# **Standard Electrode Potential of Fe<sup>3+</sup> + e<sup>-</sup> = Fe<sup>2+</sup> from 5-35°C**

DONALD 0. WHITTEMORE' and DONALD LANGMUIR

Department of Geosciences, The Pennsylvania State University, University Park, PA 1 6802

Standard electrode potentials were determined for  $Fe^{3+} + e^- = Fe^{2+}$  in perchlorate solutions at pH 1.48 and ionic strengths of 0.0824 to 0.0840 from 5-35°C.  $E^{\circ}$  values **were corrected for FeOH<sup>2+</sup> and Fe<sub>2</sub>(OH)<sub>2</sub><sup>4+</sup> complexes. At 25°C,**  $F^{\circ} = 0.770 \pm 0.002$  **V. The empirical equation** 

$$
E_T^{\circ} = -1.23 \times 10^{-2} + 4.147 \times 10^{-3} T - 5.111 \times 10^{-6} T^2
$$

where  $T$  is in K degrees, fits smoothed  $E_T$ <sup>o</sup> values well within the measurement precision of  $\pm 0.001$  V. Smoothed  $E_T$ <sup>o</sup> values from the experimental data are within  $\pm$ 0.001 V of  $E_T^{\circ}$ 's computed from published enthalpy data at 25°C, assuming (1)  $\Delta C_p^{\circ} = 0$ , and (2)  $\Delta C_p^{\circ} = -28$  cal/deg mol. Other thermodynamic properties of the ferric-ferrous cell at 25°C calculated from the above equation were  $\Delta G^{\circ}$  =  $-17.75 \pm 0.04$  kcal/mol,  $\Delta H^{\circ} = 10.2 \pm 0.4$  kcal/mol, and  $\Delta S^{\circ} = 25.4 \pm 1.5$ **cal/deg mol.** 

In calculating the solubility of suspended iron oxyhydroxides in groundwater *(IO),* values of *E"* (standard electrode potential) for the half cell reaction

$$
Fe^{3+} + e^- = Fe^{2+}
$$
 (1)

were required at temperatures below 25°C. Accordingly, *Eo*  values have been determined from 5-35°C. These are compared with *E"* values calculated from published thermodynamic data.

#### EXPERIMENTAL SECTION

**A** measured volume of mixed ferrous-ferric perchlorate solution of approximately equal ferrous and ferric ion activities was prepared with reagent-grade salts and distilled deionized water, and acidified to about pH 1.5, using a known amount of perchloric acid. The low pH was desired to decrease  $Fe<sup>3+</sup>$ hydrolysis products including  $FeOH^{2+}$  and  $Fe_2(OH)_2^{4+}$  complexes and to prevent  $Fe^{2+}$  oxidation during the run. The prepared solution was placed in a pyrex beaker fitted with an airtight lucite cover which had holes to accommodate stopperfitted indicator and reference electrodes, and a thermometer. Measurements of *E* (electrode potential) and pH were recorded after holding the solution at a particular temperature in a constant temperature bath for about a half day. Values were obtained from 5-35"C in approximately 5°C intervals.

**A** combination glass, silrer-silver chloride reference electrode was used for pH measurement, and a platinum thimble electrode and silver-silver chloride reference electrode with a saturated KCl internal solution were used for *E* measurement. Potential values for the reference electrode were from Langmuir (9). The error in these values caused by a residual liquidjunction potential at the low pH's of the study solutions is probably less than  $+0.001$  V  $(2)$  (assuming a Debye-Hückel effective ion diameter of 3  $\AA$  for the chloride ion). The pH measuring assembly was calibrated with fresh potassium tetroxalate buffer (pH =  $1.68 \pm 0.01$  at  $25^{\circ}$ C).

*E* measurements were checked against Zobell solution (a solution both  $0.003M$  in potassium ferrocyanide and in potassium ferricyanide, and  $0.1M$  in potassium chloride) and are probably accurate to within  $\pm 0.001$  V (9). In addition, the reference electrode was checked against a second reference electrode of the same type and differed by only

**<sup>1</sup>**To whom correspondence should be addressed.

0.0001 V. Accordingly, pH and *Eh* (oxidation potential) measurements are probably accurate to  $\pm 0.02$  pH unit and 0.002 V, respectively. Temperature measurements were made with a 0-50°C thermometer graduated in divisions of  $0.1^{\circ}$ C and calibrated at the ice point, and are probably accurate to  $\pm 0.2$ °C. Total dissolved iron and total dissolved ferrous iron concentrations were determined by  $K_2Cr_2O_7$  titration, and total dissolved ferric iron by difference *(8).* 

#### RESULTS AND DISCUSSION

Total concentrations of dissolved Fe(I1) and Fe(II1) species (average of values determined before and after the measurements listed in Table I) were  $(3.01 \pm 0.02) \times 10^{-3}$ M and  $(6.67 \pm 0.04 \times 10^{-3}M)$ , respectively, where  $\pm$  refers to the range of measured values. The total perchlorate concentration was  $5.69 \times 10^{-2}$ *M*. Measured pH ranged from 1.470-1.490 (precision  $\pm 0.005$  pH unit) and averaged 1.477, the value used in calculations of *E".* 

Table I gives the experimental data in the order of measurement. Values of *Eh* were taken from a smoothed plot of measured *Eh* vs. temperature. *E"* values at five-degree intervals were calculated from

$$
E^{\circ} = Eh + \frac{RT}{nF} \ln \frac{[Fe^{2+}]}{[Fe^{3+}]}
$$
 (2)

where *R* is the gas constant,  $1.9872 \times 10^{-3}$  kcal/deg mol, *T* the temperature in K degrees, *n* the number of electrons in the cell reaction, *F* the Faraday, 23.061 kcal/V equiv, and  $[Fe^{2+}]$ and  $[Fe^{3+}]$  the activities of  $Fe^{2+}$  and  $Fe^{3+}$ , respectively.

Activity coefficients of  $\rm Fe^{2+}$  and  $\rm Fe^{3+}$  at the different temperatures were calculated from the Debye-Huckel equation using *A* and *B* coefficients on a volume basis *(5),* and taking into account the FeOH<sup>2+</sup> complex, and the  $Fe<sub>2</sub>(OH)<sub>2</sub>$ <sup>4+</sup> dimer. The equilibrium constants

$$
K_1 = \frac{[{\rm FeOH^{2+}}][{\rm H}^+]}{[{\rm Fe^{3+}}]} \tag{3}
$$

and

$$
K_{22} = \frac{[Fe_2(OH)_2^{4+}]}{[FeOH^{2+}]^2}
$$
 (4)

as a function of temperature were determined from the data of

**288** Journal of Chemical and Engineering Data, Vol. 17, No. 3, 1972



Milburn (15). At 25°C for the monomer,  $K_1 = (6.7 \pm 0.4) \times 10^{-3}$  and  $\Delta H^{\circ} = 10.4 \pm 0.2$  kcal/mol, and for the dimer,  $K_{22} = 30 \pm 10$ , and  $\Delta H^{\circ} = -7.3 \pm 1.0$  kcal/mol.  $\Delta H^{\circ}$  for the monomer is in good agreement with Arnek's  $(\mathcal{I})$  calorimetric value of 11.0  $\pm$  1.8 kcal/mol. The equality  $\gamma_{FeOH^{2+}} = \gamma_{Fe^{2+}}$ was used as a good approximation based on the assumption that the ions would have similar hydration envelopes and thus a similar Debye-Hückel effective ion diameter  $(a)$  of 6  $\AA$ . A measure of the maximum uncertainty in this assumption was determined by choosing  $\mathring{a} = 8 \, \text{\AA}$  in the  $\gamma_{\text{Fe} \Omega}$  and  $\gamma_{\text{Fe} \Omega}$  calculation, which lowered the 35<sup>o</sup>C value of  $E_0^{\circ}$  by 0.0004 V. For the calculation of  $\gamma_{\text{Fe}_2(\text{OH})_2}$ ,  $\alpha = 11$  Å was used, based on the assumption that the complex's hydration sphere resembles that of  $\text{Zn}^{4+}$  ion  $(7)$ .

Ionic strength  $(\mu)$  values used in the Debye-Hückel equation were calculated from the concentrations of the following species : perchlorate from ferrous and ferric perchlorates and added perchloric acid, free Fe<sup>3+</sup>, FeOH<sup>2+</sup> and Fe<sub>2</sub>(OH)<sub>2</sub><sup>4+</sup> complexes,  $Fe<sup>2+</sup>$ , and H<sup>+</sup>. The calculation was made by iteration, first ignoring FeOH<sup>2+</sup> and Fe<sub>2</sub>(OH)<sub>2</sub><sup>4+</sup>, then recalculating to include the effect of these complexes until  $\mu$  remained constant. Values of *p* ranged from 0.0840 at 5°C to 0.0824 at 35°C.

Resultant smoothed values of *E"* vs. temperature, probably accurate to  $\pm 0.002$  V, are listed in Table II. The empirical equation

equation  
\n
$$
E_T^{\circ} = -1.23 \times 10^{-2} + 4.147 \times 10^{-3} T - 5.111 \times 10^{-6} T^2
$$
\n(5)

fits the smoothed  $E_T$ <sup>o</sup> values well within the measurement precision of  $\pm 0.001$  V. The uncertainty in Milburn's  $\Delta H^{\circ}$ and  $K_1$  for FeOH<sup>2+</sup> at 25°C (15), giving errors in log  $K_1$  of  $\pm 0.03$  at 25° and 35°C, and  $\pm 0.04$  at 5°C, change  $E^{\circ}$  by less than  $\pm 0.0003$  V. The uncertainty in  $K_{22}$  has a similar effect on  $E_T$ °.

Values of  $E_T$ <sup>o</sup> may also be computed from thermochemical data at 25°C with the two equations

$$
-E_T^{\circ} = \frac{T\Delta G_{298}^{\circ}}{nF (298.15)} + \frac{\Delta H_{298}^{\circ}}{nF} \left(1 - \frac{T}{298.15}\right) \tag{6}
$$

### **Table 11. Experimental and Computed** *E"* **Values in Volts as a Function** of **Temperature**

~ \_\_\_\_\_~



$$
-Er^{\circ} = \frac{T\Delta G_{298}^{\circ}}{nF (298.15)} + \frac{\Delta H_{298}^{\circ}}{nF} \left(1 - \frac{T}{298.15}\right) - \frac{\Delta C_{p298}^{\circ}}{nF} \left[ (298.15 - T) - T \ln \frac{298.15}{T} \right] (7)
$$

These assume  $\Delta C_{p298}^{\circ} = 0$ , and  $\Delta C_{p298}^{\circ} =$  constant, respectively, for

$$
Fe^{3+} + \frac{1}{2}H_2(g) = Fe^{2+} + H^+ \tag{8}
$$

which is equivalent to Reaction 1. Substituting  $\Delta G_{298}^{\circ}$  =  $-17.75$  kcal/mol and  $\Delta H_{298}^{\circ}$  =  $-9.7$  kcal/mol from data in Wagman et al. *(21)* into Equation 6 yields

$$
E_T^{\circ} = 0.42062 \pm 0.0011708 \ T \tag{9}
$$

 $\Delta C_{p298}^{\circ}$  = -28 cal/deg mol for Reaction 8 based on a conventional  $C_{p298}$ <sup>°</sup> = 6.889 cal/deg mol for H<sub>2</sub>(g) (21) and "absolute" ionic heat capacities of 86 cal/deg mol for  $Fe^{3+}$  from Criss and Cobble  $(4)$  and 61 cal/deg mol for  $Fe^{2+}$  (estimated). The use of mixed conventions for the heat capacities is permissible in that each convention is used once on each side of Equation 8.

Computed values of  $E_T$ <sup>o</sup> from 0-50°C based on Equations 6 and 7 are listed with measured values of this quantity in Table 11. Experimental and computed values from **5-35°C**  agree to within about 0.001 V, the measurement precision.  $E_T$ <sup>o</sup> values estimated assuming  $\Delta C_p$ <sup>o</sup> = 0 and  $\Delta C_p$ <sup>o</sup> = -28 cal/deg mol differ from each other by less than  $0.001$  V except at *0"* and 50°C where the differences are slightly larger. Extrapolation of empirical Equation *5* to 0°C gives 0.7391 V, in good agreement with 0.7393 V estimated from Equation 7. At 50"C, however, the extrapolated value from Equation *5*  is 0.0036 V lower than the value from Equation 7.

 $E_{298}$ <sup>o</sup> = 0.770  $\pm$  0.002 V measured in this study agrees well with published values of  $0.772 \pm 0.001$  V *(3),*  $0.771 \pm 0.004$  V  $(14)$ , and  $0.7701 \pm 0.0002$  **V**  $(19)$ . Bray and Hershey's *(3)*  $E_{298}^{\circ}$  was an average of 0.7715 and 0.7725 V calculated from data on the reactions

$$
2Fe^{3+} + 2Hg = 2Fe^{2+} + Hg_2^{2+}
$$
 (10)

and

$$
Fe^{3+} + Ag = Fe^{2+} + Ag^{+}
$$
 (11)

respectively. Their approach involved subtraction of the appropriate mercury and silver half-cell standard potentials from the cell potentials of Reactions 10 (18) and 11 *(16),* which they obtained from equilibrium data and corrected for ferric ion hydrolysis. The measurements on Reaction 10 were made in acidified perchlorate salt solutions at low  $\mu$  (18); those on Reaction 11 in acidified nitrate salt solutions at high  $\mu$  (16).  $\Delta G_{298}$ ° data from Wagman et al. (21) permit recalculation of  $E^{\circ}$  values for the mercury and silver half-cells and correction of cell potentials for Reactions 10 and 11 to give 0.7695 and  $0.7733$  V, respectively.

Mattoo  $(14)$  calculated  $E_{298}$ <sup>o</sup> from the measured data of Lapteva *(11)* on ferrous-ferric sulfate solutions, which he corrected for ferric sulfate complexing.

**Journal** of **Chemical and Engineering Data, Vol. 17,** No. **3, 1972** *289* 

**table 111. Thermodynamic Properties** of **Ferric-Ferrous Cell, Equation 8, at 25°C.** 

|                                                                            | This work            | Wagman et al.<br>(21)   | Larson et al.<br>(12) |
|----------------------------------------------------------------------------|----------------------|-------------------------|-----------------------|
| $E^{\circ}$ , V                                                            | $0.770 +$<br>0.002   | $0.770 =$<br>0.001      | $0.771 \pm$<br>0.001  |
| $\Delta G^{\circ}$ , kcal/mol                                              | $-17.75 \pm$<br>0.04 | $-17.75 \pm$<br>0.02    | $-17.78 \pm$<br>0.02  |
| $\Delta H^{\circ}$ , kcal/mol                                              | $-10.2 \pm$<br>0.4   | $-9.7$ $\bullet$<br>0.5 | $-10 \pm 0.5$         |
| $\Delta S^{\circ}$ , cal/deg mol                                           | $25.4 \pm 1.5$       | $27.0 \pm 1.5$          | $26 \pm 1.7$          |
| <sup>4</sup> Uncertainties in Wagman et al. values from V. B. Parker (17). |                      |                         |                       |
|                                                                            |                      |                         |                       |

The  $E_{298}$ <sup>o</sup> value of Schumb et al. (19) was obtained by extrapolation to  $\mu = 0$  of *E* values measured at different ionic strengths in ferrous-ferric perchlorate solutions. The log of  $K_1$ , which they used to correct their  $E_{\text{298}}^{\circ}$  value, differed from  $\log$  $K_1$  in this study by only  $-0.05$  unit. Their  $E_{298}$ <sup>o</sup> appears to be the best and differs by only  $+0.0003$  V from the smoothed experimental value from Equation 5.

For all of the above values and in this paper, ferric perchlorate and nitrate association was assumed to be negligible. This assumption is valid based on the data of Jones et al.  $(6)$ and Zagorets and Bulgakova *(22)* who found no evidence for ferric perchlorate association in Raman spectra of **3M** Fe-  $(CIO<sub>4</sub>)<sub>3</sub>$  and ultraviolet spectra of solutions 3.1  $\times$  10<sup>-2</sup>M in  $Fe<sup>3+</sup>$  and 0.5 to 3M in perchloric acid, respectively. Changes in the ultraviolet spectra in ferric perchlorate solutions from which Sykes (20) obtained  $\text{FeClO}_4{}^{2+}$  association constants do not appear to be caused by association, but by the influence of the electrostatic fields of alkali metal and alkaline earth ions on the hydration shell of the Fe3+ ion **(22).** 

Other thermodynamic properties of the ferric-ferrous cell (Reaction 8) may be calculated from empirical Equation 5 using the following expressions:

$$
\Delta G_T^{\circ} = -nFE_T^{\circ} \tag{12}
$$

$$
\Delta H_T^{\circ} = -nF E_T^{\circ} \qquad (12)
$$
  

$$
\Delta H_T^{\circ} = -nF \left[ E_T^{\circ} - T \left( \frac{\partial E_T^{\circ}}{\partial T} \right)_p \right] \qquad (13)
$$

$$
\Delta S_T^{\circ} = -\left(\frac{\partial G_T^{\circ}}{\partial T}\right)_p = -nF\left(\frac{\partial E_T^{\circ}}{\partial T}\right)_p \tag{14}
$$

where  $\Delta S_T$ <sup>o</sup> is the entropy of the reaction. Values at 25<sup>o</sup>C so obtained are compared with similar published values *(12,*  21) in Table III. An accuracy of  $\pm 0.002$  V in  $E^{\circ}$  gives an uncertainty of  $\pm 0.04$  kcal/mol in  $\Delta G_T$ °. Uncertainties in  $\Delta H_T$ <sup>o</sup> and  $\Delta S_T$ <sup>o</sup> were calculated by rotating the experimental curve about its center  $(20^{\circ}C)$ , adding the experimental precision of 0.001 V to the  $35^{\circ}$ C value, and subtracting it from the  $5^{\circ}$ C value. Although a residual junction-potential could affect the accuracy of the *E"* values, it would not change the slope of the curve.

The  $E_{298}$ <sup>o</sup> value chosen by Larson et al. *(12)* is from Latimer  $(13)$  who in turn obtained his value as an average from Bray and Hershey (3) and Schumb et al. (19). The  $\Delta H_{298}$ <sup>o</sup> of Larson et al. is an estimation of the most probable value from six references in which measurements were made by calorimetric and equilibrium methods. Except for one value, all range from 9.5-10.6 kcal/mol. The  $\Delta S_{298}$ ° value of Larson et al. is derived from

$$
\Delta S_T^{\circ} = \frac{\Delta H_T^{\circ} - \Delta G_T^{\circ}}{T} \tag{15}
$$

## **LITERATURE CITED**

- Arnek, R., *Ark. Kemi,* **32,55 (1970).**
- $(2)$ Bates, R. G., Pinching, G. D., Smith, E. R., *J. Res. Natl. Bur. Std.,* **45, 415 (1950).**
- Bray, W. C., Hershey, A. V., *J. Amer. Chem. SOC.,* **56, 1889**   $(3)$ **(1934).**
- Criss, C. M., Cobble, J. W., *ibid.,* **86, 5390 (1964).**   $(4)$
- Hamer, W. J., Natl. Std. Ref. Data Series-Natl. Bur. Std.,  $(5)$ **24,** p 9, Washington, DC, **1968.**
- $(6)$ Jones, **M.** M., Jones, E. A., Harmon, D. F., Semmes, R. T., *J. Amer. Chem. Soc.,* **83, 2038 (1961).**
- Kielland, J., *ibid.,* **59, 1675 (1937).**   $(7)$
- Kolthoff, I. **M.,** Sandell, E. B., "Textbook of Quantitative  $(8)$ Inorganic Analysis," 3rd ed., p 579, Macmillan, New York, NY, **1952.**
- Langmuir, D., "Procedures in Scdimentary Petrology,"  $(9)$ Chap. **26,** pp **612, 617,** R. E. Carver, Ed., Wiley, New York, NY, **1971.**
- Langmuir, D., Whittemore, D. O., "Nonequilibrium Systems in Natural Water Chemistry," Chap. 8, **p 209,** *Aduan. Chem. Ser.* No. **106, 1971.**
- $(11)$ Lapteva, O. N., Zh. Prikl. Khim., **31,** 1210 (1958).
- Larson, J. W., Cerutti, P., Garber, H. K., Hepler, L. G., *J. Phys. Chem.,* **72,2902 (1968).**
- Latimer, W. M., "Oxidation Potentials," 2nd ed., p **223,**   $(13)$ Prentice-Hall, Englewood Cliffs, NJ, **1952.**
- Mattoo, B. N., *Zh. Prikl. Khim.,* **33,2015 (1960).**   $(14)$
- $(15)$ Milburn, R. M., *J. Amer. Cham. SOC.,* **79,537 (1957).**
- Noges, **A. A.,** Brann, B. F., *ibid.,* **34, 1016 (1912).**   $(16)$
- Parker, V. B., Thermochem. Sec. Phys. Chem. Div., Natl.  $(17)$ Bur. Std., Washington, DC, private communication, **1971.**
- $(18)$ Popoff, S., Fleharty, V. B., Hanson, E. L., *J. Amer. Chem. SOC.,* **53, 1643 (1931).**
- $(19)$ Schumb, W. C., Sherill, M. S., Sweetser, S. B., *ibid.,* **59, 2360 (1937).**
- $(20)$
- Sykes, K. W., *J. Chem. SOC.,* **1959, p 2243.**  Wagman, D. D., Evans, W. €I., Parker, V. B., Halow, I.,  $(21)$ Bailey, S. **M.,** Schumm, R. H., *Tech. Note \$70-4,* p **74,**  Natl. Bur. Std., Washington, DC, **1969.**
- $(22)$ Zagorets, P. A., Bulgakcva, G. P., *Zh. Fiz. Khim.,* **39, 289 (1965).**

RECEIVED for review October **12, 1971. 1972.**  of the Pennsylvania State University. Accepted February **14,**  Research supported by the Mineral Conservation Section