Enthalpies of Combustion of 18 Organic Sulfur Compounds Related to Petroleum

WILLIAM **D.** GOOD

Bartlesville Energy Research Center, Bureau of Mines, U.S. Department of the Interior, Bartlesville, Okla. **74003**

Enthalpies of combustion measured by rotating-bomb combustion calorimetry are given for 18 organic sulfur compounds including thiols, sulfides, thiophenes, and a disulfide selected for a comprehensive study of their thermodynamic properties. Values of the enthalpy of formation of the condensed phase are derived. Enthalpies of vaporization and enthalpies of formation in the gaseous state are derived for 15 of the compounds. Values of enthalpy of atomization are compared with values predicted by a correlation procedure.

In cooperation with the American Petroleum Institute, thermochemical studies of organic sulfur compounds, either occurring in or related to petroleum, were performed by the Bureau of Mines. The enthalpies of combustion of 18 of those compounds are summarized and interpreted in this paper. At the beginning of the program, no reliable method was available for the measurement of enthalpies of combustion of organic sulfur compounds, and a rotating-bomb combustion calorimeter (8) was built that provided a firm basis for organic sulfur compound combustion calorimetry. That calorimeter (8) and its successors **(7)** were used in this research.

EXPERIMENTAL

Apparatus and Procedures. The basic apparatus and procedures for combustion calorimetry of organic sulfur compounds have been described (8, *20),* and only details pertinent to the present study are described here. The calorimeter and bomb used for each compound studied, the benzoic acid sample burned and the value of ε (cal) obtained, the value of $\Delta E c^{\circ}/M$ for the auxiliary oil, and the description of the fuse used to initiate the reaction are summarized in Table I.

Three rotating-bomb calorimeters were used. The advantage of these calorimetric systems over conventional systems is provision for moving the bomb simultaneously about two axes within the calorimetric vessel-both end over end and about its own axis. A relatively large volume of fluid may be placed within the bomb. Motion of the bomb hastens both the solution of inorganic combustion products and the establishment of equilibrium between the gaseous and aqueous phases. These modifications to the conventional bomb calorimeter have been made without significant loss of precision or accuracy. The precision of measurements, as measured by the standard deviation of the mean, is ordinarily 0.01% or better. The calorimeters designated BMR-I (8) and BMR-I1 *(7)* have been described. Calorimeter BMR-I11 is essentially identical with BMR-11. Two platinum-lined bombs, laboratory designations PT-4 (8) and Pt-3b **(6),** were alike except for their internal volumes. The changes of the effective internal volume of the bombs with change of electrodes and internal fittings are reflected in Table I.

Three different standard samples of benzoic acid used to calibrate the calorimetric system during these investigations are identified in Table I. The certified values of the heat of combustion of National Bureau of Standards Samples 39G, 39H, and 39I were 26433.8 \pm 2.6, 26434 \pm 3, and 26434 \pm 3 abs J/g. Conversion to standard conditions (9) gives 6312.97 \pm Conversion to standard conditions (9) gives 6312.97 \pm 0.62, 6313.02 \pm 0.72, and 6313.02 \pm 0.72 cal/g, respectively, for $-\Delta Ec^{\circ}/M$, the energy of the idealized combustion reaction.

One sample of hydrocarbon auxiliary oil, laboratory designation USBM-P3a and empirical formula $CH_{1.894}$, was used as a

Table I. Identification of Calorimetric System and Auxiliary Materials

	Calo- rimeter	Bomb (Vol, I)	Benzoic acid	ε (cal), cal/deg	$-\Delta Ec^{\circ}/M$ (oil). cal/g	Fuse
2-Methyl-1-butanethiol	BMR II	Pt $3b(0.3494)$	39H	4008.54 ± 0.22 (9) ^o	10983.84 ± 0.20^{b}	Thread
3-Methyl-1-butanethiol	BMR I	Pt $3b(0.3480)$	39G	$3898.93 \pm 0.15(8)$	10983.70 ± 0.29	Paper
3-Methvl-2-butanethiol	BMR II	Pt $3b(0.3494)$	39H	$4005.77 \pm 0.12(10)$	10983.83 ± 0.69	Thread
2.2-Dimethyl-1-propanethiol	BMR II	Pt $3b(0.3494)$	39H	$4008.54 \pm 0.22(9)$	10983.84 ± 0.20	Thread
2,3-Dimethyl-2-butanethiol	BMR II	Pt $3b(0.3494)$	39H	$4008.72 \pm 0.13(9)$	10983.83 ± 0.69	Thread
2-Methyl-2-pentanethiol	BMR II	Pt $3b(0.3494)$	39H	$4008.72 \pm 0.13(9)$	10983.83 ± 0.69	Thread
Phenylmethanethiol	BMR II	Pt $3b(0.3494)$	39 H	$4005.77 \pm 0.12(10)$	10983.83 ± 0.69	Thread
Cyclohexanethiol	BMR I	Pt $3b(0.3480)$	39G	$3898.93 \pm 0.15(8)$	10983.70 ± 0.29	Paper
$2.2.5.5$ -Tetramethyl-3.4-dithiahexane	BMR II	Pt $3b(0.3494)$	39I	$4006.13 \pm 0.29(9)$	10984.30 ± 0.15	Thread
2,4-Dimethyl-3-thiapentane	BMR II	Pt $3b(0.3502)$	39H	$4002.27 \pm 0.09(6)$	10984.12 ± 0.51	Thread
2,2,4,4-Tetramethyl-3-thiapentane	BMR II	Pt $3b(0.3494)$	39H	$4008.72 \pm 0.13(9)$	10983.83 ± 0.69	Thread
Cyclopentyl-1-thiaethane	BMR I	Pt $3b(0.3501)$	39H	$3898.55 \pm 0.10(10)$	10984.18 ± 0.41	Thread
1-Phenyl-1-thiaethane	BMR II	Pt $3b(0.3494)$	39H	$4005.77 \pm 0.12(10)$	10983.83 ± 0.69	Thread
2-Methylthiacyclopentane	BMR III	Pt $3b(0.3494)$	39H	$4025.68 \pm 0.12(8)$	10984.12 ± 0.51	Thread
3-Methylthiacyclopentane	BMR II	Pt $3b(0.3494)$	39 _H	$4008.72 \pm 0.13(9)$	10983.83 ± 0.69	Thread
2,3-Benzothiophene	BMR I	Pt 4(0.3471)	39G	$3908.80 \pm 0.14(8)$	10983.70 ± 0.29	Paper
Dibenzothiophene	BMR III	Pt $3b(0.3494)$	39 _H	$4026.48 \pm 0.31(8)$	\cdots \cdot	Thread
2-Isopropylthiophene	BMR II	Pt $3b(0.3494)$	39H	$4008.54 \pm 0.22(9)$	10983.84 ± 0.20	Thread
⁴ Number of experiments. ^b Mean value with standard deviation. ^c No kindling material used.						

kindling substance. The value of $\Delta Ec^{\circ}/M$ for the oil was determined several times, and the value used was obtained from a series of oil combustion experiments chronologically near the sulfur compound combustion experiments. The values of $\Delta Ec^{\circ}/M$ for the oil are listed in Table I. The amount of kindling material ordinarily is 20-50 mg, and inspection of the values of $\Delta Ec^{\circ}/M$ for the oil given in Table I reveals that little or no error would have resulted if the same value of $\Delta E_c^{\circ}/M$ had been used throughout.

Two materials served as fuses to initiate the combustion reaction. The value of $\Delta E c^{\circ}/M$ for the material used earlier, filter paper of empirical formula $CH_{1.686}O_{0.842}$, was -3923 cal/g. $\Delta Ec^{\circ}/M$ for the material used later, cotton thread of empirical formula $\text{CH}_{1.774}\text{O}_{0.867}$, was -4050 cal per gram. About 10 ml of distilled water was added to the bomb for each combustion series. One atmosphere of air was left in the bomb which was subsequently charged with pure oxygen to a total pressure of 30 atm.

Xitric acid, nitrous acid, and total acids were determined quantitatively in the combustion products (8, **20).** The amount of sulfuric acid was obtained by difference. Xo evidence for thermally significant $SO₂$ or for sulfuric acid attack on the borosilicate glass ampuls or bomb was found **(20).**

Fragile ampuls of borosilicate glass confined all the liquid compounds and one solid compound, 2,3-benzothiophene. However, dibenzothiophene, solid at room temperature, was burned in the form of pellets. Each experiment was begun at 23"C, and because of the masses of combustibles chosen, the final temperatures were nearly 25°C.

Materials. All samples except 2-isopropylthiophene were from materials purified for the API Standard Sample Repository (American Petroleum Institute Research Project 58 at Carnegie-Mellon University) by the Bureau of Mines Laramie Energy Research Center, Laramie, Wyo.

Table II gives values of purity for the 18 samples. Purities of several of the compounds were estimated from freezing temperature vs. fraction melted curves observed by the Low-Temperature Calorimetry Group at the 13artlesville Energy Research Center. Purities of several other compounds were estimated by means of gas-liquid chromatography and spectroscopy at the Bureau of Mines Laramie Energy Research Center. Careful gas-liquid chromatographic analysis identified 0.35% of light hydrocarbon impurities in the sample of 2-isopropylthiophene.

Sulfuric acid was recovered from the combustion products of

all compounds, The recoveries are given in Table 11. Quantitative recovery of sulfuric acid has proved to be difficult (8) , but the $99+\%$ recoveries do tend to confirm the purities of the sulfur compounds. Uncertainty in the sulfuric acid recovery probably is higher than the $0.1-0.3\%$ average deviations given in Table TI. **All** compounds except 2,3-benzothiophene and dibenzothiophene were dried by passing the vapor over activated molecular sieve. 2,3-Benzothiophene was dried by liquid contact with $CaH₂$. The crystalline dibenzothiophene was studied without further drying.

For reducing weights in air to masses and converting the energy of the actual bomb process to that of the isothermal process and reducing to standard states *(9),* the values summarized in Table I1 were used for density, *p,* the change of internal energy with pressure, $(\partial E/\partial P)_T$, and heat capacity, *c,.* Research of API Research Project 48 at the Bureau of ,\lines Laramie Energy Research Center gave values of density for most of the compounds. Values of $(\partial E/\partial P)_T$ were calculated from the temperature dependence of density by using the approximation $(\partial E/\partial P)_T = -T(\partial V/\partial T)_P$. For a few compounds whose density had not been measured, values were obtained either from the mass of pellet of known volume or from the mass of a known volume of liquid (the ampuls for combustion). Values of c_p for several compounds were measured by the Low-Temperature Calorimetry Group at the Bartlesville Energy Research Center. The other values of c_p were estimated from values for structurally similar compounds.

Units of Measurements. The experimental results reported are based on the 1961 atomic weights *(1)* and the 1963 definition of the thermochemical calorie (cal = 4.184 J) (2) . The reference temperature is 25° C.

Calorimetric Results. Typical combustion experiments for each of the 18 compounds are summarized in Table 111. It is impractical to list summaries for all experiments, but values of $\Delta E c^{\circ}/M$ for all experiments are given in Table IV. All values of $\Delta E c^{\circ}/M$ in Tables III and IV refer to the generalized combustion reaction

$$
C_aH_bS_c(1 \text{ or } c) + (a + b/4 + 3 c/2)O_2(g) + (nc + c - b/2)H_2O(l) = aCO_2(g) + c(H_2SO_4 \cdot nH_2O)(l) \quad (1)
$$

Values of *n* and of the initial number of moles of water placed in the bomb are listed in Table 111. The values for 2,3-benzothiophene and dibenzothiophene are for the crystalline state. All other values are for the liquid state.

Table II. **Compound Description**

⁴ Purity estimated by API Research Project 48, Laramie Energy Research Center, by means of gas-liquid chromatography and spectros-
copy. ⁵ Unpublished measurements of API Project 48, Laramie Energy Research Center. ² ^b Unpublished measurements of API Project 48, Laramie Energy Research Center. Values in parentheses are estimates. *J* Purity estimated by gas-liquid chromatography.

Derived molal values of ΔEc° , the energy of the idealized combustion reaction, ΔHc° , the standard enthalpy of combustion, and ΔHf° , the standard enthalpy of formation, are given in Table V. – The values of ΔEc° and ΔHc° refer to Reaction 1 at 298.15°K. The values of ΔHf° refer to Reaction 2 at **298.15'K.**

$$
aC(c, graphite) + b/2H_2(g) + cS(rh) = C_aH_bS_c(l, c, or g)
$$
 (2)

Uncertainties given are the "uncertainty interval" *(18)* defined as twice the final overall standard deviation of the mean. The "uncertainty interval" reflects uncertainty in the calibration experiments, in the compound combustion experiments, and in the enthalpies of formation of the combustion products. The enthalpies of formation of gaseous $CO₂$ and liquid $H₂O$ were taken to be -94.051 and -68.315 kcal/mol, respectively (21) . The values of the enthalpy of formation of $H_9SO_4 \cdot nH_9O$ were interpolated from the table of reference *(21).* Uncertainties assigned to gaseous $CO₂ (19)$, liquid H₂O (17) , and H₂SO₄.nH₂O *(6,14)* were 0.011, 0.010, and 0.046 kcal/mol, respectively.

Vapor pressure measurements were reported for 12 of the compounds *(I@,* and the vapor pressures of phenylmethanethiol and **2,2,4,4-tetramethyl-3-thiapentane** have been measured. Values of the enthalpy of vaporization at 298.15'K were computed from the Cox equations **(3)** , the exact form of the Clapeyron equation and estimated values of the second virial coefficient. These values of the enthalpy of vaporization, Table V, are strictly the enthalpy of vaporization to the real gas, $\Delta Hv_{298.15}$, but are not significantly different from the standard enthalpy of vaporization, ΔHv° _{298.15}. The value of the enthalpy of vaporization of **2,2,5,5tetramethyl-3,4-dithiahexane** is an estimate (13).

Values of the enthalpy of vaporization were combined with values of the enthalpy of formation in the condensed state, Table V, to derive the enthalpy of formation in the ideal gaseous state.

Comparison with Previous Work. Five of the compounds were studied earlier by H. Mackle and co-workers *(10-13),* **A** comparison of the earlier values of enthalpies of formation in the liquid state with those of this research is given in Table VI. Agreement of values for three compounds is within the combined experimental uncertainty, and values for two compounds differ by slightly more than their combined uncertainties. No explanation for the disagreement can be offered,

DISCUSSION Correlation of Enthalpies of Atomization. Cox and Pilcher *(4)* recently correlated the existing enthalpies of atomization of the organic sulfur compounds. The parameters given by Cox and Pilcher *(4)* were used along with the value of

^a All values are for the liquid state except 2,3-benzothiophene and dibenzothiophene. ^b Reference 13. ^c Uncertainty interval doubled because of impurity.

 \sim \sim \sim

the ring strain energy for thiacyclopentane *(15)* to calculate enthalpies of atomization for the saturated compounds studied in this research. Calculated values and experimental values are compared in Table VII. Except for 2,2,4,4-tetramethyl-3 thiapentane with its high steric interaction energy, the fit of the correlation is good.

ACKNOWLEDGMENT

The author gratefully acknowledges the assistance of **A.** G. Osborn of this Center for the derived values of the enthalpy of vaporization, of W. H. Hubbard, J. L. Lacina, B. L. DePrater, and N. K. Smith, formerly of this Center, and D. M. Fairbrother, formerly of the University of Manchester, who assisted with the enthalpy-of-combustion measurements.

NOMENCLATURE

- **d=** differential operator
- $m =$ mass, grams
- *n=* number of moles
- $P =$ pressure, atm
- $T={\rm \ temperature,~^{\circ}K}$
- $t =$ temperature, $^{\circ}$ C
- ϵ (cal) = heat equivalent of calorimeter, cal/^oK
- ϵ (cont) = heat equivalent of contents, cal/^oK
	-
	- $\Delta E_{\texttt{des}} = \text{ energy of decomposition, cal}$
	- $\Delta E_{\text{ign}} =$ electrical ignition, energy, cal

 $\Delta E_{\text{cor to std states}}$ = energy for reduction to standard states, cal

- $\Delta Ec^{\circ}/M$ = standard energy of idealized combustion reaction, cal/g
	- ΔEc° = standard energy of idealized combustion reaction, kcal/mol
	- ΔHc° = standard enthalpy of combustion, kcal/ mol
	- ΔHf° = standard enthalpy of formation, kcal/mol
	- ΔHv° = standard enthalpy of vaporization, kcal/ mol
	- ΔHa = enthalpy of atomization, kcal/mol
		- Δt_c = corrected temperature rise, $^{\circ}$ C

SUBSCRIPTS

$$
i = initial state
$$

 $f = \text{final state}$

LITERATURE CITED

- Cameron, A. E., Wichers, E., J. *Amer. Chem. SOC.,* 84, 4175 (1962).
- Cohen, E. R., DuMond, J. W. M., *Rev. Mod. Phys.,* 37,537 (2) (1965).
- (3)
- Cox, E. R., *Ind. Eng. Chem.,* 28,613 (1936). Cox, J. D., Pilcher, G., "Thermochemistry of Organic and (4) Organometallic Compounds," pp 567-8, Academic Press, London and New York, 1970.
- Good, W. D., Douslin, D. R., Scott, D. W., George, Ann, (5) Lacina, J. L., Dawson, J. P., Waddington, G., *J. Phys.*
- *Chem.,* 63,1133 (1959). Good, W. D., Lacina, J. L., McCullough, J. P., J. *Amer. Chem. SOC.,* 82, 5589 (1960).
- Good. W. D., Scott, D. W.. Waddington, G., J. *Phys. Chem.,* (7) 60, 1080 (1956). '
- Hubbard, W. N., Katz, C., Waddington, G., *ibid.* 58, 142 (8) (1954).
- Hubbard, W. N., Scott, D. W., Waddington, G., "Experimental Thermochemistry," pp 75-128, F. D. Rossini, Ed., Interscience, New York, N.Y., 1956.
- Mackle, H., Mayrick, R. G., *Trans. Faraday SOC.,* 58, 33, (10) (1962).
- Mackle, H., Mayrick, R. G., *ibid.,* 58, 230 (1962). (11)
- Mackle, H., McClean, R. T. B., *ibid.,* 58,895 (1962). (12)
- Mackle, H., McClean, R. T. B., *ibid.,* 60,669 (1964). (13)
- Månsson, M., Sunner, S., Acta Chem. Scand., 17, 723 (1963). (14) McCullough, J. P., Good, W. D., *J. Phys. Chem.,* 65, 1430 (15)
- (1961). Osborn, A., Douslin, D. R., J. *Chem. Eng. Data,* 11, 502 (16) (1965).
- Rossini, F. D., *J. Res. Natl. Bur. Std.,* 6, 1 (1931). (17)
- Rossini, F. D., "Experimental Thermochemistry," F. D. (18) Rossini, Ed., Chap. 14, pp 297-320, Interscience, New York, N.Y., 1956.
- Rossini, F. D., Jessup, R. S., *J. Res. Natl. Bur. Std.,* 21, 491 (19) (1938).
- (20) Waddington, G., Sunner, S., Hubbard, W. N., "Experimental Thermochemistry," F. D. Rossini, Ed., Chap. 7, pp 149- 79, Interscience, New **York,** N.Y., 1956.
- (21) Wagman, D. D., Evans, W. H., Halow, I., Parker, V. B., Bailey, S. M., Schumm, R. H., "Selected Values of Chemical Thermodynamic Properties," *Natl. Bur. Std. (U.S.) Tech. Note,* 270-3 (1968).

RECEIVED for review July **6,** 1971. Accepted October **23,** 1971. The work upon which this research is based was sponsored jointly by the American Petroleum Institute Research Project 48 on "Pro-
duction, Isolation and Purification of Sulfur Compounds and Mea-
surement of Their Properties" which the Bureau of Mines con-
ducted at Bartlesville, Okla., Petroleum Institute Research Project 62 on the "Thermodynamics
of Hydrocarbons from Petroleum," and the Bureau of Mines, U.S. Department of the Interior.