NOMENCLATURE

- $c =$ concentration of fuel component by volume in liquid fuel mixture, $\%$ v/v
- $C =$ concentration of fuel component by volume in vaporair mixture, $\%$ v/v
= mole fraction
- *L* mole fraction of fuel component in liquid fuel mixture
- \boldsymbol{u} $=$ mole fraction of fuel component in fuel vapor mixture on an "air-free" basis
-
- $p = \text{vapor pressure, atm}$
 $p' = xp = \text{partial pressure}$ $= xp =$ partial pressure, atm
- $t =$ temperature, ^oC
 $\theta = t + 230$
- *^e*= *t+230*
- ΔH_m = net molar heat of combustion, kcal/mol
- C_s = stoichiometric concentration of fuel component by volume in vapor-air mixture (assuming complete combustion to carbon dioxide and water), $\%$ v/v
- $L =$ concentration of fuel component by volume in vaporair mixture at lower flammability limit, *yo* v/v
- $U =$ concentration of fuel component by volume in vaporair mixture at upper flammability limit, $\%$ v/v

 t_L = flash point, °C
 E = C/L = flan

- $E = C/L$ = flammability index
 $E' = xE$ = partial flammability
- $E' = xE =$ partial flammability index
 $Q = L_t/L =$ lower flammability limit to
- L_t/L = lower flammability limit temperature correction factor

SUBSCRIPTS

- $t =$ temperature (if *t* is specified, use its value as subscripte.g., L_{25})
- $L =$ at flash point
- $i =$ general component, i
- $A, B, etc.$ = specific component $A, B, etc.$
- *M* = multicomponent mixture

LITERATURE CITED

- (1) Affens, W. A,, *J. Chem. Eng. Data,* 11,197 (1966).
- American Institute of Physics Handbook, McGraw-Hill, New York, N.Y., 1963.
- (3) American Society for Testing Materials, "Flash and Fire Points by Cleveland Open Cup," ASTM D92-57, 1957.
- American Society for Testing Materials, "Flash Point by Pensky-Martens Closed Tester," *ibid.,* D93-61, 1961.
- American Society for Testing Materials, "Flash Point by Tag Closed Tester," *ibid.,* D56-61, 1961.
- American Society for Testing Materials, "Flash Point of (6) Volatile Flammable Materials by Tag Open-Cup Apparatus," *ibid.*, D1310-59T, 1959.
- American Society for Testing Materials, "Significance of (7) ASTM Tests for Petroleum Products," Spec. Tech. Pub. pp 5-7, No. 7-B, 1957.
- Butler, R. M., Cooke, G. M., Lukk, F. G., Jameson, B. G., *Ind. Eng. Chem.*, 48, 808 (1956).
- Coward, H: F., Carpenter, C. W., Payman, W., *J. Chem.* (9) *Soc.,* 1919,27, 115.
- Coward, H. F., Jones, G. W., U.S. Bur. hfines, *Bull. 503* (1952).
- Dreisbach, R. R., "Physical Properties of Chemical Compounds-11," American Chemical Society, *Advan. Chem. Ser.,* 22,4 (1959).
- (12) Federal Test Method Standard No. 791a, Method 1151.1, "Explosive Vapors in Boiler Fuel Oil," December 30, 1961.
- (13) Fenn, J. B., *Ind. Eng. Chem.,* 43,2865 (1951).
- (14) Jones, G. W., U.S. Bur. Mines, *Tech. Paper 450* (1929).
- (15) Jordon, T. E., "Vapor Pressure of Organic Compounds," Interscience, New York, N.Y., 1954.
- Le Chatelier, H., *Ann. Mines,* 19, 388 (1891). (16)
- Mellan, Ibert, "Industrial Solvents," p 61, 2nd ed., Reinhold, (17) New York, N.Y., 1950.
- (18) Mullins, B. P., Penner, S. S., "Explosion, Detonation, Flammability and Ignition," Part 11, Chap. 11, Pergamon Press, New York, N.Y., 1959.
- (19) Payman, W., *J. Chem. Soc.*, 1919, pp 115, 1436, 1446.
- Thiele, E. W., *Ind. Eng. Chem.,* 19,259 (1927). (20)
- (21) Van Dolah, R. W., Zabetakis, **11.** G., Burgess, D. S., Scott, G. S., U.S. Bur. hlines, *Inform. Circ. 8137* (1963).
- (22) Zabetakis, M. G., U.S. Bur. Mines, *Bull. 627*, p 22 (1965).
- Zabetakis, M. G., Cooper, J. C., Furno, A. L., *ibid.*, Rept. (23) *Invest. 6048* (1962).

RECEIVED for review March 30, 1972. Accepted June 3, 1972. Presented before the Division of Petroleum Chemistry in two parts: Part I (theoretical portion), 154th Meeting, American Chemical Society, Chicago, September 1967; Part II (experimental portion), 158th Meeting, American Chemical Society, Minneapolis, April 1969. Work supported by the Naval Ships Systems Command and the Naval Ship Engineering Center.

Enthalpies of Dilution and Relative Apparent Molal Enthalpies of Aqueous Barium Perchlorate

C. E. VANDERZEE' and JAMES A. SWANSON

Department of Chemistry, University of Nebraska, Lincoln, Neb. *68508*

Relative apparent molal enthalpies (ϕ_L) were measured at 25°C for barium perchlo**rate solutions over the concentration range** *0.006-5.8m.* **The data were fitted to a** form of the Debye-Hückel equation which leads to reliable extrapolation to $m = 0$.

This study originated in part from specific need for relative apparent molal enthalpies (ϕ_L) for Ba(ClO₄)₂ solutions, and also as part of a broader interest in the behavior of ϕ_L with concentration for **2-1** perchlorates free from hydrolysis effects. Jongenburger and Wood (4) have reported ϕ_L values for Mg- $(CIO₄)₂$ and $Sr(CIO₄)₂$ solutions up to $4.4m$. The barium cation is the largest of the series, so should be the least solvated and

¹To whom correspondence should be addressed.

exhibit the least tendency to hydrolyze. The studies reported here cover the concentration range from $0.006 - 5.755m$, close to saturation.

EXPERIMENTAL

Materials. Five barium perchlorate stock solutions were prepared by slowly adding J. T. Baker Analyzed

reagent barium hydroxide, $Ba(OH)_2.8H_2O$, in slight excess to Baker and Adamson reagent grade 60% perchloric acid. The slightly basic final solutions were cooled and then filtered to remove a small precipitate of barium carbonate and metal hydroxides. Sufficient perchloric acid was added to the filtrate to bring its pH to between 6.0 and 6.5. For more concentrated solutions, one of the stock solutions was brought to *5.8m* by evaporation at temperatures near 100° C.

Each of the stock solutions was analyzed gravimetrically (6) by precipitation of barium sulfate from weighed samples. Dilute solutions of barium perchlorate were prepared by mass dilution of portions of the stock solutions with freshly distilled water. Occasional analyses were also made on some of the final solutions after a series of dilution runs in the calorimeter. All weights were reduced to mass by use of reported densities for barium sulfate **(3)** and barium perchlorate solutions *(1).* Concentrations are based on molar masses of 233.40 g mol^{-1} for barium sulfate and 336.24 g mol⁻¹ for barium perchlorate. Based on analytical precision and on analyses made on final solutions after a dilution series, the concentrations are believed accurate to 0.1% .

Calorimetric Equipment and Procedures. The solution calorimeter used in this work has been described previously (8). After each dilution experiment the instrument was calibrated electrically. The electrical energy increments were judged to be accurate to 0.02%. Expected accuracy for the corrected temperature increments was ± 0.00005 °C. except for a few runs with small increments in which the expected accuracy was ± 0.00002 °C. Corrected temperature increments were evaluated by Dickinson's method **(2),** with sufficiently long rating periods to ensure equilibrium drift rates, and with "mid-times" based on actual integration of representative time-temperature curves.

The Dewar calorimeter vessel was normally charged with about 1040 ml of distilled water, or with dilute barium perchlorate solution. The mass of water or dilute solution was based on direct weighing with a 5-kg capacity balance to ± 0.02 gram. The concentrated solution was weighed into a sample holder with a nominal capacity of 39 ml. Weights were appropriately reduced to mass, traceable to an XBScalibrated set of standard masses.

All results are for the reaction process at 25.00°C, based on $1 cal = 4.184 J.$

The first dilution step in a series involves adding a sample portion of a stock solution to water:

$$
Ba(CIO_4)_2(m_0) + H_2O(l) = Ba(CIO_4)_2(m_1)
$$
 (1)

Successive steps in the series involve adding samples of the stock solution to portions of the solution produced in the preceding step-e.g., for step 2:

$$
Ba(ClO4)2(m0) + n2Ba(ClO4)2(m1) = (1 + n2)Ba(ClO4)2(m2) (2)
$$

Several such series of stepwise dilutions were made for different initial molalities *mo.* In three cases, the final solution from a series was used as a "stock" solution for a dilution measurement, such as Equation 1, to provide final solutions at rather low concentrations. Additional single runs in the pattern of Equation 1 were made to fill in gaps in the concentration pattern. The several sets of ϕ_L values were then adjusted to a single curve on a large-scale plot with one arbitrary point assigned as a reference value, $(\phi_L' = 0)$.

Treatment of **Experimental** Data. The arbitrary ϕ_L curve was then fitted to the equation from the Debye-Huckel theory following procedures described (8). The equation is a modification of that of Owen and Brinkley *(6),* and uses three adjustable parameters: a , the ion-size parameter; $(\partial \ln a/\partial T)_p$, its temperature coefficient; and *b*, the coefficient of a term linear in concentration. Since the ion-size parameter is already available $(a = 4.80\text{\AA})$ from activity coefficient data for barium perchlorate *(Y),* the fitting procedures involve finding only two adjustable parameters for the Debye-Hückel equation, plus determination of the arbitrary reference value of ϕ_L' relative to the zero point of the Debye-Hückel curve.

Calculations of the Debye-Huckel functions were made by digital computation at the University of Nebraska Computing Center. Fitting of the experimental data involved both graphical and numerical examination of the deviations from calculated or smoothed curves.

The parameters which gave best fit were: $a = 4.80\text{\AA}$, $(\partial \ln a/\partial T)_p = 0.00125K^{-1}$, and $b = -820$ cal kg mol⁻². The values of ϕ_L calculated from these parameters represented the data within experimental error up to 0.468m after the several series of dilutions were separately scaled to minimize the deviations from the computed curve. The quality of fit for ϕ_L was ± 1.5 cal mol⁻¹ (standard deviation), and the overall uncertainty in ϕ_L associated with extrapolation to the infinite dilution reference state is judged to be ± 5 cal mol⁻¹. Above 2m, analytical inaccuracy may contribute an additional 2-3 cal

Table I. **Relative Apparent Molal Enthalpies** of **Barium Perchlorate Solutions Studied**

 ϵ = energy equivalent of calorimeter. ^b Expected random error in $\epsilon = 0.3$ cal K⁻¹. ϵQ_x , obsd = $\epsilon \Delta \theta_x$, where $\Delta \theta_x$ = corrected temperation. dQ_x , calcd is based on smoothed values of ϕ_L for the molalit ture increment for reaction. dQ_x , calcd is based on smoothed values of ϕ_L for the molalities and amounts of materials in the reaction
process. e Expected random error in Q_x is 0.06 to 0.12 cal per run, except process. **Contra for a contract of the contract of the contract of the contract represent of** $Q < 5$ **cal, where it is** ± 0.02 **cal per run.
one extra figure to avoid propagating "round off" errors.**

mol⁻¹. There is an uncertainty of \pm 0.0005K⁻¹ in the temperature coefficient parameter $\left(\frac{\partial \ln a}{\partial T}\right)_p$, and a compensating uncertainty in the parameter *b,* because there is a range of values for these two parameters which give almost equally good fit and essentially the same absolute values for ϕ_L . A nonzero value for the temperature coefficient parameter was clearly necessary for best fit.

RESULTS AND DISCUSSION

Table I presents the observed values of ϕ_L obtained at the experimental concentrations, together with values calculated from the Debye-Huckel equation for comparison. Table I1 presents smoothed values of ϕ_L for barium perchlorate solutions at selected molalities and mole ratios: (moles of H_2O)/ (mole of salt). Uncertainties in the values of ϕ_L have been discussed in the preceding paragraph.

The primary experimental data from this study are presented in Table 111. The last column in this table gives the value of $-Q_z$, calcd, which is based on the assigned ϕ_L values from final smoothing and fitting of the ϕ_L data. The average difference between the values in the last two columns is ± 0.10 cal per run, and is a measure of the overall resolution for the instrument and operator when these measurements were made.

The values of ϕ_L for $Ba(CIO_4)_2$ are less than those (4) for $Sr(CIO₄)₂$ and $Mg(CIO₄)₂$ at any concentration chosen for comparison, with the differences increasing rapidly with increasing concentrations. The trend of ϕ_L with concentration resembles that for Kac104, which salt also has large negative values of ϕ_L at high concentrations.

LITERATURE CITED

- (1) Bottcher, C. J. F., *Rec. Trav. Chim.*, 65, 50 (1946).
- (2) Coops, J., Jessup, R. S., van Nes, K., "Experimental Thermochemistry," F. D. Rossini, Ed., Vol. I, Chap. 3, pp 27-58, Interscience, New York, N.Y., 1956.
- (3) "Handbook of Chemistry and Physics," **44th** ed., p 540, Chemical Publishing Co., Cleveland, Ohio, 1962.
- (4) Jongenburger, H. S., Wood, R. H., *J. Phys. Chem.,* 69, 4231 (1965).
- Kolthoff, I. M., Sandell, E. B., "Textbook of Quantitative Analysis," 3rd ed., pp 322 ff, Macmillan Co., New York, N.Y., 1952.
- (6) Owen, B. B., Brinkley, S. R., Jr., *Ann. N.Y. Acad. Sci.,* **51,** 753 (1949).
- Robinson, R. **A.,** Lim, C. K., Ang, K. P., *J.* **Amer.** *Chern. SOC.,* **75,** 5130 (1953). (7)
- Vanderzee, C. E., Swanson, J. A,, *J. Phys. Chem.,* **67,** 285 (1963). (8)

RECEIVED for review April 7, 1972. Accepted July 13, 1972. James **A.** Swanson was a National Science Foundation Fellow, 1960-62. This paper is based on his PhD thesis, University of Nebraska, 1962.