rect, but heat capacities are not available in the literature. However, we think that such a correction would not substantially modify our values of excess entropy. This view is supported by comparison with the Ga-Bi system (9) which is analogous to the Ga-Pb system in many aspects. In fact, excess entropies are positive in bismuthrich alloys (\sim 0.07 e.u. at 90 at. % Bi) and negative at intermediate compositions (-0.2 e.u. at 30 at. % Bi). This is not surprising, because lead and bismuth are neighbors in the sixth period of the Periodic Table and have similar properties as shown in Table III. As one can see, the difference in electronegativity for Ga-Bi alloys is greater than or at least equal to that for Ga-Pb alloys. Taking into account the errors which affect the electronegativity values, one could attribute the differences of excess entropies between Ga-Bi and Ga-Pb alloys to electronic peculiarities. This seems supported by the maximum mixing enthalpy of Ga-Pb alloys which is larger than that of Ga-Bi alloys (920 and 504 cal/g-atom, respectively).

At present, we cannot regard the excess entropies of Ga-Pb alloys as more reliable than those of Predel and Stein for our assumption on Newman-Kopp law validity.

Further calorimetric measurements of mixing enthalpies at 1143K should be carried out to get entropy values from direct experimental data.

Literature Cited

- (1) Elliott, R. P., "Constitution of Binary Alloys," 1st suppl., McGraw-Hill, New York, N.Y., 1965. (2) Freeman, R. D., "Momentum Sensors," in "The Characterization of
- High Temperature Vapors," J. L. Margrave, Ed., Wiley, New York, N.Y., 1967
- (3) Freeman, R. D., Searcy, A. W., *J. Chem. Phys.*, **22**, 762 (1954).
 (4) Gordy, W., Thomas, W. J. O., *ibid.*, **24**, 439 (1956).
 (5) Hultgren, R., Orr, R. L., Kelley, K. K., "Supplement to Selected Values of Thermodynamic Properties of Metals and Alloys," Department of Mineral Technology, University of California, Berkeley, Calif., 1967.
- (6) Knudsen, M., Ann. Phys., 28, 75 (1909).
 (7) Knudsen, M., *ibid.*, 29, 179 (1909).
- (8) Piacente, V., DeMaria, G., Ric. Sci., 39, 549 (1969)
- Predel, B., Frebel, M., Gust, W., J. Less-Common Metals, 17, 391 (9) (1969)
- (10) Predel, B., Stein, D. W., J. Less-Common Metals, 24, 159 (1971).
- (11) Samsonov, G. V., "Handbook of the Physicochemical Properties of the Elements," Eng. Transl., IFI Plenum, New York, N.Y., 1968.
- (12)Wagner, C., "Thermodynamics of Alloys," p 16, Addison-Wesley, London, Engl., 1952.

Received for review May 10, 1972. Accepted September 25, 1972.

ORGANIC SECTION

Survey of Alkanone Reactivity Based on **Time Required for 50% Oximation**

Paul G. Kletzke

606 North 17th St., La Crosse, Wis. 54601

The 50% oximation times for 238 alkanones have been determined. Several empirical rules have been derived for estimating the 50% oximation times of many other alkanones.

The oximation studies previously reported (5) have been extended to alkanones of other structural types. For the purpose of this investigation the alkanones were divided into 25 classes (A_1 - A_{12} , B_1 - B_5 , C_1 - C_5 , D, E, and F) as shown in Table I.

Results and Discussion

The 50% oximation times for 238 alkanones are listed in Table I. At least one member of each class was prepared and tested. The following empirical rules were derived from the results.

The first rule is based on the following considerations: All of the alkanones may be formally derived from 2-propanone by the successive introduction of methyl groups as illustrated in Figure 1. Although there is a well-defined exception (see Rule I), the oximation rates decrease with increasing carbon content as the arrows are followed from left to right. Conversely, the rates increase with decreasing carbon content as the arrows are followed from right to left. It must be emphasized that any number of similar diagrams may be made starting with any alkanone, thus deriving sequences with increasing or decreasing carbon content having correspondingly lower or higher oximation rates. The first rule was therefore formulated as follows:

Rule I. The successive introduction of methyl aroups into an alkanone always decreases the oximation rate while the successive removal of methyl groups always increases the oximation rate. However, the successive introduction or removal of methyl groups in the R of RCH₂CH₂COR_{prim, sec, tert} or (RCH₂CH₂)₂CO has little or no effect on the oximation rate.

Several exceptions were found to the above rule. For example, ketone numbers C_{3-4} and C_{3-5} were markedly more reactive than the corresponding straight chain compounds, while an impure sample of the highly branched ketone C₃₋₆ was less reactive. Further work is required to determine the extent of these exceptions.

Rule II. Alkanones of the type RR'CHCOR'' have a lower oximation rate than the corresponding alkanone RR'CO, when R'' is any alkyl group except methyl.

The following ratios are constant enough to have predictive value, particularly ratios A and B:

Rule III.

A. t50% Rprim, sec, tertCOC3/t50% Rprim, sec, tertCOC2 = 1.35 - 1.62 (1.54 av)

B. $t_{50\%}$ Rprim, sec, tertCH₂CH₂COC₂/ $t_{50\%}$, Rprim, sec, tertCH₂CH₂COC = 3.8

C. $t_{50\%}$ R_{sec}CH₂COC₂/ $t_{50\%}$ R_{sec}CH₂COC = 6.69-8.15 (7.6 av)

D. $t_{50\%}$ R_{sec}COC₂/ $t_{50\%}$ R_{sec}COC = 15.0-27.8

Table I. Fifty Percent Oximation Times for Some Alkanones

			New compounds			
	Preparation ^a				:0	
Alkanone	Method	R of RMgX		Bp range (mm)	Calcd	Found
A B-COB- ⁰						
$A_1 R_{pst}CH_2CH_2COMe$						
1. 2-Pentanone			0.13			
2. 2-Decanone			0.13			
3. 5-Methyl-2-hexanone			0.13			
4- 5-Methyl-2-heptanone	B ^c	Me	0.12			
5. 5-Ethyl-2-heptanone	Bc	Me	0.12			
6. 5,5-Dimethyl-2-hexanone	Bais	Me	0.10			
A ₂ R _{pst} CH ₂ CH ₂ COEt			0.45			
			0.45			
3 6-Methyl-3-bentanone			0.45			
4. 6-Methyl-3-dodecanone			0.47			
5. 6-Ethyl-3-octanone	B ^c	Et	0.45	$90-92^{\circ}$ (16)	17 92	17.2
6. 6-Ethyl-3-decanone	Bc	Et	0.47	117–119° (14)	15.19	14.7
7. 6-Butyl-3-dodecanone	Α	3-Butylnonyl	0.45	166-168° (16)	11.64	11.4
8. 6,6-Dimethyl-3-heptanone	$B^{d,e}$	Et	0.38	(,,,,		
A ₃ R _{pst} CH ₂ CH ₂ COCH ₂ CH ₂ R _{pst}						
1. 4-Heptanone			0.67			
2. 4-Nonanone			0.67			
3. 2-Methyl-5-dodecanone			0.62			
4. 7-Ethyl-4-nonanone	B ^c	Pr	0.62	109–111° (15)	16.44	16.0
5. 3-Ethyl-6-dodecanone	B ^c	Hexyl	0.62	144–146° (12)	13.18	12.6
6. 7-Ethyl-4-undecanone	B ^c	Pr	0.63	131–133° (15)	14.11	13.6
7. 8-Ethyl-5-dodecanone	Bc	Butyl	0.62	146–148° (16)	13.18	12.6
8. 2,8-Dimethyl-5-nonanone	A ^r .	Isopentyl	0.58			
9. 3,9-Diethyl-6-undecanone	g		0.57			
10. 2,2,8,8-Tetramethyl-5-nonanone	Α/	3,3-Me ₂ butyl ^e	0.50			
A ₄ R _s CH ₂ COMe						
1. 4-Methyl-2-pentanone			0.62			
2. 4-Methyl-2-hexanone	рđ		0.73			
3. 4-Methyl-2-neptanone	B.,	Me	0.73			
4. 4,6-Dimethyl-2-heptanone	B" Di	Me	0.87			
5. 4,6,6-mmethyl-2-heptanone	D' Dh	Me	1.10			
7 4-Ethyl-2-bexanone	Bd	Me	1.00			
8. 4-Ethyl-2-octanone	Ba	Me	1.00			
9. 4-Ethyl-5-methyl-2-hexanone	B ^h	Me	1.38	78-80° (12)	19.68	19.3
As RsCH2COEt	_					
1 5-Methyl-3-bexanone			4 2			
2. 5-Methyl-3-heptanone			5.3			
3. 5-Methyl-3-octanone	B^d	Ft	5.0			
4. 5-Methyl-3-undecanone	B ^h	Et	5.3			
5. 5.7-Dimethyl-3-octanone	_ В ^{<i>h</i>}	Et	6.3	83–85° (18)	17.92	17.7
6. 5,7,7-Trimethyl-3-octanone	B^i	Et	8.7	90-92° (14)	16.44	16.0
7. 5,6-Dimethyl-3-heptanone	B ^h	Et	6.3			
8. 5-Ethyl-3-heptanone	B^d	Et	7.7			
9. 5-Ethyl-3-octanone	B ^h	Et	8.5	90-92° (17)	17.92	17.2
10. 5-Ethyl-3-nonanone	B ^d	Et	8.3			
11. 5-Ethyl-3-undecanone	B ^h	Et	8.5	131–133° (17)	14.11	13.5
12. 5-Ethyl-6-methyl-3-heptanone	B ⁿ	Et	13.4	86-88° (14)	17.92	17.7
13. 5-Propyl-3-octanone	B ⁿ	Et	9.0			
14. 5-Butyl-3-nonanone	8 <i>"</i>	Et	9.5	126-128° (16)	14.11	13.9
15. 5-Butyl-3-undecanone	84	Et	9.0	157–159° (20)	12.36	12.1
$ \begin{array}{c} n_6 n_8 \cup n_2 \cup \cup \cup n_2 \cup n_2 \cap n_2 \\ 1 2 \text{Methyle } f \text{ herefore } n_2 \\ \end{array} $			6 5			
2 2-Methyl-4-Heplanone			0.0			
3. 6-Methyl-4-octanone			0.3 8 F			
4. 3-Methyl-5-undecarone			0.0 8 5			
5. 6-Ethyl-4-octanone	Bd	Pr	12.5			
6. 3-Ethyl-5-undecanone	B^d	Hexvl	12.7	126-128° (12)	14.11	13.6
7. 6-Ethyl-4-decanone	B^d	Pr	13.5	111–113° (12)	15.19	14.7
8. 5-Ethyl-7-tridecanone	\mathbf{B}^{d}	Hexyl	13.3			
9. 2,2-Dimethyl-7-ethyl-5-undecanone	B^d	3,3-Me2butyl	10.8	143–145° (10)	12.36	12.2
10. 4-Propyl-6-dodecanone	B ^h	Hexyl	13.8	156–158° (18)	12.36	11.9
11. 7-Butyl-5-undecanone	B ^h	Butyl	13.8	153–155° (16)	12.36	11.9

			New compounds			
	F	reparation ^a	<u></u>		с	0
Alkanone	Method	R of RMgX	t _{50%} , min	Bp range (mm)	Calcd	Found
A B _p COB _p ^b						
A ₇ R _s CH ₂ COCH ₂ R _s						
1. 2.6-Dimethyl-4-heptanone			78			
2. 2,6-Dimethyl-4-octanone	C ^c	sobutyl	116			
3. 2,6-Dimethyl-4-nonanone	Cď	Isobutyl	112			
4. 3,7-Dimethyl-5-nonanone	Af	2-Mebutyl	142			
5. 3,7-Dimethyl-5-decanone	Cď	2-Mebutyl	165	111–113° (13)	15.19	14.8
6. 4,8-Dimethyl-6-undecanone	Aſ	2-Mepentyl	160	130–132° (20)	j	
7. 6-Ethyl-2-methyl-4-octanone	Cď	Isobutyl	172	96–98° (13)	j	
3-Ethyl-7-methyl-5-nonanone	Cď	2-Mebuty	240	110–112° (13)	j	
3-Ethyl-7-methyl-5-decanone	Cď	2-Mepentyl	259	125–127° (16)	14.11	13.7
10. 3,7-Diethyl-5-nonanone	A7	2-Etbutyl	380	122–124° (15)	14.11	13.6
 6-Ethyl-2-methyl-4-decanone 	C ^a	sobuty	203	123–125° (16)	14.11	13.7
12. 7-Ethyl-3-methyl-5-undecanone	C ^a	2-Mebutyl	254	140–142° (17)	13.18	12.7
13. 8-Ethyl-4-methyl-6-dodecanone	Ca	2-Mepentyl	280	157–159° (25)	12.36	11.9
14. 3,7-Diethyl-5-undecanone	Ca	2-Etbutyl	400	158-160° (24)	12.36	11.9
15. 5,9-Diethyl-7-tridecanone	A/	2-Ethexyl	424	176-178° (20)	J	
			6.0			
1. 4,4-Dimethyl-2-pentanone	R I	Ma	0.2			
2. 4,4-Dimethyl-2-nexanone		Me	9.0	99 00° (15)	17.00	177
	D	IVIE	37	00-90 (13)	17.92	17.7
1 5 5 Dimethyl 2 bevenene	on	C +	00			
2 5 5-Dimethyl-3-hentanone	1		175	166 167° (745)	10 69	10 /
3 5 5-Dimethyl-3-octanone	ı	Et	186	182-183° (740)	17 02	177
4 5 5-Dimethyl-3-decanone	ı	Et	187	$102 - 103^{\circ}(740)$ $115 - 117^{\circ}(21)$	15 19	15.0
5 5 7-Trimethyl-3-octanone	l	Ft	205	88-90° (12)	16 44	16.2
6. 5.5.6-Trimethyl-3-heptanone	ι	Ft	214	85-87° (15)	17.92	17.8
7. 5.5-Diethyl-3-heptanone	l	Et	1312	$108 - 110^{\circ}$ (20)	16.44	15.9
A10 BrCH2COCH2CH2Brst						
1. 2.2-Dimethyl-4-heptanone	B^n	Pr	151			
2. 2.2-Dimethyl-4-dodecanone	B^n	Octvl	152	142–144° (18)	13.18	12.7
3. 6.6-Dimethyl-4-octanone	B <i>^m</i>	Pr	277	84-86° (20)	17.92	17.6
4. 3,3-Dimethyl-5-tridecanone	B <i>^m</i>	Octyl	275	156–158° (18)	12.36	11.9
5. 6,6-Dimethyl-4-nonanone	B^m	Pr	285	97-99° (17)	16.44	16.0
6. 7,7-Dimethyl-5-dodecanone	B ^m	Butyl	289	138–140° (18)	13.18	12.7
7. 3,3-Diethyl-5-undecanone	B ^m	Hexyl	2115	155–157° (16)	12.36	12.1
A_{11} $R_tCH_2COCH_2R_s$						
1. 2,2,6-Trimethyl-4-heptanone	C^n	Isobutyl	3645			
$A_{12} R_t CH_2 COCH_2 R_t$						
1. 2,2,6,6-Tetramethyl-4-heptanone	C^n	Neopentyi	0			
B B.COR-						
1. 3-Methyl-2-butanone			0.30			
2. 3-Methyl-2-pentanone			0.83			
3. 3-Methyl-2-hexanone			0.85			
4. 3-Methyl-2-heptanone	B^c	Ме	0.83			
5. 3-Methyl-2-nonanone	B^c	Me	0.83			
6. 3,5-Dimethyl-2-hexanone	B^c	Me	0.80			
7. 3,4-Dimethyl-2-pentanone	B^c	Me	14.5			
8. 3,4-Dimethyl-2-hexanone	B^c	Me	16.0			
9. 3-Ethyl-2-pentanone	А	Me	11.0			
10. 3-Ethyl-2-hexanone	B ^c	Me	11.3			
11. 3-Ethyl-2-heptanone	А	Me	11.3			
12. 3-Ethyl-5-methyl-2-hexanone	B ^c	Me	15.5	71–73° (16)	19.68	19.3
13. 3,5-Diethyl-2-heptanone	Bc	Me	18.0	95–97° (12)	16.44	16.0
14. 3-Ethyl-4-methyl-2-pentanone	B ^c	Me	253			
15. 3-Ethyl-4-methyl-2-hexanone	Bc	Ме	335	78-80° (23)	19.68	19.3
16. 3-Propyl-2-hexanone	Bc	Me	11.0			
17. 4-Methyl-3-propyl-2-pentanone	BC	Me	286			
18. 3-Isopropyl-2-nonanone	Bc	Me	341	110-112° (13)	15.19	15.0
19. 4-Methyl-3-propyl-2-hexanone	Bc	Me	338	93–95° (25)	17.92	17.6
20. 3-Butyl-2-heptanone	Bc	ме	11.5			
21. 3-ISODUTYI-5-Methyl-2-hexanone	Br	me	26.5			

(Continued on page 96)

				New compounds				
		Preparation ^a				СО		
-	Alkanone	Method	R of RMgX	t50%, min	Bp range (mm)	Calcd	Found	
вR,	sCOR _p							
B ₁ R	SCOMe							
22	2. 3-Isobutyl-5-methyl-2-heptanone	Bc	Me	28.5	103–105° (13)	15.19	14.9	
23	3. 3-IsobutyI-5-methyI-2-octanone	B ^c	Me	29.0	113–115° (13)	14.11	13.6	
24	4. 3-(2-Methylbutyl)-5-methyl-2-	5.0		~~~~				
	neptanone	Br	Me	29.5	116–118° (14)	14.11	13.6	
23	octanope	BC	Мо	30.5	125 127° (12)	12 19	12.0	
26	3 - (2-Methylpentyl)-5-methyl-2-	D	Me	30.5	125-127 (12)	13.10	13.0	
	octanone	B ^c	Ме	30.5	137–139° (14)	12.36	12.0	
Ba B	-COEt							
1 22	1. 2-Methyl-3-pentanone			4.3				
2	2. 4-Methyl-3-hexanone			13.9				
3	3. 4-Methyl-3-heptanone			14.4				
4	4. 4-Methyl-3-octanone	B ^c	Et	14.4				
5	5. 4-Methyl-3-decanone	B ^c	Et	14.0				
6	4,6-Dimethyl-3-heptanone	B ^c	Et	15.5				
7	7. 4,5-Dimethyl-3-hexanone	B ^c	Et	277				
8	3. 4,5-Dimethyl-3-heptanone	B ^c	Et	304	88-90° (40)	19.68	19.3	
9	9. 4-Ethyl-3-hexanone	A	Et	219				
10	0. 4-Ethyl-3-heptanone	Bc	Et	236				
11	1. 4-Ethyl-3-Octanone	A		239	110 110 (14)	15 10	15.0	
12	2. 4-Ethyl-3-decanone	BC	Et Et	241	113-115 (14) 128 140° (11)	15.19	12.0	
14	1 7 7-Dimethyl-4-ethyl-3-octanone	BC		240	136 - 140 (11) $107 - 109^{\circ}$ (21)	15.10	14.9	
15	5. 4.7.7-Triethyl-3-nonanone	BC	Et Et	321	138–140° (6)	12.36	12.0	
16	6. 4-Ethyl-6-methyl-3-heptanone	Bc	Et	379	98-100° (40)	17.92	17.6	
17	7. 4.6-Diethvi-3-octanone	B ^c	Et	472	123–125° (38)	15.19	14.8	
18	3. 4-Ethyl-5-methyl-3-hexanone	Bc	Et	5658	163164° (743)	19.68	19.3	
19	9. 4-Ethyl-5-methyl-3-heptanone	B ^c	Et	8885	93–95° (30)	17.92	17.6	
20). 4-Propyl-3-heptanone	B ^c	Et	262				
21	 5-Methyl-4-propyl-3-hexanone 	B ^c	Et	7165	78–80° (12)	17.92	17.4	
22	2. 4-Isopropyl-3-decanone	B ^c	Et	8744	126–128° (17)	14.11	13.7	
23	3. 5-Methyl-4-propyl-3-heptanone	Bc	Et	8851	106–108° (30)	16.44	16.1	
24	4. 4-Propyl-3-decanone	Bc	Et	253	126–128° (12)	14.11	14.0	
25	4-Butyl-3-octanone	BC		272	146 148° (00)	10 10	12.0	
20	7 4-Butyl-3-decanone	BC		202	140 - 140 (20) $157 - 159^{\circ}$ (12)	11.64	11.2	
28	3 4-(3.3-Dimethylbutyl)-7 7-dimethyl-	D	L 1	200	107 100 (12)	11.04	11.0	
	3-octanone	Bc	Et	312	145–147° (18)	11.64	11.3	
29	A. 4-Isobutyl-6-methyl-3-heptanone	Bc	Et	704	110-112° (27)	15,19	14.6	
30). 4-Isobutyl-6-methyl-3-octanone	B ^c	Et	786	111–113° (13)	14.11	13.8	
31	I. 4-Isobutyl-6-methyl-3-nonanone	B ^c	Et	816	122–124 [°] (12)	13.18	12.9	
32	2. 4-(2-Methylbutyl)-6-methyl-3-							
	octanone	B ^c	Et	814	123–125° (12)	13.18	12.9	
33	3. 4-(2-Methylbutyl)-6-methyl-3-	50				40.00		
~	nonanone	Br	Et	845	133–1351 (13)	12.36	12.2	
34	+. 4-(2-Methylpentyl)-6-methyl-3-	D C	C+	850	158 160° (22)	11.64	11 4	
		D	τı	850	158-166 (25)	11.04	11.4	
D3 N8 1	2-Methyl-3-bevanone			65				
2	2-Methyl-3-tridecanone			6.5				
3	3. 2.6.6-Trimethyl-3-heptanone	А	3.3-Me₂butvie	5.3	81-83° (18)	17.92	17.3	
4	. 3-Methyl-4-heptanone		-,,	21.9	, ,			
5	5. 3-Methyl-4-decanone			21.5				
6	3. 3,7,7-Trimethyl-4-octanone	А	3,3-Me ₂ butyi ^e	18.0	100–102° (25)	16.44	16.2	
7	7. 5-Methyl-4-octanone			22.8				
8	 4-Methyl-5-undecanone 			23.5				
9	2,2,6-Trimethyl-5-nonanone	A	3,3-Me ₂ butyl ^e	18.8	106–108° (16)	15.19	14.9	
10	J. 5,7-Dimethyl-4-octanone	BC	Pr Hawd	24.0	83-85 (13)	17.92	17.7	
11	 2,4-Dimethyl-5-Undecanone 2,3-Dimethyl 4 bestassas 	BC	nexy: Pr	25.0	122-124 (13)	14,11	13.6	
12	2.3-Dimethyl-4-decanone	B ^c	Hexvi	404	111-113° (11)	15 19	15.0	
14	I. 3,4-Dimethyl-5-undecanone	Bc	Hexyl	449	125–127° (11)	14.11	13.5	
15	5. 3-Ethyl-4-heptanone	A	Pr	329				
16	3. 3-Ethyl-4-octanone	А	Butyl	329				

				New.compounds				
			Preparation ^a		······································	C	0	
	Alkanone	Method	R of RMgX	t _{50%} , min	Bp range (mm)	Calcd	Found	
в	B ₆ COR ₂							
B ₃	R _s COCH ₂ CH ₂ R _{pst}							
	17. 3-Ethyl-4-nonanone	Α	Pentyl	327	97–99 [°] (12)	16.44	16.0	
	18. 3-Ethyl-4-decanone	A	Hexyl	327				
	19. 3-Ethyl-4-undecanone	A	Heptyl	320	127–129° (12)	14.11	13.5	
	20. 3-Ethyl-4-dodecanone	A 	Nonvi	323	142-144 (13) 152-154° (13)	12.18	12.0	
	21. 3-Ethyl-4-mdecanone	Â	Isonentvi	315	100-102° (20)	16 44	16.2	
	23, 7.7-Dimethyl-3-ethyl-4-octanone	A	3.3-Me2butvle	291	105–107° (18)	15.19	14.9	
	24. 3,7,7-Triethyl-4-nonanone	A	3,3-Et ₂ pentyl ^p	300	158–160° (18)	j		
	25. 5-Ethyl-4-octanone	B ^c	Pr	356	86-88° (18)	17.92	17.6	
	26. 4-Ethyl-5-undecanone	B ^c	Hexyl	352				
	27. 5-Ethyl-4-nonanone	Α	Pr	374	_			
	28, 5-Ethyl-6-dodecanone	Α	Hexyl	371	140–142° (18)	13.18	13.0	
	29. 2,2-Dimethyl-6-ethyl-5-decanone	A	3,3-Me ₂ butyl ^e	338	127-129° (13)	13.18	12.8	
	30. 5-Ethyl-4-undecanone	Bc	Pr D-	384	131-133* (20)	14.11	13.9	
	31. 5-Ethyl-4-tridecanone	B°	Pr Pr	380	150-158 (17)	12.30	12.2	
	33 4-Propyl-5-undecanone	BC	Hervi	389				
	34. 6-Propyl-5-dodecanone	Bc	Butyl	389	154-156° (20)	12.36	12 1	
	35. 5-Butyl-4-nonanone	Bc	Pr	414	130–132° (22)	14.11	13.9	
	36. 6-Butyl-5-decanone	B^c	Butyl	418	- ,,			
	37. 5-Butyl-4-undecanone	B ^c	Pr	414	157–159° (21)	12.36	12.1	
B₄	R _s COCH ₂ R _s							
	1. 2,5-Dimethyl-3-hexanone	A	Isobutyl	79				
	2. 2,5-Dimethyl-3-heptanone	A	2-Mebutyl	103	70–72° (16)	19.68	19.0	
	3. 2,5-Dimethyl-3-octanone	A	2-Mepentyl	115	88–90° (18)	17.92	17.4	
	4. 5-Ethyl-2-methyl-3-neptanone	A •	2-Etbutyi	166	82-84° (16)	15 10	14.0	
	5. 5-Ethyl-2-methyl-3-nonanone	A 	2-Ethexy	199	115–117 (20)	15.19	14.9	
	7 3 6-Dimethyl-4-neptanone	Â	2-Mebutvi	384				
	8. 3.6-Dimethyl-4-nonanone	A	2-Mepentyl	391	101–103° (20)	16.44	15.8	
	9. 6-Ethyl-3-methyl-4-octanone	A	2-Etbutyl	528	97-99° (20)	j		
	10. 6-Ethyl-3-methyl-4-decanone	Α	2-Ethexyl	617	127-129° (20)	j		
	11. 2,5-Dimethyl-4-octanone	Α	Isobutyl	297	180–181° (752)	17.92	17.8	
	12. 3,6-Dimethyl-5-nonanone	A	2-Mebutyl	365	100–102° (16)	16.44	16.2	
	13. 4,7-Dimethyl-5-decanone	A	2-Mepentyl	394				
	14. 3-Ethyl-6-methyl-5-nonanone	A	2-Etbutyl	599	106–108° (17)	15,19	14.7	
	15. 7-Ethyl-4-methyl-5-undecanone	A	2-Ethexyl	675	138–140* (22)	J		
	16. 5-Ethyl-2-methyl-4-neptanone	A A	Isobutyl	4800	108 110° (20)	15 10	147	
	18 2.3.6-Trimethyl-4-hontanone	C ^c	Isobutyl	7920	106~110 (20)	15,19	14.7	
B.	B ₂ COCH ₂ B ₂	Ū	1300uty	1520				
-5	1. 2,5,5-Trimethyl-3-hexanone	C^n	Isopropyl	4700				
C	B-COB.							
C.	BrCOMe							
-	1. 3.3-Dimethyl-2-butanone			0.5				
	2. 3,3-Dimethyl-2-pentanone	Bď	Ме	6.5 EE				
	3. 3,3-Dimethyl-2-hexanone	B ⁱ	Me	55 67				
	4. 3,3-Diethyl-2-pentanone	B^i	Me	9				
C	2 R _t COEt	_ 4	_					
	1. 2,2-Dimethyl-3-pentanone	B ^a	Et	613				
	2. 4,4-Dimethyl-3-hexanone	Bu	Et Et	6120				
~	3. 4,4-Diethyl-3-nexanone	в.	Et					
U;	1 2 2-Dimethyl-3-bevanane	R <i>i</i>	Pr	970				
	2 2 2-Dimethyl-3-hentanone	B ⁱ	Butvl	952				
	3. 2.2-Dimethyl-3-undecanone	Bi	Octyl	958	125–127° (16)	14.11	13.5	
	4. 2.2.6-Trimethyl-3-heptanone	- B ⁱ	Isopentyl	838	· · · · · · · · · · · · · · · · · ·			
	5. 2,2,6,6-Tetramethyl-3-heptanone	B^i	3,3-Me ₂ butyl	820				
	6. 6,6-Diethyl-2,2-dimethyl-3-octanone	B^i	3,3-Et2pentyl	1065	138 ∸140° (18)	J		
C,	RtCOCH2Rs							
_	1. 2,2,5-Trimethyl-3-hexanone	C ⁱ	Isobutyl	\$				
C;	5 RtCOCH ₂ Rt	<u><u> </u></u>	tost Dutid	t				
	1. 2,2,5,5-Tetramethyl-3-hexanone	U"	iert-Butyl	·		(O		
						(Continued)	on page 98	

Journal of Chemical and Engineering Data, Vol. 18, No. 1, 1973 97

			New compounds			
	Preparation ^a				со	
Alkanone	Method	R of RMgX		Bp range (mm)	Calcd	Found
D R _s COR _s						
1. 2,4-Dimethyl-3-pentanone	Α	Isopropyl	339			
2. 2,4-Dimethyl-3-hexanone	Α	Isopropyl	1216			
3. 2,4-Dimethyl-3-heptanone	Α	Isopropyl	1288			
4. 2,4-Dimethyl-3-decanone	C ^c	Isopropyl	1297	107-109° (12)	15.19	14.7
5. 3,5-Dimethyl-4-heptanone	Aſ	sec-Butyi	4372			
6. 2,4,6-Trimethyl-3-heptanone	C ^c	Isopropyl	1450			
7. 4-Ethyl-2-methyl-3-hexanone	Α	Isopropyl	u			
8. 4-Ethyl-2-methyl-3-octanone	А	Isopropyl	υ	95–97° (18)	16.44	1 6 .0
9. 2,4,5-Trimethyl-3-hexanone	C ^c	Isopropyl	w			
E RsCOR						
1. 2,2,4-Trimethyl-3-pentanone	А	tert-Butyl	x			
2. 2,2,4-Trimethyl-3-hexanone	Α	tert-Butyl	У			
3. 2,2,4-Trimethyl-3-heptanone	Α	tert-Butyl	z			
4. 2,2-Dimethyl-4-ethyl-3-hexanone	Α	tert-Butyl	aa			

ab

F RtCORt

1. 2,2,4,4-Tetramethyl-3-pentanone

^aPreparative details are not given for ketones previously described (5). ^bSubscripts p, s, and t denote primary, secondary, and tertiary, respectively. ^cAcid was prepared by the malonic ester synthesis. ^dAcid was prepared by the carbonation of the corresponding Grignard reagent. ^e3,3-Dimethylbutyl chloride was prepared from *tert*-butyl chloride and ethylene with an anhydrous aluminum chloride catalyst according to the procedure of Brandstrom (1). ^fCarbinol was prepared by treating the Grignard reagent with ethyl formate. ^gKetone was prepared by the laurone procedure of Sauer (9). ^hAcid was prepared by the following reaction sequence: Reformatsky reaction \rightarrow dehydration \rightarrow catalytic hydrogenation \rightarrow hydrolysis. ^cAcid was commercially available. ^fAnalysis indicated an impure compound. However, the t_{50%} was always within the expected range except for ketone C₃₋₆. ^kKetone was prepared by the oxidation of diisobutylene according to the procedure of Mosher and Cox (6). Reaction time was reduced to less than one day by cooling the reaction fiask in a bath of cold (15°) running water. ^fKetone was prepared by the 1,4 addition of a Grignard reagent. The nitrile was prepared by the 1,4 addition of a Grignard reagent (usually MeMgBr) to an ethyl alkylidenecyanoacetate followed by hydrolysis and decarboxylation-according to the procedure of Prout (7). ^mAcid was prepared by the hydrolysis of the corresponding nitrile according to the procedure of Prout (7). ⁿAcid was prepared by treating 4,4-dimethyl-2-pentanone with aqueous sodium hypobromite according to the procedure of Homeyer et al. (4). ^oAnalysis indicated 11.7% oximation after 15 days at room temperature, assuming 96% purity. ^{*p*}Acid prepared by the method of Prout (7) was reduced with lithium aluminum hydride and the resulting carbinol converted to the bromide by treating it with phosphorus tribromide. ^{*q*}Analysis indicated 58.5% oximation after 30 days at room temperature, assuming 96% purity. ^{*r*}Analysis indicated 2.1% oximation after 30 days at room temperature, assuming 96% purity. Another sample gave 4.1% oximation after 237 days at room temperature, ^sAnalysis indicated 54.5% oximation after 30 days at room temperature, assuming 96% purity. ^{*t*}Analysis indicated 4.1% oximation after 30 days at room temperature, assuming 96% purity. ^{*w*}Analysis indicated 83% oximation after 30 days at room temperature, assuming 96% purity. ^{*v*}Analysis indicated 72% oximation after 30 days at room temperature, assuming 96% purity. ^{*x*}Analysis indicated 41° days at room temperature, ^{*w*}Analysis indicated 40% oximation after 15 days at room temperature, assuming 96% purity. ^{*x*}Analysis indicated 15.2% oximation after 30 days at room temperature, assuming 96% purity. ^{*y*}Analysis indicated 27% oximation after 313 days at room temperature, assuming 96% purity. ^{*x*}Analysis indicated 5.5% oximation after 313 days at room temperature, assuming 96% purity. ^{*a*}Ketone was prepared by the methyl iodide-sodium amide methylation of 2.2.4-trimethyl-3pentanone. ^{*ac*}Analysis indicated 1.4% oximation after 30 days at room temperature, assuming 96% purity.

ac

 $^{\rm o}{\rm Time}$ in minutes required for 50% oximation is given after the formulas $^{b}t_{50\%}$ was less than 0.083 min (5 sec)

As illustrated below, Rule I is useful for estimating the relative oximation rates of the various class members.

Every alkanone (except 2-propanone, 2-butanone, and 3-pentanone) may be assigned to one of the 25 classes listed in Table I. According to Rule I the oximation rate of a given alkanone would be the same or lower than the rate of the first member of the class to which it has been assigned. The reactivity of a given class would therefore be defined if class members of increasing branching were prepared and tested until an alkanone of low reactivity was found. This was easily and completely realized for classes A₁₁, A₁₂, B₅, C₄, C₅, E, and F and partially realized for classes A_9 , A_{10} , B_2-B_4 , C_1-C_3 , and D. The alkanones nones in class B₁ roughly parallel the corresponding members of class B₂ (Rule III-D). The remaining classes A₁-A₈ are generally very reactive and therefore represent the greatest area of uncertainty.

Experimental

Unless otherwise indicated in Table I the ketones were prepared by the following methods.

Method A. A Grignard reagent was treated with an aldehyde and the resulting carbinol oxidized to the ketone according to the procedure of Sandborn (8).

Method B. A Grignard reagent was converted into the cadmium dialkyl and treated with an acid chloride according to the procedure of Cason and Prout (3).

Method C. An acid chloride was treated with a Grignard reagent and anhydrous ferric chloride catalyst according to the procedure of Cason and Kraus (2).

The intermediates were prepared by the methods indicated in the footnotes to Table I. The malonic ester syntheses and Reformatsky reaction sequences were performed according to the procedures previously described (5)

Analysis and rate determinations. The carbonyl percentages of new compounds and the 50% oximation times were determined by the methods previously described (5). An independent redetermination of the t50% of 37 ketones gave an average precision of 3.1%.

Literature Cited

- Brandstrom, A., Acta Chem. Scand., **13**, 611 (1959).
 Cason, J., Kraus, K. W., J. Org. Chem., **26**, 1768 (1961).
 Cason, J., Prout, F. S., "Organic Syntheses," E. C. Horning, Ed.,
- (3)Collect. Vol III, p 601, Wiley, New York, N.Y., 1955.
- (4) Homeyer, A. H., Whitmore, F. C., Wallingford, V. H., J. Amer. Chem. Soc., 55, 4209 (1933).
- Kletzke, P. G., J. Org. Chem., 29, 1363 (1964). Mosher, W. A., Cox, J. C., Jr., J. Amer. Chem. Soc., 72, 3701 (6)
- (1950).
- (1950).
 (7) Prout, F. C., *ibid.*, **74**, 5915 (1952).
 (8) Sandborn, L. T., "Organic Syntheses," A. H. Blatt, Ed., Collect. Vol I, 2nd ed., p 340, Wiley, New York, N.Y., 1941.
 (9) Sauer, J. C., "Organic Syntheses," N. Rabjohn, Ed., Collect Vol. IV, p 560, Wiley, New York, N.Y., 1963.

Received for review June 2, 1971. Resubmitted June 7, 1972. Accepted August 24, 1972.

Preparation and Spectral Characterization of Substituted 2-Aminothiazoles

George Y. Sarkis¹ and Subhi Al-Azawe

Department of Chemistry, College of Science, University of Baghdad, Baghdad, Adhamiya, Iraq

Ten 2-aminothiazole derivatives have been synthesized by the direct interaction of thiourea with a series of ketones in the presence of oxidizing agents (I_2, Br_2, CI_2) . lpha-Haloketones were also condensed with thiourea; the products were identical with those prepared by the direct method. The uv, ir, and nmr data for the synthesized 2aminothiazoles are presented.

Ten 2-aminothiazoles were prepared by the method of Dodson et al. (2-5), by the interaction of 2 moles of thiourea and 1 mole of a ketone having a methyl or a methylene group adjacent to the carbonyl group in the presence of oxidizing agents (I₂, Br₂, CI₂) (Method A). α -Haloketones (Table I) were also allowed to react with thiourea (1, 6, 7) (Method B); the products were identical with those prepared by the direct method. The structure and physical properties of the synthesized 2-aminothiazoles are given in Table II.

An examination of Table II reveals that Method A for the synthesis of 2-aminothiazoles gives excellent yield (60-90%), and can be carried out in a much shorter time than Method B. Furthermore, attempts to condense camphor with thiourea using bromine, iodine, or sulfuryl chloride as oxidizing agents, or to condense 3-bromocamphor with thiourea in alcoholic solutions were unsuccessful even on prolonged heating. This may be due to the great strain present in such bicyclic systems. It was also found

¹ Present address, Department of Chemistry, McGill University, Montreal, Que., Canada. To whom correspondence should be addressed.

during the present investigation that the condensation of cyclopentanone with thiourea, using different oxidizing agents and its corresponding α -bromoderivative with thiourea, could not be achieved. The condensation of some aliphatic ketones such as isobutyl methylketone, n-butyl methylketone, and mesityl oxide with thiourea using iodine or sulfuryl chloride were not successful. Sulfuryl chloride showed a violent reaction with the ketones used, and therefore it was added dropwise with cooling. Uv, ir, and nmr data for 2-aminothiazoles are given in Tables III and IV.

Method A

$$\begin{array}{cccccccc} R_{1} & -C = O \\ I \\ R_{2} - CH_{2} \end{array} & + & 2NH = C - SH & + & I_{2}(Br_{2}, CI_{2}) \longrightarrow \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Method B

Journal of Chemical and Engineering Data, Vol. 18, No. 1, 1973 99