the LiCI-KCI system (8) indicate that the slight difference in composition between our melt and that of Jaeger's (42 mol % KCl vs. 40.5 mol % KCl) would result in a change in surface tension of less than 0.5%.

Literature Cited

- (1) Clark, P. V., "Physical Properties of Fused Salt Mixtures," Vol 1, p 129, SC-RR-65-930, Sandia Laboratories, Albuquerque, N.M., June 15, 1965.
- (2) Clark, S. P., "Handbook of Physical Constants," p 78, Geological Soc. of America, New York, N.Y., 1966.

Thermodynamic Properties of Neopentane

Perry P. Dawson, Jr.¹ and John J. McKetta

The University of Texas at Austin, Austin, Tex, 78712

I. Harold Silberberg²

Texas Petroleum Research Committee, Austin, Tex, 78712

The effect of pressure on the enthalpy and entropy of 2,2-dimethylpropane (neopentane) was evaluated numerically from experimental PVT data. The resulting values were used in conjunction with ideal state properties from the literature to construct the Mollier diagram for the temperature range of 620-900°R and for pressures up to 4500 psia.

The development of the fundamental equations employed in the evaluation of the enthalpy and entropy were presented by Hsu and McKetta (3). These relationships, Equations 1-6, use the volume residual concept:

$$\Delta H_{P,T} = \Delta H_T^{\circ} + H_P + (\Delta H_v)_{T_0} \tag{1}$$

$$\Delta S_{P,T} = \Delta S_T^{\circ} + S_P + (\Delta S_v)_{T_0}$$
⁽²⁾

$$\Delta H_T^{\circ} = \int_{T_0}^T C_P^{\circ} dT \tag{3}$$

$$\Delta S_T^{\circ} = \int_{T_0}^T \frac{C_P^{\circ}}{T} dT$$
(4)

$$H_{P} = J \left\{ \int_{0}^{P} \left[T \left(\frac{\partial \gamma}{\partial T} \right)_{P} - \gamma \right]_{T} dP - \int_{0}^{P} \left[T \left(\frac{\partial \gamma}{\partial T} \right)_{P} - \gamma \right]_{T_{0}} dP \right\}$$
(5)

$$S_{P} = J \int_{0}^{P} \left[\left(\frac{\partial \gamma}{\partial T} \right)_{P} \right]_{T} dP - R \ln \left(P / P_{0} \right) \neg$$
$$J \int_{0}^{P_{0}} \left[\left(\frac{\partial \gamma}{\partial T} \right)_{P} \right]_{T_{0}} dP \qquad (6)$$

The experimental PVT data (2) were smoothed and interpolated by the least-squares method of Lin (4) into an evenly spaced array of pressure, temperature, and volume residual. Values were selected from regions of this array to evaluate constants in a localized equation of state.

$$\gamma = C_1 + C_2 P + C_3 P^2 + C_4 T + C_5 P T + C_6 P^2 T + C_7 T^2 + C_8 P T^2 + C_9 P^2 T^2$$
(7)

- (3) Dahl, J. L., "Surface Tension of Some Binary Fused Salt Systems," PhD thesis, Iowa State College, 1957.
- (4) Dahl, J. L., Duke, F. R., *J. Phys. Chem.*, 62, 1498 (1958).
 (5) Janz, G. J., Dijkhuis, C. G. M., "Molten Salts," Vol 2, pp 93–4, U.S. Dept. of Commerce, National Bureau of Standards, 1969.
- Jaeger, F. M., Z. Anorg. Chem., 101, 1 (1917) (6)
- Nissen, D. A., J. Inorg. Nuclear Chem., 28, 1740 (1966)
- (8) Nissen, D. A., Carlsten, D. A., unpublished results, 1972. (9) Plyuschchev, V. E., Kovalev, F. V., Zh. Neorg. Khim., 1, 1013
- (1956). (10) Van Artsdalen, E. R., Jaffee, I. S., J. Phys. Chem., 59, 1181 (1955).

Received for review August 14, 1972. Accepted October 20, 1972.

which was used analytically in Equations 5 and 6 to evaluate the derivatives and the pressure integrals by integration over subintervals with 5 psi increments. Details of these calculations were presented by Lin (4, 5).

The change in fugacity coefficient for each pressure increment was evaluated by substituting Equation 7 into:

$$\nu_2 = \nu_1 \exp\left(\frac{-1}{RT} \int_{P_1}^{P_2} \gamma \, dP\right) \tag{8}$$

Specific volumes were similarly found by using Equation 7 in the following definition of the volume residual:

$$V = RT / P - \gamma (T, P) \tag{9}$$

Reference State

The saturated liquid at 620°R was taken as the reference state—i.e., $\Delta H_{P,T} = 0$ and $\Delta S_{P,T} = 0$, for evaluation of the enthalpies and entropies presented here. The vapor pressure of neopentane at this temperature was 87.61 psia as calculated from the Nernst equation reported by Dawson et al. (2).

Sources of Data

The experimental volumetric data used to evaluate the enthalpies and entropies presented here were taken from the work of Dawson et al. (1, 2). Saturated state densities, heats of vaporization, and vapor pressures were calculated from correlations in the same work.

The isobaric integrations required in Equations 3 and 4 were performed at zero pressure using the ideal state heat capacities reported by Pitzer and Kilpatrick (6). To allow analytical integration, the equation of Yuan and Mok (7) was used,

$$C_{p}^{\circ} = 15.4496 + 92.6474 \exp(-571.7382/T)$$
 (10)

where T is the temperature, K. The constants in Equation 10 were evaluated by an iterative least-squares method using the data of Pitzer and Kilpatrick. The standard error of the regression was 0.088 Btu/lb $^\circ R$ and the average absolute deviation was 0.035 Btu/lb °R. Furthermore, the maximum deviation of reported heat capacity data from those calculated by Equation 10 was less than the error in the original data. This equation was substituted into Equations 3 and 4, and the integrations were performed

¹ Present address, Continental Oil Co., Ponca City, Okla. 74601.

² To whom correspondence should be addressed.

analytically to evaluate the ideal state changes in enthalpy and entropy. Comparison of these calculated entropies and literature values (6) showed a maximum deviation of $0.0003 \text{ Btu/lb} ^{\circ}\text{R}$.

Thermodynamic Properties and Mollier Diagram

Representative values of enthalpy, entropy, fugacity coefficients, and specific volumes in the gaseous state as calculated by the methods described above are presented in Table I. (A complete table of values at 10°R increments is available from the ACS Microfilm Depository Service.)

Saturated vapor state properties were calculated by integrating Equations 5 and 6 to the vapor pressure at each temperature. These values and the enthalpy and entropy of vaporization from the previous work (2) were used to calculate the properties of the saturated liquid. Saturated state densities were also taken from the work of Dawson et al. (2). These thermodynamic properties for neopentane are presented in Table II.

The Mollier diagram (Figure 1) was constructed from the values of enthalpy and entropy in Tables I and II.

Discussion

The internal consistency of the values in Table I was tested by using the equation

$$(\partial H/\partial S)_P = T \tag{11}$$

which can be integrated isobarically to yield

$$\left[H_2 - H_1 = T_2 S_2 - T_1 S_1 - \int_{T_1}^{T_2} S dT\right]_p$$
(12)

The equality in Equation 12 was tested for six isobars. The integral in Equation 12 was evaluated by both trapezoidal and Simpson's rules with no significant differences found. Table III shows that the maximum deviation was less than 0.1 Btu/lb.

Based on the precision indicated in Table III and the accuracy of the experimental *PVT* data, the enthalpy data reported here are believed to be correct to within ± 0.08 Btu/lb and the entropy to within ± 0.0005 Btu/lb °R.

Table I (Abridged). Thermodynamic Properties of Gaseous Neopentane

Reference state: H = 0 and S = 0 for the saturated liquid at 620°R and 87.61 psia

T = temperature, °R	H = enthalpy, Btu/lb
P = pressure, psia	$S = entropy, Btu/lb ^{\circ}R$
$V = volume, ft^3/lb$	v = fugacity coefficient

					· · · ·
т	P	v	н	S	ν
620	5	18.30	121.1	0.2705	0.9924
	10	9.079	120.7	0.2509	0.9848
	15	6.004	120.3	0.2393	0.9772
	20	4.466	119.8	0.2309	0.9696
	25	3.543	119.4	0.2242	0.9620
	30	2.927	118.9	0.2187	0.9544
	35	2.486	118.5	0.2139	0.9468
	40	2.156	118.0	0.2097	0.9391
	50	1.692	117.1	0.2025	0.9239
	60	1.382	116.1	0.1963	0.9087
	70	1.160	115.1	0.1909	0.8935
	80	0.9907	114.0	0.1860	0.8781
900	10	13.33	273.5	0.4524	0.9955
	20	6.632	273.1	0.4330	0.9910
	40	3.286	272.4	0.4133	0.9820
	60	2.170	271.7	0.4016	0.9730
	80	1.612	270.9	0.3931	0.9642
	100	1.277	270.0	0.3862	0.9554
	150	0.8302	267.6	0.3730	0.9336
	200	0.6062	265.0	0.3629	0.9120
	250	0.4714	262.2	0.3543	0.8906
	300	0.3812	259.3	0.3467	0.8694
	350	0.3168	256.0	0.3394	0.8485
	400	0.2687	251.9	0.3318	0.8278
	450	0.2293	249.2	0.3263	0.8070
	500	0.1996	246.3	0.3208	0.7870
	550	0.1741	243.1	0.3154	0.7672
	600	0.1528	239.8	0.3100	0.7476
	650	0.1346	236.2	0.3046	0.7282
	700	0.1191	232.5	0.2992	0.7090
	750	0.1058	228.6	0.2937	0.6901
	800	0.09455	224.7	0.2884	0.6717
	850	0.08524	220.9	0.2832	0.6537
	900	0.07767	217.3	0.2784	0.6365
	950	0.07160	214.1	0.2740	0.6200
	1000	0.06675	211.2	0.2701	0.6045
	1100	0.05960	206.5	0.2636	0.5760
	1200	0.05498	203.2	0.2587	0.5510
	1300	0.05176	200.7	0.2549	0.5293
	1400	0.04940	198.8	0.2517	0.5104
	1500	0.04759	197.2	0.2490	0.4939
	1600	0.04613	196.0	0.2466	0.4795
	1800	0.04385	194.0	0.2426	0.4558
	2000	0.04230	192.5	0.2391	0.4375
	2200	0.04086	191.5	0.2363	0.4232
	2400	0.03996	190.6	0.2336	0.4121
	2600	0.03906	190.4	0.2318	0.4035
	2800	0.03832	190.2	0.2300	0.3970
	3000	0.03766	190.1	0.2284	0.3921
	3200	0.03711	190.0	0.2266	0.3887
	3400	0.03550	189.9	0.2250	0.3866
	3600	0.03613	189.9	0.2235	0.3855
	3800	0.03572	189.9	0.2221	0.3853
	4000	0.03534	190.0	0.2208	0.3860
	4200	0.03499	190.2	0.2194	0.3875
	4400	0.03465	190.3	0.2182	0.3896

Table II. Inerniouynamic Fropenies of Sutarates Neopenian

		Vol, ft ³ /lb Enthalpy, Btu/lb		Entropy, Btu/lb °R			ν,			
Temp, °R	Press, psia	Satd liquid	Satd vapor	Satd liquid	Vapor- ization	Satd vapor	Satd liquid	Vapor- ization	Satd vapor	coeffi- cient
620	87.61	0.03041	0.8694	0	113.06	113.06	0	0.1823	0.1823	0.8663
625	93.41	0.03063	0.8215	4.48	110.33	114.81	0.0072	0.1765	0.1837	0.8610
630	99.49	0.03084	0.7754	7.58	108.90	116.48	0.0120	0.1728	0.1848	0.8548
635	105.86	0.03107	0.7313	10.84	107.44	118.28	0.0172	0.1692	0.1864	0.8500
640	112.52	0.03131	0.6892	14.07	105.95	120.01	0.0220	0.1656	0.1876	0.8445
645	119.49	0.03156	0.6492	17.23	104.43	121.66	0.0269	0.1619	0.1888	0.8382
650	126.76	0.03181	0.6112	20.56	102.89	123.45	0.0321	0.1583	0.1904	0.8336
655	134.36	0.03208	0.5753	23.81	101.30	125.11	0.0368	0.1547	0.1915	0.8269
660	142.27	0.03236	0.5414	27.22	99.69	126.91	0.0421	0.1510	0.1931	0.8220
665	150.52	0.03265	0.5094	30.59	98.03	128.62	0. 047 1	0.1474	0.1945	0.8162
670	159.12	0.03296	0.4793	33.87	96.34	130.21	0.0518	0.1438	0.1956	0.8094
675	168.08	0.03327	0.4509	37.42	94.60	132.02	0.0571	0.1402	0.1973	0.8046
680	177.41	0.03361	0.4241	40.87	92.81	133.68	0.0621	0.1365	0.1986	0.7987
685	187.10	0.03396	0.3989	44.37	90.97	135.34	0.0671	0.1328	0.1999	0.7926
690	197.22	0.03433	0.3751	47.90	89.07	136.97	0.0722	0.1291	0.2013	0.7864
695	207.70	0.03472	0.3528	51.47	87.12	138.59	0.0772	0.1254	0.2026	0.7805
700	218.64	0.03513	0.3317	55.07	85.09	140.16	0.0877	0.1216	0.2039	0.7743
705	229.93	0.03557	0.3118	58.69	82.99	141.68	0.0874	0.1177	0.2051	0.7680
710	241.70	0.03604	0.2929	62.38	80.80	143.18	0.0924	0.1138	0.2062	0.7618
715	253.85	0.03654	0.2751	66.11	78.52	144.63	0.0976	0.1098	0.2074	0.7555
720	266.49	0.03707	0.2582	69.89	76.14	146.03	0.1028	0.1057	0.2085	0.7491
725	279.59	0.03765	0.2422	73.68	73.63	147.31	0.1078	0.1016	0.2094	0.7422
730	293.18	0.03827	0.2270	77.73	70.99	148.72	0.1133	0.09724	0.2105	0.7361
735	307.26	0.03896	0.2124	81.78	68.18	149.96	0.1186	0.09276	0.2114	0.7295
740	321.89	0.03971	0.1984	85.86	65.18	151.04	0.1240	0.08808	0.2121	0.7228
745	337.04	0.04055	0.1850	90.10	61.95	152.05	0.1343	0.08315	0.2174	0.7160
750	352.76	0.04150	0.1720	94.54	58.42	152.96	0.1353	0.07790	0.2132	0.7093
755	369.08	0.04260	0.1593	98.94	54.53	153.47	0.1411	0.07223	0.2133	0.7015
760	385.97	0.04390	0.1467	103.99	50.15	154.14	0.1475	0.06598	0.2135	0.6953
765	403.51	0.04549	0.1341	109.65	45.05	154.70	0.1548	0.05889	0.2137	0.6878
770	421.70	0.04758	0.1209	115.31	38.84	154.15	0.1620	0.05044	0.2124	0.6808
775	440.63	0.05071	0.1063	123.07	30.45	153.52	0.1717	0.03929	0.2110	0.6736
780	460.13	0.05853	0.08411	138.82	13.77	152.59	0.1917	0.01766	0.2094	0.6661

Table III. Internal Consistency Check

D	Temp		ΔH , Btu $/$ Ib	
press.,	range, °R	Table I	Eq 12	Dev.
60	620-900	155.6	155.58	0.02
300	740-900	104.4	104.49	-0.09
1000	790-900	94.0	94.02	-0.02
2000	790-900	78.0	77.97	0.03
3000	790-900	75.8	75.84	-0.04
4500	790-900	73.9	73.99	-0.09

Nomenclature

 C_P° = ideal state heat capacity at constant pressure, Btu/lb °R

f = fugacity

- $\Delta H_{P,T} =$ enthalpy at *P*, *T* above the saturated liquid state at *P*₀, *T*₀, Btu/lb
- ΔH_T° = change of enthalpy in ideal state from T_0 to T, Btu/lb
- $(\Delta H_v)_{T_0}$ = heat of vaporization at the reference temperature, T_0 , Btu/lb
- J = dimensional constant for neopentane, 0.00256644 (Btu/lb) (ft³/lb mol)⁻¹ (psia)⁻¹
- P = pressure, psia
- P_0 = reference pressure, psia
- R = gas constant for neopentane, 0.14874 (psi) (ft³)/ (°R) (lb), 0.027542 (Btu)/(°R) (lb)
- $\Delta S_{P,T}$ = entropy at *P*, *T* above the saturated liquid state at *P*₀, *T*₀, Btu/lb °R

 ΔS_T° = change of entropy in ideal state from T_0 to T, Btu/lb °R

 $(\Delta S_v)_{T_0}$ = entropy of vaporization at the reference temperature, T_0 , Btu/Ib °R

 $T = \text{temperature}, ^{\circ}\text{R}$

 T_0 = reference temperature, 620°R

V = specific volume, ft³/lb

 γ = volume residual, (RT/P) - V, ft³/lb

 ν = fugacity coefficient, f/P

Literature Cited

- Dawson, P. P., "Volumetric Behavior and Thermodynamic Properties of Neopentane," PhD dissertation, The University of Texas at Austin, Austin, Tex., 1971.
 Dawson, P. P., Silberberg, I. H., McKetta, J. J., "Volumetric Behav-
- (2) Dawson, P. P., Silberberg, I. H., McKetta, J. J., "Volumetric Behavior, Vapor Pressures, and Critical Properties of Neopentane," J. Chem. Eng. Data. 18, 7 (1973).
- (3) Hsu, C. C., McKetta, J. J., AIChE J., 9, 794 (1963)
- (4) Lin, D. C.-K., "Volumetric and Phase Behavior of Cyclopropane and Its Thermodynamic Properties," PhD dissertation, The University of Texas at Austin, Austin, Tex., 1969.
- (5) Lin, D. C.-K., McKetta, J. J., Silberberg, I. H., J. Chem. Eng. Data. 16, 416 (1971).
 (6) Pitzer, K. S., Kilpatrick, J. E., Chem. Rev.. 39, 435 (1946).
- (7) Yuan, S. C., Mok, Y. I., Hydrocarbon Process., 47 (3), 133 (1968).

Received for review March 13, 1972. Accepted May 30, 1972. The National Science Foundation was the initial sponsor of this project. Gulf Research and Development Co. provided funds for completion of project. Thirty-five pages of the complete Table I will appear following these pages in the microfilm edition of this volume of the Journal. Single copies may be obtained from the Business Operations Office, Books and Journals Division, American Chemical Society, 1155 Sixteenth St., Washington, D.C. 20036. Refer to the following code number: JCED-73-76. Remit by check or money order \$6.00 for photocopy or \$2.00 for microfiche.

78 Journal of Chemical and Engineering Data, Vol. 18, No. 1, 1973