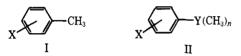
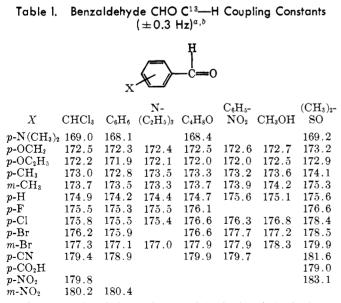
Linear C¹³—H Coupling Constant—Hammett Sigma-Constant Relationships in Substituted Benzaldehydes

CLAUDE H. YODER and CHARLES D. SCHAEFFER, JR.


Department of Chemistry, Franklin and Marshall College, Lancaster, PA 17604

RONALD E. HESS¹

Department of Chemistry, Ursinus College, Collegeville, PA 19426


The C¹³—H coupling constants of the aldehydic protons in a series of meta- and parasubstituted benzaldehydes have been determined in seven different solvents and linearly related to the Hammett σ -constant of the substituent group. These results suggest a direct dependence of the J- σ slope on the dielectric constant of the solvent.

We have recently reported linear methyl C¹³—H coupling constant-Hammett σ -constant relationships in aromatic compounds of types I and II, where Y = C(n = 3), N(n = 2), and O(n = 1) (1). We have now extended this work to the

benzaldehydes, measuring the C¹³—H coupling constant of the aldehydic proton. As expected, the greater ability of the trigonal carbon atom to transmit the electronic effects of substituent X to this proton is reflected in the much greater sensitivity of the C¹³—H coupling constant to the electronic nature of X. Again excellent linear J- σ relationships were found, with slopes several times greater in magnitude than those of compound types I and II and with the correlation coefficients of the least-squares lines usually greater than 0.99, regardless of solvent.

¹ To whom correspondence should be addressed.

^a 0.8-gram solute/1.0 ml solvent or 0.8 ml solute/1.0 ml solvent. ^b Each coupling constant which is omitted was not determined owing to the insolubility of the given compound in the particular solvent. The *p*-COOH derivatives were, of course, not analyzed in the basic solvents. Both factors—the excellent correlation and sizable slope make this an ideal system for a study of the effects of solvents on J- σ relationships. Accordingly, coupling constants were measured in seven solvents and are recorded in Table I. Table II presents the least-square parameters for the J- σ lines for all compounds measured in each solvent as well as the parameters for J- σ lines based on the seven compounds common to all seven solvents.

For a given benzaldehyde, the coupling constant is highest in dimethylsulfoxide (DMSO), second highest in CH₃OH, while the lowest constants are observed in either benzene or triethylamine. In terms of J- σ slopes, the solvents appear to fall into three groups; triethylamine, chloroform, and benzene ($\rho = 7 \pm 0.5$); tetrahydrofuran, methanol, and nitrobenzene ($\rho = 8.7 \pm 0.5$); and dimethylsulfoxide ($\rho > 10$). It is difficult to relate these trends to specific solvent characteristics, but the three groupings certainly suggest a dependence on dielectric constant [although on this basis the THF slope would appear anomalous ($\epsilon_{\rm THF} = 7$) (3)]. Further speculation upon the solvent dependence of C¹³—H coupling constants and J- σ relationships we believe to be unwarranted.

EXPERIMENTAL SECTION

Compounds studied were all commercial samples, containing no spurious pmr signals.

Table II. J- σ Regression Analysis Parameters ^a							
	C.H.		CHCI		CHO	CH₃OH	$(CH_3)_2$ -SO
ρ		,.				8.80	
C	174.0	174.3	174.3	174.5	174.5	$174.9 \\ 0.997$	175.8
\mathbf{S}	0.473	0.492	0.416	0.236	0.473	0.188	0.389
n	12	0				0	13
Common Cases							
						8.65	
						174.9	
						0.997	
						0.175	
n	7	7	7	7	7	7	7
^a ρ and C are parameters of the equation: $J = \sigma \rho + C$; r is							

 $a \rho$ and C are parameters of the equation: $J = \sigma \rho + C$; r is correlation coefficient; S is standard deviation of residuals; and n is number of compounds. σ -Constants are those reported by Jaffé (2).

Coupling constants were determined by standard sidebanding techniques on a Varian A-60D nmr spectrometer with a Hewlett-Packard Model 200CD audio-oscillator and Model 522B electronic counter. The probe temperature was $38 \pm 2^{\circ}$ C. Recorded values are averages of at least five traces at a 50-cps sweep width (500 sec sweep time) and are believed accurate to within ± 0.2 Hz. Solution concentrations were 30% (vol:vol or wt:vol) in all cases.

Solvents used were spectroquality CHCl₃ (shaken three times with alumina to remove ethanol), chemical grade C_6H_6 (dried over calcium hydride and distilled), chemical grade THF and $N(C_2H_5)_3$ (distilled and stored over molecular sieve), chemical grade $C_6H_5NO_2$ (stored over molecular sieve), and

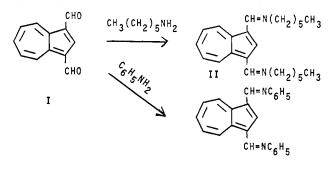
chemical grade $\rm CH_3OH$ and DMSO (dried over $\rm CaSO_4$ and distilled).

LITERATURE CITED

- Carvajal, C., Tölle, K. J., Smid, J., Szwarc, M., J. Amer. Chem. Soc., 87, 5548 (1965).
- (2) Jaffé, H. H., Chem. Rev., 53, 191 (1953).
- (3) Yoder, C. H., Tuck, R. H., Hess, R. E., J. Amer. Chem. Soc., 91, 539 (1969).

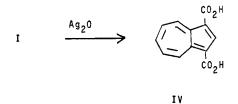
RECEIVED for review July 23, 1971. Accepted April 13, 1972.

Synthesis of 1,3-Disubstituted Azulenes

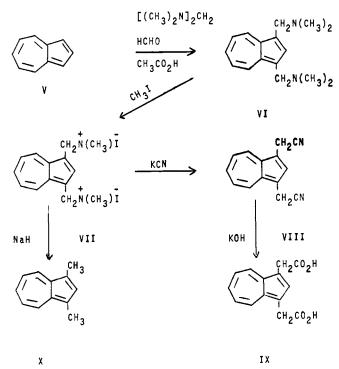

G. R. SACCO

Polymer Research Branch, Picatinny Arsenal, Dover, NJ 07801

The syntheses and characterization of several 1,3-disubstituted azulene derivatives are described. Yields, melting points, elemental analysis, and infrared data are reported.


In a previous paper (4), we reported the preparation and thermal stabilities of poly-Schiff bases containing azulene. In connection with our investigation of azulene polymers, we now wish to report the syntheses of 1,3-substituted azulenes.

The imines II and III were prepared by the condensation of 1,3-azulenedicarboxaldehyde, I, with hexylamine and aniline, respectively. These derivatives have not been reported.


III

Muhlstadt and co-workers (3) reported a 30% yield of 1,3azulenedicarboxylic acid, IV, by the permanganate oxidation of 1,3-azulenedicarboxaldehyde. The poor yield prompted us to investigate alternate oxidation procedures. When I was oxidized with silver oxide it gave a 90% yield of product:

Azulene, V, was aminomethylated to 1,3-bis(dimethylaminomethyl)azulene, VI. The reaction was effected in glacial acetic acid with paraformaldehyde and N,N,N,N-tetramethyldiaminomethane. Treatment of the tertiary amine, VI, with excess methyl iodide gave 1,3-bis(methyltrimethylammonium iodide), VII.

The compounds 1,3-azulenediacetonitrile, VIII, and 1,3dimethylazulene, X, were prepared by the reaction of VII with potassium cyanide and sodium hydride, respectively. Alkaline hydrolysis of VIII gave 1,3-azulenediacetic acid, IX. The azulene derivatives VIII and IX are reported for the first time.

386 Journal of Chemical and Engineering Data, Vol. 17, No. 3, 1972