
NOMENCLATURE 

B, C, D = constants in Redlich-Kister equation 
AGZE = excess free energy of mixing, cal/mole of the 

mixture 
PT = total pressure, mm H g  
xi = mole fraction of component i in liquid 
y i  = mole fraction of component i in vapor 

GREEK LETTERS 

y i  = activity coefficient of component i 
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Adsorption Isotherms at High Pressures 

Comment on Data of Stacy et al. 

PARAKAT G. MENON1 
Regional Research Laboratory, Hyderabad-9, India 

The adsorption isotherms of methane on carbon and on silica gel at 38-121 “C up to 
650 atrn pressure, reported by Stacy et al., have an abnormal shape and give too high 
adsorption values. High-pressure adsorption isotherms theoretically should, and 
experimentally always do, exhibit a maximum at 100-200 atm pressure. The soli- 
tary exception in the case of Stacy et al. i s  apparently due to an error in their dead- 
space determination; the gas simply compressed into the unaccounted part of the dead 
space has completely masked the true adsorption. 

I n  two recent papers in this Journal, Stacy e t  al. (6, 7 )  have 
reported the adsorption isotherms of methane on carbon and on 
silica at 38-121°C and pressures up  to  650 atm. These iso- 
therms continuously increase with pressure. All hitherto pub- 
lished high-pressure adsorption isotherms (for reviews see 2, s), 
however, show a distinct maximum in the isotherm at 100-300 
a t m  pressure, provided the measurements have been carried out 
t o  at least 200 a t m  pressure. Examples are (2) : the adsorp- 
tion of CHI and H2 on charcoal; CO,, XZO, and SiF4 on charcoal; 
CHI on coal; Ar and Nz on active carbon; N P  and CO on alumina; 
and CH4 on silica gel. It is possible even t o  predict (4)  the pres- 
sure P,,, at which adsorption isotherms should exhibit a maxi- 
mum: P,,, = (T/T, )2P, ,  where T is the temperature of 
adsorption and T, and P,  are  the critical temperature and criti- 
cal pressure of the adsorbate gas. This relationship holds good 
for ordinary adsorbents with not too fine pores. For micro- 
porous adsorbents with pores of molecular dimensions (e.g., 
activated charcoal or molecular sieves), the maximum in ad- 
sorption isotherm is reached even earlier: P,,, = SO-SO% of 
(T/TJZP, .  I n  the light of such results the da ta  of Stacy e t  ai. 
are examined and indications are given of the source of error 
which may have masked the true adsorption. 

Stacy e t  al. (6) report [see correction (sa) ]  tha t  the accuracy 
in  the determination of the dead-space volume in their appara- 

1 Present address, Ketjen N.V., Post Box IS-C, Amsterdam, 
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tus is oiily 1%. This is 0.66 cc for the dead-space volume of 
66.4 cc. The quantity of gas which can be simply compressed 
into this 0.66 cc at high gas densities, attained a t  pressures of 
300-600 atm,  can be too large compared to  the physical adsorp- 
tion of methane at the same pressure on only 14.6 grams of 
carbon or 12.9 grams of silica used as the adsorbent at 38- 
121°C. 

At  pressures of 200-650 atm,  the dimensional changes (com- 
pressibility as  also the swelling on adsorption) of carbon and the 
penetration of methane into the interlamellar space in the 
graphitic planes in carbon will be appreciable ( 5 ) ,  and what one 
measures can no longer be called adsorption in the ordinary 
sense of the term. Since Stacy e t  al. find continuously increas- 
ing isotherms for silica gel (7)  as  well, the inaccuracy in the 
dead-space determination seems to  be the major source of error 
in their high-pressure adsorption isotherms. 

It is also instructive here t o  compare the adsorption of meth- 
ane on silica gel reported by  Stacy e t  al. with the data  for the 
same adsorbent-adsorbate system obtained by Gilmer and 
Kobayashi ( I )  in 1964 at temperatures of -40”, -20°, 0”, 
20”, and 40°C and pressures up to  137 atm. Such comparisons 
of physical adsorption are permissible even if the chemical 
nature of the two silica surfaces may not be very similar. The 
R E T  surface areas for the two silicas are 145 and 532 m*/g, 
respectively. The nitrogen monolayer values (v,) correspond- 
ing to  these two surface areas are 1.48 and 5.4 mmol/g. These 
values may be taken a s  a rough indication for the maximum at- 

This may perhaps have masked the true adsorption. 
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Table 1. Adsorption of Methane on Silica 

Gilmer and Kobayashi ( 1 )  
T = 40°C, S = 532 ma/g 

urn = 5.4 mmol/g 
Pressure, Adsorption, 

atm mmmol/g e 
50 2.3 0.43 
100 2.9 0.54 
140 3.2 0.59 

Even a t  -40°C 
50 4.5 0.83 
100 4.3 0.80 
140 3.8 0.70 

Stacy et al. (7) 
T = 37.8”C, S = 145 ma/g 

vm = 1.48 mmol/g 
Pressure, Adsorption, 

atm mmol/g e 

100 2 1.3 
140 3 2.0 
200 4 2.7 
400 6.5 4.4 
600 8 5.4 

50 1.1 0.74 

tainable surface coverage on these adsorbents by  any  adsorbate 
gasabove its critical temperature (for methane T, = -82.9OC), 
a n d  hence can be used for calculating the degree of coverage 0. 
I n  Table I the results of Stacy e t  al. for 37.8OC are compared 
with those of Gilmer and Kobayashi for 4OOC. The adsorption 
da ta  of Stacy e t  al. indicate multimolecular adsorption (6 > l), 
which is highly improbable so far above the critical temperature 
of the adsorbate. 

I t  must be emphasized here tha t  the adsorption isotherms of 
Gilmer and Kobayashi (1) at -40°, -20°, and O°C show clear 
maxima at pressures of 63, 82, and 96 atm, respectively, while 

their 20’ and 40°C isotherms already level off at 120-40 atm. 
This behavior of high-pressure adsorption isotherms is normal 
and expected and has indeed been observed by  all previous 
workers in this field (for a list of work since 1930, see Table 1 
in ref. 9). I n  contrast t o  these, the adsorption isotherms of 
Stacy e t  al. continuously increase with pressure even at 600- 
50 atm. This strengthens the suspicion tha t  the gas simply 
compressed into some unaccounted par t  of the dead space in 
their apparatus has masked the true adsorption. 
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Catalytic Hydrogenation of Polynuclear Hydrocarbons 

Products of Partial Hydrogenation of Dibenz(a,j)anthracene, Benzo(ghi)perylene, 
Di benz(a,c) an t hracene, 3-Methylcholant hrene, 
7,i 2-Di met h yl benz ( a )  anthracene, and Ant han t hrene 
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The catalytic hydrogenation reactions of the title compounds were studied. A total of 
18 products were isolated and characterized. Some of these compounds were prod- 
ucts of reduction at noncontiguous carbon atoms, the reactive centers in one case being 
separated by seven bonds. The mass spectral fragmentation of derivatives of 3- 
methylcholanthrene and 7,12-dimethylbenz(a)anthracene i s  characterized by a strong 
tendency to lose methyl groups. 

As a result of our interest in the relationship of chemical 
structure to  carcinogenic activity among polynuclear hydrocar- 
bons (6, 8), we have recently completed a study (‘7, 9) of the 
carcinogenicity of a number of partially hydrogenated deriva- 
tives of dibenz(a,j)anthracene (I), benzo(ghi)perylene (11), 
dibenz(a,c)anthracene (111), 3-methylcholanthrene (IV), 
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7,12-dimethylbenz(a)anthracene (V), and anthanthrene (VI). 
We report the preparation and characterization of those hydro- 
genation products. 

Some of the reactions followed unexpected steric courses. 
The production of the 1,2,3,7,8,9-hexahydro derivative (VIb) in 
the hydrogenation of anthanthrene implied that  net 1,8- (or 
greater) addition of hydrogen had occurred. Similarly, I I b  and 
IVc are the products of reduction a t  noncontiguous carbon 
atoms. 

The mass spectra of the hydrogenated hydrocarbons showed 
that  the added .hydrogens were most easily lost so that  the 
peak corresponding to  the completely aromatic structure was 
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