Synthesis and Spectral Characterization of 2-Substituted Indole Derivatives

Subhi Al-Azawe and George Y. Sarkis¹

Department of Chemistry, College of Science, University of Baghdad, Baghdad, Adhamiya-Iraq

Twelve 2-substituted indole derivatives were synthesized by the Fischer indole method using polyphosphoric acid (PPA) as cyclodehydrating agent. Uv, ir, and nmr spectral data are reported.

A number of general methods for the synthesis of indole derivatives have been reported (7). Among these, the well-known Fischer synthesis (1, 2), proved to be the most versatile for the synthesis of indole compounds. In the present investigation, 2-substituted indole derivatives are prepared with good yields from phenylhydrazine and a series of methylketones, using polyphosphoric acid (PPA) as cyclodehydrating agent (3, 4, 6). It was found that the use of PPA gives indoles in good yields, which are about as high or higher than those reported (5). It has been found in this method that reaction time and temperature are critical factors (3, 4).

To determine the optimum temperature required for the cyclization of a given compound, a trace of the reactants is mixed with a few drops of PPA. If the mixture turns dark immediately, the reaction should be carried out in the cold; if the color changes gradually, room temperature is preferable; and if only a little color appears, heating is required. Most of the compounds synthesized gave light yellow or light red colors in the beginning, turning to bright red and finally deep red. The structure and physical properties of the synthesized indoles are given in Table I. Uv, ir, and nmr data for the synthesized 2-substituted indoles are given in Tables II and III.

The ir absorption spectra of 2-substituted indoles showed an NH absorption at 3430-3140 cm⁻¹, due to

¹ Present address, Department of Chemistry, McGill University, Montreal, Que., Canada. To whom correspondence should be addressed.

Table I. Characterization of 2-Substituted Indoles^a

the free NH stretching vibration. Table 11 shows marked variations in both frequency and intensity of this band in the indoles studied. Both were found to be very sensitive to the surrounding structure.

The chemical shift and coupling constants in the nmr spectra of 2-substituted indoles are summarized in Table III. The assignments were as follows: In 5-indolinylindole (6), two triplets were observed at 3.2 and 4.1 δ (J = 7.5 Hz) for the two adjacent methylene groups. The triplet at 4.1 δ was assigned to the methylene group at position 2 next to the nitrogen, and the one at 3.2 δ , to the methylene group at position 3 of the five-membered ring. These triplets are broad due to their coupling with the NH proton. The aromatic protons appeared as a complex pattern at 7.3, 7.5, and 7.8 δ . The signals at 7.5 and 7.8 δ appeared as a group of partially resolved doublets and were assigned to the aromatic protons of the substituent indoline ring. Two other broad signals at 8.2 and 8.3 δ , exchangeable with deuterium, were assigned to the two protons on the nitrogen atoms. The center of these bands was taken as the chemical shift of the corresponding proton. The olefinic proton appeared as a singlet at 7.25 δ.

The NH signal in compound 11, appeared as a doublet at 8.1 δ , (J = 2.5 Hz), due to the coupling with the olefinic proton at C-3. On deuteration, this doublet disappeared and the doublet due to the proton at C-3 collapsed into a singlet, showing that long-range coupling does take place between the protons at positions 1 and 3 of the five-membered ring.

Experimental

Elemental analyses were performed by A. Bernhardt Laboratoriés, Ruhr, Germany. Melting points were taken

	Molecular formula	R	Mp, °C	Yield, %	Reaction temp, °C	Crystallization solvent
1	C ₁₈ H ₁₃ N	2-Naphthyl	163–164	85	100	Benzene
2	C21H15N	2-Fluorenyl	180–182	80	110	Acetic acid
3	C ₂₀ H ₁₅ N	4-Biphenyl	167-169	80	110	Benzene
4	C ₁₇ H ₁₅ N	5-Indanyl	127-129	85	130	Benzene
5	C16H12N2	3-Indolyi	190-191	80	110	Ethanol
6	C ₁₆ H ₁₆ N ₂	5-Indolinyl	173-174	83	120	Ethanol
7	C ₁₃ H ₁₀ N ₂	2-Pyridyl	153-154	85	120	Ethanol
8	C ₁₃ H ₁₀ N ₂	3-Pyridyt	133-134	80	135	Ethanol
9	C13H10N2	4-Pyridyi	241-242	82	130	Ethanol
10	C14H11N	2-Phenyl	185–186	75	100	Benzene
11	$C_{14}H_{10}BrN$	2-p-Bromo- phenyl	188–189	80	110	Benzene
12	C ₁₄ H ₁₀ N ₂ O	2-p-Nitro- phenyl	132–133	77	130	Ethanol

^a Elemental analyses (C, H, N) in agreement with theoretical values were obtained and submitted for review.

lable II. Characteri	stic Ir and Uv	Absorption of \$	Substituted	Indoles ^a
----------------------	----------------	------------------	-------------	----------------------

	NH Stretch	Aromatic or olefinic stretch	Aliphatic CH stretch	C=C, C=N, C-N	CH	
	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹	$\lambda_{\max} m \mu \log \epsilon$
1	3360m	3020w		1605s, 1570s,	1150s, 1080m,	208(4,49)
		3060w		1510s, 1490s,	960m, 945m,	235(4.63)
				1440m, 1380m,	900s, 870s,	342(4.45)
				1340m, 1300s,	830s, 755s,	. ,
				1260s	700s	
2	3360m	3050w	2940m	1610s, 1595s,	1240m, 1150m,	209(3.55)
				1500s, 1460m,	1080m, 1100m,	269(3.44)
				1430m, 1400m,	900m, 850m,	350(3.35)
				1340m, 1300m,	780s, 760s,	
				1260s	750s, 700s	
3	3330m	3020w		1670s, 1595m,	1245s, 1140s,	210(4.35)
		3040w		1570s, 1540m,	1060s, 1000m,	276(4.32)
				1480s, 1440m,	990m, 950m,	
				1420m, 1400s,	880m, 835s,	
				1320s, 1290m	760s, 745m,	
					720s, 680s	
4	3380m	3020w	2920s	1650s, 1590s,	1235s, 1170m,	206(4.00)
		3060w	2840s	1540s, 1490s,	1150s, 1070m,	235(4.18)
		3080s		1445s, 1370s,	1040m, 990s,	288(3.45)
				1300s	965s, 880s,	
					855s, 750s,	
					705s, 680s,	
_					650s	
5		3020w		1600s, 1570s,	1230s, 1170s,	207 (4.11)
		3040w		1515s, 1485s,	1130s, 1100s,	229(4.16)
		3050w		1430s, 1410s,	1020s, 1000s,	290(3.81)
				1375s, 1320m,	930s, 870m,	
				1310s	800s, 750s,	
•		0010		1000 1000	670m, 630m	
6	3240m	3010w	2940w	1660s, 1630s,	1100m, 1020m,	209(4.02)
				1590s, 1480s,	920w, 890w,	306(3.86)
				1435s, 1390s,	810m, 735m,	347(3.87)
				1350m, 1320s,	680m	
-	0000	0000		1250s	1150- 1000-	
1	3280m	3020W		1600s, 1570s,	10200 0650	206(3.09)
				1440m 1410a	10305, 9655,	200(2.09)
				12700 12200	750c 700c	340(2.05)
				13705, 13505,	730S, 700S, 620c	
0	2180m	2010.		1590s, 1550s	1240s 1140s	207(4 13)
5	3140m	3070-		1480s 1460s	1070m 1040m	207 (4.13)
	517011	3070W		1420s 1350m	990s 880m	300(3.94)
				1330m 1280e	775e 740e	342(4 31)
				100011, 12003	6855	072(4.01)
9	3420m	3030w		1625s, 1590s	1230s. 1190s.	206(4.00)
5	3380m	3080m		1540s 1470s	1160m. 1070s	230(3.88)
	0000111	00000		1370m. 1330w.	805s. 750s.	330(4.22)
				1280m	685s	
10	3430m	3030m		1600m, 1520m.	1240m, 1220m.	
•	010011	3090w		1480s, 1450m.	1185m, 1070m.	
				1400m. 1350s.	1045m. 930m.	
				1300s	900m, 790s.	
					755s, 735m.	
					680s	
11	3400m	3020w		1530m, 1470s,	1235m, 1180m,	
				1445s, 1415s,	1110m, 1070s,	
				1340s, 1290s	1000s, 825s,	
					790s, 745s,	
					700m, 650m	
12	3330m			1600s, 1590s,	1185s, 1165s,	
				1540s, 1490s,	880m, 850s,	

Table III. Nmr Data For 2-Substituted Indoles^a

	Solvent	Aliphatic-H δ , ppm	Aromatic-H δ, ppm	H-1 δ, ppm	H-3 $\delta,$ ppm	<i>J</i> , Hz	
1	CDCl ₃		7.55m, 7.9m, 8.22dd	6.97b	7.25s	$J_{13} = 2.5$	
2	CDCI3	4.0s, CH ₂	7.3m, 7.85m, 8.05m	7.50b	7.28s		
3	CDCl ₃		7.5m, 7.7s, 7.85s, 7.95s	6.95	7.22		
4	CDCI3	2.0s, 2.08s	6.78d, 6.9d, 7.3m, 7.38d	7.7bs	5.7bs		
	DMSO	1.86s, 1.9s	6.9m, 7.2m	5.8b	7.0s		
5	DMSO		7.0m, 7.4m, 7.8m	8.05b	7.01s		
6	DMSO	3.1t, 4.01t	6.8m, 7.27m	8.0b 7.68b	6.95s	$J_{23} = 7$	
	CDCI3	3.2t, 4.1t	7.3m, 7.5m, 7.8m	8.2b 8.3b	7.25s	$J_{23} = 7.5$	
7	DMSO		7.0m, 7.52s, 7.67d, 8.3t, 8.42t, 8.73dd, 9.25d	9.66s	7.4d	$J_{13} = 2$	
8	DMSO		7.1m, 7.3d, 7.43d, 7.6s, 7.85d, 8.0d, 8.15d, 8.4m, 8.82dd	9.77d	6.1bs	$J_{13} = 2$	
9	DMSO		7.63m, 8.45d, 8.97d	10.85b	7.49bs	$J_{AB} = 7$	
	CDCI3		7.18d, 7.33d, 7.53m, 8.1m, 8.58m	9.08b	7.28s	$J_{AB} = 7.5$	
10	CDCI3		7.32m, 7.83m, 8.02m	6.95b	7.22s		
11	DMSO		7.2d, 7.32d, 7.23m, 7.53m, 7.7m, 7.9d	8.1d	7.08d	$J_{13} = 2.5$	
12	DMSO		7.0m, 7.3m, 8.1d, 8.4d	9.85s	7.5s	$J_{AB} = 8$	

^a s = singlet, d = doublet, t = triplet, m = multiplet, b = broad, bs = broad singlet, J_{AB} = coupling constant in AB systems.

on a Kofler melting point apparatus and are uncorrected. Ir spectra were recorded on a Beckman IR 18A spectrometer. All compounds were examined in a potassium bromide matrix. Uv absorption spectra were obtained with a Unicam SP800B spectrophotometer on solutions in ethanol. Nmr spectra were measured on a Varian A60A spectrometer with tetramethylsilane (TMS) as the internal reference.

Preparation of 2-Substituted Indoles

A mixture of phenylhydrazine (0.01 mole) and the ketone (0.01 mole), were added to polyphosphoric acid (30 grams) in a flask protected from moisture. The viscous mass was mixed thoroughly and kept at the required temperature (Table I). The reaction mixture was stirred every few minutes and stopped as soon as a deep yellow, purple, or blue color was observed. The contents of the flask were poured into ice water (100 ml), and the product which separated was collected by filtration. Recrystallization of the crude product gave pure 2-substituted indole. Physical properties, yields, reaction conditions, and solvents of recrystallizations are given in Table 1.

Literature Cited

- (1) Fischer, E., Jourdan, K., Ber., 16, 224 (1883).
- Hischer, E., Hess, R., *ibid.*, 17, 559 (1884).
 Horning, E. C., Koo, J., *J. Amer. Chem. Soc.*, 73, 5826 (1951).
 Kissman, H. M., Franswork, D. W., *ibid.*, 74, 3948 (1952).
- Shukri, J., Al-Azawe, S., J. Indian Chem. Soc., 47, 2 (1970). (5)
- (6) Snyder, H. R., Werber, F. X., J. Amer. Chem. Soc., 72, 2962 (1950).
- (7) Sumpton, W. C., Miller, F. M., "The Chemistry of Heterocyclic Compounds," p 606, Wiley, New York, N.Y., 1933.

Received for review June 22, 1972. Accepted October 7, 1972. Research was supported by the University of Baghdad.