° C. Other investigators have used the isopiestic method to study the systems containing CaCl₂ (5) and BaCl₂ (4).

EXPERIMENTAL

Reagents. Deionized, doubly distilled water was used in all solutions. KCl, BaCl₂, CaCl₂, and MgCl₂ were recrystallized from water after treating the aqueous solutions with chlorine gas to remove any trace impurities of Br⁻ and I⁻. KCl solutions, 1*m*, were made up by weight and saturated with AgCl. The 0.3333*m* MgCl₂, BaCl₂, and CaCl₂ solutions were analyzed for Cl⁻ using AgNO₃ with dichlorofluorescein as an adsorption indicator. The 0.3333*m* K₂SO₄ solutions were made up by weight from reagent powder. The 0.2500*m* MgSO₄ solutions were analyzed with standardized Na₂EDTA using Erio Black T indicator. The three or four replicates of each analysis agreed to better than 0.1%. The pH of all solutions was greater than 5.2.

Method. Temperature was maintained at $25.000 \\ \bullet 0.007^{\circ}C$. The procedure for obtaining potentials was very similar to the one used by Gieskes (1) in his study of NaCl in mixed electrolytes. Beckman No. 39137 cationic glass electrodes and Beckman Ag-AgCl electrodes were used in all measurements. Ag-AgCl electrodes were prepared electrolytically according to (3). Several different pairs of electrodes were used to collect data on each of the mixed electrolyte systems in order to get a true estimate of the precision of the method. The cell potentials were measured with a Leeds and Northrup K-5 potentiometer connected to a Keithley 640 electrometer and 370 recorder.

The Nernst slope, S, of each pair of electrodes was determined by making several successive dilutions of a 1m KCl solution with water. The slope was checked before and after a mixed electrolyte was run and agreement was always within 0.3%. Activity coefficients for these KCl solutions were taken from (6). Only electrodes which gave an average Nernst slope of 118.3 ± 1.0 mV were accepted, these slopes are listed in Table I.

Several successive dilutions of the 1m KCl solution with the other salt solution were then made. From these dilutions the mean ionic activity coefficient of KCl was calculated according to

¹ To whom correspondence should be addressed.

$$\log [\gamma_1]_{i+1} = \Delta E/S - \frac{1}{2} \log \left(\frac{[m_{\rm K} m_{\rm C1}]_{i+1}}{[m_{\rm K} m_{\rm C1} \gamma_1^2]_i} \right)$$
(1)

Response time of the electrodes varied from 5 to 15 min, after which the drift became linear with time and less than 60 μ V/hr. The true potential was obtained by extrapolating along the constant drift line to the time of the dilution. Overall precision of the emf measurements is about $\pm 15 \mu$ V.

RESULTS AND DISCUSSION

Results are tabulated in Table I. Mean activity coefficients as a function of ionic strength contributions of both salts are plotted in Figures 1 and 2. These results are fitted to the "Harned's Rule" (2, 6) equation

$$\log \gamma_1 = \log \gamma_1^\circ - \alpha_{12}\mu_2 \tag{2}$$

and also to the second-order equation

$$\log \gamma_1 = \log \gamma_1^{\circ} - \alpha_{12}\mu_2 - \beta_{12}\mu_2^2$$
 (3)

by the method of least squares. The points are weighted according to their scatter by the weighting function

$$\omega_j = \frac{10^{-5}}{[0.0005 + 0.0015 \,\mu_{1(j)}]^2} \tag{4}$$

Table I. Mean Activity Coefficients of KCI

Series 1, S = 117.9				Series 2, S = 117.9			Series 3, S = 118.7	,	Series 4, $S = 118.7$			
$\begin{array}{c} m_{\rm K} \\ 1.0000 \\ 0.8018 \\ 0.6692 \\ 0.5742 \\ 0.4473 \\ 0.3023 \\ 0.2283 \\ 0.1545 \\ 0.1167 \end{array}$	$\begin{array}{c} m_{\rm C1} \\ 1.0000 \\ 0.9339 \\ 0.8897 \\ 0.8581 \\ 0.8157 \\ 0.7654 \\ 0.7428 \\ 0.7182 \\ 0.7056 \end{array}$	$\begin{array}{c} -\log \ \gamma_1 \\ 0.2190 \\ 0.2129 \\ 0.2087 \\ 0.2055 \\ 0.2013 \\ 0.1964 \\ 0.1941 \\ 0.1917 \\ 0.1905 \end{array}$	$\begin{array}{c} m_{\rm K} \\ 1.0000 \\ 0.7908 \\ 0.6540 \\ 0.5574 \\ 0.4305 \\ 0.2816 \\ 0.2092 \\ 0.1377 \\ 0.1026 \end{array}$	$\begin{array}{c} m_{\rm C1} \\ 1.0000 \\ 0.9303 \\ 0.8847 \\ 0.8526 \\ 0.8102 \\ 0.7605 \\ 0.7390 \\ 0.7143 \\ 0.7021 \end{array}$	$\begin{array}{c} -\log \ \gamma, \\ 0.2190 \\ 0.2130 \\ 0.2089 \\ 0.2059 \\ 0.2019 \\ 0.1973 \\ 0.1959 \\ 0.1936 \\ 0.1924 \end{array}$	$\begin{array}{c} m_{\rm K} \\ 1.0000 \\ 0.7910 \\ 0.6542 \\ 0.5578 \\ 0.4308 \\ 0.2819 \\ 0.2095 \\ 0.1385 \\ 0.1035 \end{array}$	$\begin{array}{c} m_{\rm C1} \\ 1.0000 \\ 0.9303 \\ 0.8848 \\ 0.8526 \\ 0.8103 \\ 0.7607 \\ 0.7365 \\ 0.7128 \\ 0.7011 \end{array}$	$\begin{array}{c} -\log \ \gamma_1 \\ 0.2190 \\ 0.2127 \\ 0.2085 \\ 0.2054 \\ 0.2013 \\ 0.1964 \\ 0.1938 \\ 0.1912 \\ 0.1899 \end{array}$	$\begin{array}{c} \hline m_{\rm K} \\ 1.0000 \\ 0.8040 \\ 0.6722 \\ 0.5776 \\ 0.4507 \\ 0.3022 \\ 0.2273 \\ 0.1527 \\ 0.1150 \end{array}$	$\begin{array}{c} m_{\text{C1}} \\ 1.0000 \\ 0.9347 \\ 0.8908 \\ 0.8592 \\ 0.8169 \\ 0.7674 \\ 0.7425 \\ 0.7176 \\ 0.7050 \end{array}$	$\begin{array}{c} -\log \ \gamma_1 \\ 0.2190 \\ 0.2131 \\ 0.2091 \\ 0.2091 \\ 0.2019 \\ 0.1970 \\ 0.1944 \\ 0.1917 \\ 0.1903 \end{array}$	
	~ .				KCHCa	Cl ₂ –H ₂ O			~			
	Series $S = 118$	Series 1, Series 2, $S = 118.8$ $S = 118.8$				Series 3, S = 118.7						
	m_{C1}	-1	$\log \gamma_1$	$m_{\mathbf{K}}$	mc	1	$-\log \gamma_1$	$m_{\rm K}$	n	<i>n</i> _{C1}	$-\log \gamma_1$	
$\begin{array}{c} 1.0000\\ 0.8000\\ 0.6666\\ 0.5714\\ 0.4444\\ 0.2987\\ 0.2250\\ 0.1515\\ 0.1143\\ \end{array}$	$\begin{array}{c} 1.0000\\ 0.9333\\ 0.8889\\ 0.8571\\ 0.8148\\ 0.7663\\ 0.7417\\ 0.7172\\ 0.7048\end{array}$	0 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0.	2190 2143 2110 2086 2053 2013 1992 1970 1959	$\begin{array}{c} 1.0000\\ 0.8096\\ 0.6801\\ 0.5863\\ 0.4595\\ 0.3160\\ 0.2407\\ 0.1658\\ 0.1265\end{array}$	$\begin{array}{c} 1.00\\ 0.93\\ 0.89\\ 0.86\\ 0.81\\ 0.77\\ 0.74\\ 0.72\\ 0.70\end{array}$	00 65 34 21 99 20 69 119 88	$\begin{array}{c} 0.2190\\ 0.2147\\ 0.2115\\ 0.2091\\ 0.2059\\ 0.2020\\ 0.1999\\ 0.1977\\ 0.1965 \end{array}$	$\begin{array}{c} 1.0000\\ 0.7935\\ 0.6577\\ 0.5616\\ 0.4345\\ 0.2883\\ 0.2157\\ 0.1435\\ 0.1435\\ 0.1075\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 0.2190\\ 0.2141\\ 0.2107\\ 0.2083\\ 0.2051\\ 0.2011\\ 0.1991\\ 0.1971\\ 0.1961\\ \end{array}$	
					KCI-Ba	Cl ₂ -H ₂ O						
	Series $S = 113$	1, 8.9			Series 2, S = 118.9				Series 3, S = 118.9			
$m_{\rm K}$	<i>m</i> c1		log γ ₁ 2190	$m_{\rm K}$	m _c	21 100	$-\log \gamma_1$ 0.2190	$\frac{m_{\mathbf{K}}}{1.0000}$	<i>1</i>) 1 (n _{c1}	$-\log \gamma_1$ 0.2190	
$\begin{array}{c} 0.7943\\ 0.6588\\ 0.5628\\ 0.4358\\ 0.2887\\ 0.2158\\ 0.1499\\ 0.1148\\ \end{array}$	$\begin{array}{c} 0.9314\\ 0.8863\\ 0.8542\\ 0.8119\\ 0.7629\\ 0.7386\\ 0.7166\\ 0.7049\end{array}$	0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0.	2169 2155 2143 2128 2109 2099 2087 2082	$\begin{array}{c} 0.8001\\ 0.6667\\ 0.5715\\ 0.4445\\ 0.2993\\ 0.2256\\ 0.1569\\ 0.1202 \end{array}$	0.93 0.88 0.85 0.81 0.76 0.74 0.71 0.70 KCI-K25	33 89 71 48 665 619 89 967 604-H2O	$\begin{array}{c} 0.2170\\ 0.2157\\ 0.2147\\ 0.2133\\ 0.2113\\ 0.2103\\ 0.2092\\ 0.2087\\ \end{array}$	$\begin{array}{c} 0.8014\\ 0.6686\\ 0.5736\\ 0.4466\\ 0.3004\\ 0.2263\\ 0.1525\\ 0.1150\end{array}$		9338 8895 8578 8155 7668 7421 7175 7050	$\begin{array}{c} 0.2171\\ 0.2156\\ 0.2146\\ 0.2132\\ 0.2112\\ 0.2103\\ 0.2092\\ 0.2086\\ \end{array}$	
	Series $S = 11^{\circ}$	1,			Serie	es 2,			Sei S =	ries 3, 118.8		
	<u> </u>		$\log \gamma_1$		$\frac{n}{m_{\rm C}}$		$-\log \gamma_1$			110.0 loi	$-\log \gamma_1$	
$\begin{array}{c} 1.0000\\ 0.9361\\ 0.8928\\ 0.8614\\ 0.8192\\ 0.7711\\ 0.7461\\ 0.7211\\ 0.7081\\ \end{array}$	$\begin{array}{c} 1.0000\\ 0.808;\\ 0.678;\\ 0.584;\\ 0.457(\\ 0.313;\\ 0.238;\\ 0.163;\\ 0.124; \end{array}$	0 0. 3 0. 3 0. 4 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0.	2190 2231 2264 2291 2333 2384 2413 2445 2464	$\begin{array}{c} 1.0000\\ 0.9364\\ 0.8931\\ 0.8619\\ 0.8196\\ 0.7695\\ 0.7441\\ 0.7187\\ 0.7059\end{array}$	$1.00\\ 0.80\\ 0.67\\ 0.58\\ 0.45\\ 0.30\\ 0.23\\ 0.15\\ 0.11$	00 191 295 356 989 986 924 663 78	$\begin{array}{c} 0.2190\\ 0.2235\\ 0.2268\\ 0.2296\\ 0.2341\\ 0.2398\\ 0.2429\\ 0.2463\\ 0.2481\\ \end{array}$	$\begin{array}{c} 1.0000\\ 0.9364\\ 0.8932\\ 0.8619\\ 0.8197\\ 0.7707\\ 0.7455\\ 0.7203\\ 0.7773\end{array}$	1.0 0.8 0.6 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0000 3093 3797 5859 4591 3121 2365 1610 1220	$\begin{array}{c} 0.2190\\ 0.2237\\ 0.2274\\ 0.2303\\ 0.2344\\ 0.2394\\ 0.2421\\ 0.2450\\ 0.2465\\ \end{array}$	
	a :				KCI–Mg	SO₄-H₂O			g.,			
S = 118.8					S = 118.9				S = 118.9			
$\begin{array}{c} m_{\rm K} \\ 1.0000 \\ 0.8013 \\ 0.6685 \\ 0.5734 \\ 0.4465 \\ 0.3649 \\ 0.3086 \\ 0.2673 \\ 0.2109 \\ 0.1726 \\ 0.1267 \end{array}$	m_{C1} 1.000 0.801 0.668 0.573 0.446 0.364 0.308 0.267 0.210 0.172 0.126	$\begin{array}{c} -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	log γ1 2190 2181 2171 2160 2142 2127 2118 2110 2097 2088 2075	$m_{ m K}$ 1.0000 0.7983 0.6643 0.4973 0.2489	m_{0} 1.00 0.79 0.66 0.49 0.24	51 1000 1883 1943 1973 189	$\begin{array}{c} -\log \ \gamma_1 \\ 0.2190 \\ 0.2175 \\ 0.2161 \\ 0.2136 \\ 0.2087 \end{array}$	$m_{ m K}$ 1.0000 0.7969 0.6624 0.5667 0.4397 0.3525 0.2521 0.1965 0.1320 0.0994		n _{C1} 0000 7969 56624 5667 4397 3523 2521 1962 1320 0994 <i>Continued</i>	$\begin{array}{c} -\log \ \gamma_1 \\ 0.2190 \\ 0.2178 \\ 0.2162 \\ 0.2150 \\ 0.2130 \\ 0.2116 \\ 0.2091 \\ 0.2076 \\ 0.2059 \\ 0.2047 \\ on \ next \ page) \end{array}$	

Table I. (Continued)

	Series 4, S = 118.8		Series 5, S = 117.9				
m _K	$m_{\rm C1}$	$-\log \gamma_1$	$m_{\mathbf{K}}$	m _{C1}	$-\log \gamma$		
1.0000	1.0000	0.2190	1.0000	1,0000	0.2190		
0.8035	0.8035	0.2175	0.7941	0.7941	0.2171		
0.6715	0.6715	0.2160	0.6584	0.6584	0.2153		
0.5767	0.5767	0.2148	0.5624	0.5624	0.2140		
0.4498	0.4498	0.2131	0,4467	0.4467	0.2125		
0.3035	0.3035	0.2100					
0.2290	0.2290	0.2082					
0.1539	0.1539	0.2061					
0.1159	0.1159	0.2048					

Table II. Parameters for Equations 2 and 3

	Para	meters for	Eq. 2	Parameters for Eq. 3					
System	α_{12}	$\sigma_{\alpha_{12}}$	$\Sigma \omega_j R_j^2$	<i>a</i> 12	$\sigma_{\alpha_{12}}$	β_{12}	$\sigma_{\beta_{12}}$	$\Sigma \omega_j R_j^2$	
KCl-MgCl ₂ -H ₂ O	-0.0312	0.0002	$7.0 imes10^{-5}$	-0.0297	0.0006	-0.0022	0.0009	5.8×10^{-6}	
KCl-CaCl2-H2O	-0.0250	0.0002	$2.5 imes10^{-5}$	-0.0225	0.0002	-0.0037	0.0002	$1.8 imes 10^{-6}$	
	$(-0.0251)^{a}$								
$KCl-MgSO_4-H_2O$	-0.0117	0.0005	$4.1 imes 10^{-4}$	-0.0044	0.0007	-0.0114	0.0011	$9.9 imes10^{-6}$	
KCl-BaCl2-H2O	-0.0111	0.0002	$2.1 imes10^{-5}$	-0.0089	0.0002	-0.0033	0.0002	$2.2 imes10^{-6}$	
	$(-0.008)^{b}$								
$\mathrm{KCl}\text{-}\mathrm{K}_2\mathrm{SO}_4\text{-}\mathrm{H}_2\mathrm{O}$	0.0290	0.0006	$3.2 imes10^{-4}$	0.0205	0.0007	0.0129	0.0010	$3.5 imes10^{-6}$	
^a From Robinson and	^b From Robinson and Bower (4).								

where the denominator represents an estimate of the variance of the *j*th point, and the numerator normalizes the weights to values near unity. Thus the quantity to be minimized in the least squares procedure is $\Sigma_j \omega_j R_j^2$. Values of the parameters for Equations 2 and 3 are given in Table II, together with sums of weighted residuals, standard deviations, and available published values obtained by the isopiestic method.

As can be seen from Figures 1 and 2, the activity coefficients of KCl in MgCl₂ follow Harned's Rule at $\mu = 1$. Slight curvatures in the BaCl₂ and CaCl₂ systems suggest real, but very small deviations from Harned's Rule. In these two systems, the first-order fit is probably sufficient for most uses.

Large curvatures in the $MgSO_4$ and K_2SO_4 systems show that in these the activity coefficient of KCl does not follow Harned's Rule at $\mu = 1$. Part of the curvatures in these plots may be due to formation of MgSO₄° and KSO₄⁻ ion pairs.

NOMENCLATURE

- ΔE = change in potential in millivolts resulting from changing $[m_{\rm K}m_{\rm C1}]_i$ to $[m_{\rm K}m_{\rm C1}]_{i+1}$
- γ_1 = mean activity coefficient of KCl
- γ_1° = mean activity coefficient of KCl in pure KCl solution
- m =molality, moles solute per kilogram H₂O
- μ = total ionic strength
- μ_1 = ionic strength contribution of KCl
- μ_2 = ionic strength contribution of the other salt
- R_j = residual of the *j*th point
- S = Nernst slope of the electrode pair, in millivolts
- = standard deviation of a parameter computed by least σ squares
- ω_i = weight assigned to the *j*th point

LITERATURE CITED

- (1)
- Gieskes, J. M. T. M., Z. Phys. Chem. N. F., 50, 78 (1966). Harned, H. S., Owen, B. B., "The Physical Chemistry of Electrolyte Solutions," 3rd ed., Chap. 14, Reinhold Publishing Corp., New York, N. Y., 1958. (2)
- McBryde, W. A. E., The Analyst, 94, 337 (1969). (3)
- (4)Robinson, R. A., Bower, V. E., J. Res. Nat. Bur. Stand., 69A, 439 (1965)
- (5)
- Robinson, R. A., Covington, A. K., *ibid.*, **72A**, 239 (1968). Robinson, R. A., Stokes, R. H., "Electrolyte Solutions," 2nd ed., Chap. 15 and Appendix 8.10, Butterworths Scientific (6)Publications, New York, N. Y., 1959.

RECEIVED for review December 16, 1970. Accepted March 22, 1971. This research was supported by a research grant from the Academic Senate, UCSD, and by NSF Grant GA-13645.