ACKNOWLEDGMENT

Phillips Petroleum Co. contributed research-grade propane for this investigation.

NOMENCLATURE

- δ = percent error
- Δ = change in quantity designated
- ϵ = absolute error
- H = Henry's constant, atm
- K = y/x
- Mean = arithmetic average of the interval
 - P = pressure, atm
 - V = variable (pressure, temperature, composition)
 - x = mole fraction in liquid phase
 - y = mole fraction in vapor phase

- LITERATURE CITED
- Carruth, G. F., PhD dissertation, Rice University, Houston, (1)Tex., December 1970. Available from University Microfilms.
- Chang, H. L., Hurt, L. J., Kobayashi, R., A.I.Ch.E. J., 12, (2)1212 (1966).
- (3) Price, A. R., Kobayashi, R., J. Chem. Eng. Data, 4, 40 (1959).
 (4) Ruska, W. E. A., Hurt, L. J., Kobayashi, R., Rev. Sci. Instrum., 41, 1444 (1970).
- Wichterle, I., Monograph, Rice University, Houston, Tex., (5)August 31, 1970. Available from University Microfilms, Ann Arbor, Mich.
- Wichterle, I., Chappelear, P. S., Kobayashi, R., J. Computa-tional Phys., 7, 606 (1971). Wichterle, I., Salsburg, Z. W., Chappelear, P. S., Kobayashi, (6)
- (7)R., Chem. Eng. Sci., 26, 1141 (1971).

RECEIVED for review February 22, 1971. Accepted September 2, 1971. The National Science Foundation and the Natural Gas Processors Assoc. provided financial support.

Vapor-Liquid Equilibrium of Methane—Ethane System at Low Temperatures and High Pressures

VAN WICHTERLE¹ and RIKI KOBAYASHI²

Rice University, Department of Chemical Engineering, Houston, Tex. 77001

Vapor-liquid equilibrium data are reported for 12 isotherms from -100° to -225° F for pressures from 25–800 psia. The necessary equipment and techniques to measure concentrations of 0.00001 to 0.99999 mol fraction were developed, which gave a maximum total relative error in the K-values of 1.6%; the vast majority of the data has error less than 1%. The improved method made possible measurements of very dilute mixtures close to critical conditions. Extensive investigation near the critical temperature of methane showed that (1) the liquid-vapor (x-y) curve at the critical temperature of methane approaches 100% methane with a slope equal to 1; (2) no discontinuity at K = 1 is evident in isothermal curves of K-value-pressure at or above the critical temperature of methane; and (3) the pressure-composition (of either phase) curve at the critical temperature of methane approaches 100%methane with a zero slope.

Since the last investigation (4) of this system, a hundred-fold increase in the precision of measurement of equilibrium concentrations has made possible more sensitive investigations in this region of rather small concentrations. Commercial operations of natural gas processing are rapidly approaching lower and lower temperatures so that the data have immediate application.

EXPERIMENTAL

The prototype of the vapor recycle apparatus was reported by Chang et al. (3). The apparatus and improvements for the current investigation are reported in a paper (8) on the methane-propane system and in the depository document (6).

The error analysis is the same type as reported (6, 8) for the earlier investigation, but the resultant average maximum percent error is 1% in the K-values as compared to 1.6% for the

¹ Present address, Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, Prague-6-Suchdol-2, Czechoslovakia.

² To whom correspondence should be addressed.

methane-propane system. This improvement in the accuracy arose from the increase in manipulatory skill of the investigator, which decreased the error in the concentration measurements.

The procedure is the same as previously reported (8). Materials Used. The same (8) "ultrahigh purity" methane, purchased from Matheson Gas Products Co., was used. The reported analysis was at least 99.97% methane with a total amount of major impurities of 105 ppm. The charge gas passed through a molecular sieve purifier to remove water, oil, and particles down to 12μ .

Research-grade (99.99%) ethane was donated by The Phillips Petroleum Co. It was used without further purification. No impurities in the methane or ethane were detected by the investigator's gas chromatographic analysis.

RESULTS

Experimental pressures, temperatures, and compositions are reported in Table I for the 12 isotherms investigated from -100° to -225° F. The tabular limiting conditions of the vapor pressure of ethane were obtained from a recent investiga-

Journal of Chemical and Engineering Data, Vol. 17, No. 1, 1972 9

CH	4 mole	Έτο	2511FA	K-Ve	مىرا	CH	I4 mole	Pro	991170	K-V	واربو
	1/	Psia	Atm	Methane	Ethane	$\frac{11}{r}$	1	Paia	Atm	Methane	Ethane
r	Temp = 1	$199.92^{\circ}K =$	-73.23°C	= -99.8°F	Lonane	ů	Temp = 18	$9.65^{\circ}K =$	-83.50°C	$= -118.3^{\circ}$	F
0.0000	0.0000	01.45-	0.1405	00 51	1 000	0.0000	_ 0.000	10.00-	1 000-	07 51	1 000
0.0000	0.0000	31.45*	2.140	20.5	1.000	0.0000	0.0000	19.224	1.3084	27.5°	1.000
0.0214	0.3005	45.0	3.62	14.1	0.715	0.0320	0.4600	35.8	2.44	14.4	0.552
0.0012	0.0098	05.0	4.42	9.95	0.517	0.0752	0.6741	60.0	4.08	8.90	0.352
0.1039	0.0800	100.0	0.80	0.04	0.357	0.1380	0.7964	95.5	6.50	5.77	0.236
0.1875	0.7957	160.0	10.90	4.24	0.251	0.2138	0.8626	140.0	9.53	4.03	0.175
0.3100	0.8079	250.0	17.00	2.80	0.191	0.3202	0.9020	200.0	13.00	2.82	0.143
0.4020	0.9052	300.0	23.80	2.00	0.173	0.4975	0.9369	300.0	20.40	1.88	0.120
0.0001	0.9337	500.0	34.00	1,41	0.195	0.0810	0.9550	400.0	27.20	1.40	0.141
0.7004	0.9401	700.0	40.80	1.20	0.201	0.8403	0.9700	500.0	34.00	1.100	0.164
0.0944	0.9302	700.0	47.00	1.009	0.414	0.9214	0.9803	202.0	30.20	1.004	0.201
0.9120	0.9564	719.0	40.90	1.050	0.470	0.9080	0.9070	615 0	40.80	1.031	0.290
0.9170	0.9575	720.0	49.40	1.044	0.512	0.9729	0.99064	625 0	41.85	1,018	0.338
0.9222	0.9575	740 0	49.00	1.038	0.040	0.9019	0.99338	634 0	42.00	1.012	0.300
0.9519	0.9520	748 00	50.00	1,028	1 000	1 0000	1 0000	648 00	44 100	1 000	0.58/
0.0020	Taman - 1	05 44972	77 71 90	107.097	1.000	1.0000	1,0000	010.0	11.10	1.000	0.00
0 7649	1 emp = 1	$90.44^{\circ} K =$	- 11.11 0 =	= -107.9°F	0 102		Temp = 18	$8.04^{\circ}K =$	-85.11°C	= -121.2°]	F
0.10±0	0.9040	501 0	40.20	1 197	0.193	0 8403	0.9719	477 0	32.45	1.157	0.176
0 0007	0.0620	634 0	43 15	1 075	0.200	0.8970	0.9789	518.0	35,25	1.091	0.205
0.0007	0.0000	680 0	46 25	1 034	0.022	0.9413	0.9849	556.0	37.85	1.046	0.257
0.9107	0.9755	603 0	40.25	1.034	0.400	0.9643	0.9898	580.0	39.50	1.026	0.286
0.0613	0.9704	704 0	47 00	1 016	0.501	0.9819	0.99448	598.0	40.70	1.013	0.305
0.9010	0.9776	708.0	48 20	1 012	0.680	0.9887	0.99661	606.0	41.25	1.008	0.300
0.9706	0.9706	713.0¢	48.50°	1.000	1.000	1.0000	1.0000	616.0*	41.90	1,000	0.44'
	Temp = 1	.93.92°K =	-79.23°C =	= -110.6°F	יי		Temp = 1	86.11°K -	-87.04°C =	= −124.7°F	
0 0007	0 9715	612 0	41 65	1 079	0 287		10mp		01102 0		
0.9007	0.9710	660 0	44 00	1 034	0.201	0.0000	0.0000	16.00°	1.089ª	31.0%	1.000
0.9590	0.98145	675 0	45 95	1 023	0.452	0.0417	0.5585	36.7	2.50	13.4	0.461
0.9671	0.98316	685 0	46 60	1 017	0.512	0.0897	0.7358	61.5	4.18	8.20	0.290
0.9724	0.98352	692.0	47.10	1.011	0.597	0.1707	0.8471	104.0	7.08	4.96	0.184
0.9756	0.98371	696.0	47.35	1.008	0.668	0.3100	0.9116	180.0	12.25	2.94	0.128
0.98214	0.98214	698.0	47.50	1.000	1,000	0.5019	0.9435	275.0	18.70	1.88	0.113
	_		11100	1,000		0.7486	0.9674	400.0	27.20	1.29	0.130
	Temp = 1	$92.39^{\circ}K =$	$-80.76^{\circ}C =$	= -113.4°F	,	0.8844	0.9792	482.0	32.80	1.107	0.180
0 0000	0 0000	22 054	1 5004	25 5	1 000	0.9395	0.9866	524.0	35.65	1.050	0.221
0.0308	0 4330	30 0	2 65	14 1	0 584	0.9684	0.99187	550.0	37.40	1.024	0.257
0.0681	0 6358	61.5	4 18	9.34	0.391	0.9802	0.99495	562.0	38.25	1.015	0.255
0.1364	0.7755	100.0	6.80	5.69	0.260	0.9877	0.99730	568.0	38.65	1.010	0.220
0.2299	0.8605	160.0	10.90	3.74	0.181	1.0000	1.0000	579.O°	39.40°	1.000	0.35'
0.3854	0.9087	250.0	17.00	2.36	0.149						_
0.5512	0.9372	350.0	23.80	1.70	0.140		Temp = 172	$2.04^{\circ}K = -$	–101.11°C	$= -150.0^{\circ}$	F
0.7885	0.9607	500.0	34.00	1.23	0.186						
0.9154	0.9755	600.0	40.85	1.066	0.290	0.0000	0.0000	7.099ª	0.4831ª	51.0	1.000
0.9529	0.9822	640 .0	43.55	1.031	0.378	0.0685	0.7681	30.8	2.10	11.2	0.249
0.9715	0.9862	662.0	45.05	1.015	0.484	0.1087	0.8469	45.5	3.10	7.79	0.172
0.9813	0.98973	675.0	45.95	1.009	0.555	0.2050	0.9161	81.0	5.51	4.47	0.106
0.9858	0.99100	682.0	46.40	1.005	0.634	0.3164	0.9434	120.0	8.17	2.98	0.0828
0.99125	0.99125	685.O°	46.60°	1.000	1.000	0.5042	0,9000	180.0	12.20	1.92	0.0094
	Temp = 1	90 94°K =	$-82.31^{\circ}C =$	=	•	0.7082	0.9788	241.0	10.80	1.00	0.0727
	romp - r	00.01 11	02.01 0 -	- 110.1 1		0.8009	0.9878	299.0	20.35	1.10	0.0077
0.0000	0.0000	20.41^{a}	1.3894	26.5^{b}	1.000	0.9170	0.99209	324.0	22.00	1.081	0.0959
0.0340	0.4724	39.5	2.69	13.9	0.546	0.9010	1 0000	261 54	23.00	1.040	0.0903
0.0714	0.6513	60.5	4.12	9.12	0.376	1.0000	1.0000	301.0*	24,00*	1.000	0.105
0.1386	0.7907	100.0	6.80	5.70	0.243		m	1	115 0080	175.00	13
0.2384	0.8709	160.0	10.90	3.65	0.170		1 emp = 158	$5.15^{\circ} K = 0$	-115.00 °C	$= -175.0^{\circ}$	r
0.3955	0.9181	250.0	17.00	2.32	0.135		0 0000	0 515.	0 1045-	0.41	1 000
0.5687	0.9425	350.0	23.80	1.66	0.133	0.0000	0.0000	2.715*	0.1847*	80	1.000
0.8190	0.9647	000.0	34.UU 20.20	1.18	0.191	0.1090	0.8990	40.8 00 0	1.70	8.20	0.113
0.9007	0.9700	203.U	38.3U 41.6=	1.082	0.202	0.1230	0.9089	40.0	1.90	(.39 5 70	0.104
0.94/4	0.9832	620 0	41.00	1 000	0.319	U. 104U	0.9004	±0.0 50.0	2.12	0.70 1 91	0.0110
0.9040	0.9909	642 0	42.00	1 015	0.010	0.4100	0.9480	70.0	0.40 1 76	±.0± 2.07	0.0009
0.9/49	0.9090	651 0	44 20	1 010	0.440	0.2900	0.9040	100.0	4.70 6 80	2.29	0.0304
0.0882	0.00445	660 0	44 00	1 006	0 470	0.4528	0 9864	140 0	9.53	1 51	0.0392
0.90160	0 99570	664 0	45.20	1.0042	0.501	0.8107	0.99221	170.0	11.55	1.22	0.0412
0.00383	0.99693	668.0	45.45	1.0031	0.498	0.8650	0.99420	181.0	12.30	1.15	0.0429
0.99561	0,99765	670.0	45,60	1.0020	0.535	0.9407	0,99740	199.0	13.55	1.061	0.0438
1.0000	1.0000	671.0 ^d	45.65^{d}	1.0000	1.000	1.0000	1.0000	213 5.	14.50*	1.000	0.045'
									(0	ontinued on	next page)

Table I.	Vapor-Liquid	Equilibrium	for	Methane	Ethane	System
----------	--------------	-------------	-----	---------	--------	--------

Table I. (Continued)								
CH₄ frac	mole ction	Pres	sure	K-Value				
x	y	Psia	Atm	Methane	Ethane			
Temp = 144.26°K = -128.89 °C = -200.0 °F								
0,0000	0.0000	0.841°	0.0572*	1550	1.0000			
0.1965	0.9716	27.3	1.86	4.94	0.0353			
0.2702	0.9796	37.0	2.52	3,63	0.0279			
0.3241	0.9834	43.0	2.93	3.03	0.0245			
0.4385	0.9880	56.0	3.81	2.25	0.0213			
0.5314	0.99100	66.0	4.49	1.86	0.0192			
0.6882	0.99433	81.0	5.51	1.44	0.0182			
0.8581	0.99728	98.0	6.67	1.16	0.0192			
1.0000	1.0000	114.0	7.75.	1.00	0.0195'			
Temp = 130.37° K = -142.78° C = -225.0° F								
0.0000	0.0000	0.186ª	0.0127°	330%	1.000			
0.4319	0.99479	28.0	1.91	2.30	0.00917			
0.5989	0.99654	35.0	2.38	1.66	0.00863			
0.7788	0.99845	43.3	2.95	1.28	0.00701			
0.8935	0.99919	48.6	3.31	1.118	0.00761			
1.0000	1.0000	54.0*	3.67.	1.000	0.007/			
^a Saturated vapor pressure of C_2H_6 . ^b K_1^{∞} . ^c Critical pressure of system. ^d Saturated vapor pressure and critical pressure of CH ₄ .								

tion in this laboratory (2) and the vapor pressure of methane from earlier works (1, 5).

Most of the isotherms are in the region about the critical temperature of methane. These data led to a theoretical discussion (9) of equilibrium behavior near the critical point of the more volatile component. After investigation of the ternary methane-ethane-propane system subsequent to this study, four additional isotherms at 191.20, 193.37, 194.61, and 197.21°K

Figure 1. Pressure-composition diagram for methane-ethane system

Figure 2. Pressure-composition diagram for the methaneethane system on an expanded scale

were investigated for the methane-ethane binary for a methane K-value less than 1.05. These data, reported elsewhere $(\tilde{\gamma})$, are entirely consistent with the wide-range study presented here.

Two conditions which are true at the critical temperature of methane, the more volatile component of the binary, are (9):

(1) The x-y curve approaches 100% methane with a slope equal to 1,

$$\lim_{x \to 1} \frac{dy}{dx} = 1 \tag{1}$$

(2) The pressure-composition (P-x,y) curves approach 100% methane with a slope equal to zero,

$$\left(\frac{dP}{dx}\right)_T = \left(\frac{dP}{dy}\right)_T = 0$$
 at $x = y = 1$ (2)

The measurements of small concentrations, where the methane K-value is less than 1.0, also show there is no evident discontinuity between the components in the usual engineering logarithmic representation K-value to pressure

$$\frac{d \ln P}{d \ln K_1} = \frac{d \ln P}{d \ln K_2} = 0 \quad \text{at } K_1 = K_2 = 1 \quad (3)$$

A graphical representation of the data as pressure to composition is given in Figures 1 and 2. Figure 1 shows representative isotherms spaced about 25°F apart for the entire concentration region. Figure 2 shows the high methane content region about the critical temperature of methane. These curves are labeled in °K, which corresponds to the primary unit of the actual temperature measurement, °C. The curves in Figure 1 and Figure 3 are labeled in °F, the usual engineering unit. Figure 3, the usual log K-log P plot, includes the -50° and 0°F data of Price and Kobayashi (4), which were verified in the preliminary stages of this investigation.

Journal of Chemical and Engineering Data, Vol. 17, No. 1, 1972 11

ACKNOWLEDGMENT

Phillips Petroleum Co. contributed research-grade ethane for this investigation.

NOMENCLATURE

- K = y/x
- P =pressure, absolute
- x = mole fraction in liquid phase
- y = mole fraction in vapor phase

Subscripts

- 1 = methane
- 2 = ethane

LITERATURE CITED

(1) American Petroleum Institute, Research Project 44: "Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds," Rossini, F. D., Ed., Carnegie Press, Pittsburgh, Pa., 1953.

- (2) Carruth, G. F., PhD dissertation, Rice University, Houston, Tex., December 1970. Available from University Microfilms after June 1971.
- (3) Chang, H. L., Hurt, L. J., Kobayashi, R., A.I.Ch.E. J., 12, 1212 (1966).
- (4) Price, A. R., Kobayashi, R., J. Chem. Eng. Data, 4, 40 (1959).
- (5) Vennix, A. J., Leland, T. W., Kobayashi, R., *ibid.*, 15, 238, 598 (1970).
- (6) Wichterle, I., Monograph, Rice University, Houston, Tex., August 31, 1970. Available from University Microfilms, Ann Arbor, Mich.
- Wichterle, I., Chappelear, P. S., Kobayashi, R., J. Computational Phys., 7, 606 (1971).
 Wichterle, I., Kobayashi, R., J. Chem. Eng. Data, 17, 4
- (8) Wichterle, I., Kobayashi, R., J. Chem. Eng. Data, 17, 4 (1972).
- (9) Wichterle, I., Salsburg, Z. W., Chappelear, P. S., Kobayashi R., Chem. Eng. Sci., 26, 1141 (1971).

RECEIVED for review February 22, 1971. Accepted September 9, 1971. The National Science Foundation and the Natural Gas Processors Assoc. provided financial support.