As illustrated below, Rule I is useful for estimating the relative oximation rates of the various class members.

Every alkanone (except 2-propanone, 2-butanone, and 3-pentanone) may be assigned to one of the 25 classes listed in Table I. According to Rule I the oximation rate of a given alkanone would be the same or lower than the rate of the first member of the class to which it has been assigned. The reactivity of a given class would therefore be defined if class members of increasing branching were prepared and tested until an alkanone of low reactivity was found. This was easily and completely realized for classes A₁₁, A₁₂, B₅, C₄, C₅, E, and F and partially realized for classes A_9 , A_{10} , B_2-B_4 , C_1-C_3 , and D. The alkanones nones in class B₁ roughly parallel the corresponding members of class B₂ (Rule III-D). The remaining classes A₁-A₈ are generally very reactive and therefore represent the greatest area of uncertainty.

Experimental

Unless otherwise indicated in Table I the ketones were prepared by the following methods.

Method A. A Grignard reagent was treated with an aldehyde and the resulting carbinol oxidized to the ketone according to the procedure of Sandborn (8).

Method B. A Grignard reagent was converted into the cadmium dialkyl and treated with an acid chloride according to the procedure of Cason and Prout (3).

Method C. An acid chloride was treated with a Grignard reagent and anhydrous ferric chloride catalyst according to the procedure of Cason and Kraus (2).

The intermediates were prepared by the methods indicated in the footnotes to Table I. The malonic ester syntheses and Reformatsky reaction sequences were performed according to the procedures previously described (5)

Analysis and rate determinations. The carbonyl percentages of new compounds and the 50% oximation times were determined by the methods previously described (5). An independent redetermination of the t50% of 37 ketones gave an average precision of 3.1%.

Literature Cited

- Brandstrom, A., Acta Chem. Scand., **13**, 611 (1959).
 Cason, J., Kraus, K. W., J. Org. Chem., **26**, 1768 (1961).
 Cason, J., Prout, F. S., "Organic Syntheses," E. C. Horning, Ed.,
- (3)Collect. Vol III, p 601, Wiley, New York, N.Y., 1955.
- (4) Homeyer, A. H., Whitmore, F. C., Wallingford, V. H., J. Amer. Chem. Soc., 55, 4209 (1933).
- Kletzke, P. G., J. Org. Chem., 29, 1363 (1964). Mosher, W. A., Cox, J. C., Jr., J. Amer. Chem. Soc., 72, 3701 (6)
- (1950).
- (1950).
 (7) Prout, F. C., *ibid.*, **74**, 5915 (1952).
 (8) Sandborn, L. T., "Organic Syntheses," A. H. Blatt, Ed., Collect. Vol I, 2nd ed., p 340, Wiley, New York, N.Y., 1941.
 (9) Sauer, J. C., "Organic Syntheses," N. Rabjohn, Ed., Collect Vol. IV, p 560, Wiley, New York, N.Y., 1963.

Received for review June 2, 1971. Resubmitted June 7, 1972. Accepted August 24, 1972.

Preparation and Spectral Characterization of Substituted 2-Aminothiazoles

George Y. Sarkis¹ and Subhi Al-Azawe

Department of Chemistry, College of Science, University of Baghdad, Baghdad, Adhamiya, Iraq

Ten 2-aminothiazole derivatives have been synthesized by the direct interaction of thiourea with a series of ketones in the presence of oxidizing agents (I_2, Br_2, CI_2) . lpha-Haloketones were also condensed with thiourea; the products were identical with those prepared by the direct method. The uv, ir, and nmr data for the synthesized 2aminothiazoles are presented.

Ten 2-aminothiazoles were prepared by the method of Dodson et al. (2-5), by the interaction of 2 moles of thiourea and 1 mole of a ketone having a methyl or a methylene group adjacent to the carbonyl group in the presence of oxidizing agents (I₂, Br₂, CI₂) (Method A). α -Haloketones (Table I) were also allowed to react with thiourea (1, 6, 7) (Method B); the products were identical with those prepared by the direct method. The structure and physical properties of the synthesized 2-aminothiazoles are given in Table II.

An examination of Table II reveals that Method A for the synthesis of 2-aminothiazoles gives excellent yield (60-90%), and can be carried out in a much shorter time than Method B. Furthermore, attempts to condense camphor with thiourea using bromine, iodine, or sulfuryl chloride as oxidizing agents, or to condense 3-bromocamphor with thiourea in alcoholic solutions were unsuccessful even on prolonged heating. This may be due to the great strain present in such bicyclic systems. It was also found

¹ Present address, Department of Chemistry, McGill University, Montreal, Que., Canada. To whom correspondence should be addressed.

during the present investigation that the condensation of cyclopentanone with thiourea, using different oxidizing agents and its corresponding α -bromoderivative with thiourea, could not be achieved. The condensation of some aliphatic ketones such as isobutyl methylketone, n-butyl methylketone, and mesityl oxide with thiourea using iodine or sulfuryl chloride were not successful. Sulfuryl chloride showed a violent reaction with the ketones used, and therefore it was added dropwise with cooling. Uv, ir, and nmr data for 2-aminothiazoles are given in Tables III and IV.

Method A

$$\begin{array}{cccccccc} R_{1} & -C = O \\ I \\ R_{2} - CH_{2} \end{array} & + & 2NH = C - SH & + & I_{2}(Br_{2}, CI_{2}) \longrightarrow \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Method B

Journal of Chemical and Engineering Data, Vol. 18, No. 1, 1973 99

a-Haloketone	Mp, °C or bp/mm Hg	Solvent of crystallization	Yield %	Reaction medium	Reaction temp
<i>p</i> -Hydroxyphenacyl bromide	130	Benzene	70	Chloroform	20
p-Nitrophenacyl bromide	98	Ligroin (120°)	88	Acetic acid	25
3-Bromoacetylacetone	96/13 mm	Ethanol	80	Ethanol	25
5-Bromoacetylindane	58-59	Benzene/ligroin	70	Chloroform	25
3-Bromoacetylindole	230	Methanol	50	Methanol	25
4-Bromoacetylpyridine•HBr	198-200	Acetic acid	70	Acetic acid	25
2-Bromocyclohexanone	83/6 mm	Acetic acid	70	Acetic acid	50
2-Bromo-1-tetralone	37–38	Ligroin (40-60)	75	Ether	25
2-Bromo-7-nitro-1-tetralone	68-70	Ligroin (40-60)	50	Chloroform	25
2-Bromoacetylfluorene	144-145	Ethanol	70	Ether	0
Ethvi-3-bromoacetoacetate	98/16 mm	Ethanol	75	Ethanol	10
3-Chloroacetylacetone	56 [′] /28 mm	Benzene	70	Benzene	25

Table II. Physical Properties of Substituted 2-Aminothiazoles^a

	Molecular formula	R1 (or R)	R ₂	Mp, °C	% Yield Method A using		% Yield Method B using	Derivatives (mp, °C)		
					12	Br ₂	 α-haio- ketone 	Acetyl	Picrate'	HBr salt
۱ _a	$C_{12}H_{12}N_2S$	5-indanyl	н	131-132	65	60	65	248-250	218-220	
Iъ	C11H9N3S	3-indolyl	н	168-170	70	68	60	198–190		
l _c	C ₈ H ₇ N ₃ S	4-pyridyl	н	271-272	68	60	55	332-334	262-264	
d	$C_9H_7N_3O_2S$	$C_6H_4NO_2(p)$	н	292-294	85	70	95	316-318		
le.	C ₉ H ₈ N ₂ OS	C ₆ H₄OH(p)	н	198-200	65	65	55			206
۱f	C ₆ H ₈ N ₂ OS	CH₃	COCH ₃	140-141	85	65	85			248
اړ	C7H10N2S	$R_1, R_2 - (CH_2)_4 - $		87-88	90	75	91			244
l _h	C ₁₆ H ₁₂ N ₂ S	2-fluorenyl	н	268-269	85	71	82	303-304		264
lla	C11H10N2S	Н		262-264	70	61	44			265
llb	$C_{11}H_9N_3O_2S$	NO ₂		245-246	64	60	40	338-340	234-236	

^aElemental analysis (C, H, N, S) in agreement with theoretical values were obtained and submitted for review.

The uv absorption spectra of most of the compounds studied exhibited marked bathochromic shifts in comparison with 2-aminothiazole (8-10). Compounds possessing electron-withdrawing substituents in the benzene ring exhibited hypsochromic shifts. The uv absorption spectra of 2-aminothiazoles could not distinguish the tautomeric state of these compounds.

The ir absorption spectra of 2-aminothiazoles showed an NH₂ group at $3400-3450 \text{ cm}^{-1}$ due to the NH stretching vibration. The region 1650-1590 cm⁻¹ was assigned for the amino group deformation vibration. The weak =C-H stretching vibration of the aromatic ring in most of the compounds studied was hidden by the Nujol band. Nearly all compounds examined possessed one band in the 1634-1570 cm⁻¹ region, and one or two sharp bands in the 1538-1493 cm⁻¹ region. These regions are typical of the thiazole structure (11).

The chemical shifts and coupling constants in the nmr spectra of 2-aminothiazoles are summarized in Table IV. The assignments were as follows: In I_f, two singlets were observed at 7.67 and 7.57 τ for the two methyl groups. The singlet at 7.67 τ was assigned to the methyl group, and the one at 7.57 τ to the acetyl group. A singlet at 6.17 τ integrating for two protons was assigned to the amino group. In I_f', the hydrobromide salt of I_f, the introduction of a positive charge on the amino nitrogen, shifted the methyl signal to lower fields. This supports the assignment of the resonance signal at 7.67 τ in I_f to the

methyl protons. One important feature to notice is that the amino group protons in all the heterocycles studied appeared at lower fields than in I_f . This large downfield shift was attributed to the presence of electron-withdrawing substituents at position 4 of the ring. The aromatic protons appeared as complex patterns and could not be analyzed easily. The center of the complex band was taken as the chemical shift of the aromatic protons.

Experimental

Melting points were taken by a Kofler Hot Bench and are uncorrected. Elemental analyses were performed by Alfred Bernhardt's Laboratories, Ruhr, Germany. Ultraviolet absorption spectra were recorded by a Unicam SP800B uv spectrophotometer. Infrared spectra were recorded by a Perkin-Elmer Model 137B infracord spectrophotometer as Nujol mulls. Nuclear magnetic resonance spectra were measured on a Varian A60A spectrometer as solutions in deuterated dimethylsulfoxide (DMSO- d_6), or trifluoroacetic acid (TFA) with tetramethylsilane (TMS) as the internal reference. All τ -values are correct to 0.01 τ unit.

General method for preparation of α -bromoketones. The ketone (0.1 mole) in a suitable solvent was treated with bromine (0.11 mole). The mixture was continuously stirred at the specified temperature (Table I) for $\frac{1}{2}$ hr and allowed to warm to room temperature. Excess sol-

Table III. I	nfrared and	Ultraviolet S	pectral Data	For 2-Ami	nothiazoles ^a

	νNH ₂ , cm ^{−1}	νC==C, C==N, cm ^{−1}	ν C—H in-plane deformation, cm ⁻¹	vC—H out-of-plane deformation, cm ⁻¹	λmax, nm (logε)
اه	3400	1610s. 1520s.	1200m, 1144m,	890m, 875m,	205(4,43): 233(4,22)
ŭ		1310s	1117m, 1030s	860m, 825m.	275(3.92)
			,	815m, 722s.	,
				695m	
1 _b	3450	1650s, 1585m,	1242s, 1225w,	890w, 825s,	203(4.02); 227(4.39);
-		1525s, 1363s,	1130m, 1125m,	760m, 750w,	383(3.52)
		1317m	1100s	735s, 692m	
l _c	3400	1670s, 1615s,	1225w, 1210m,	845w, 833s,	202(4.05); 230(4.26);
-		1550s, 1375m,	1138m, 1062m,	745w, 712s,	302(3,75)
		1350s, 1317w	1050s, 1000s	695m, 675m	
l _d	3450	1650s, 1605s,	1217m, 1117m,	855w, 845s,	203(4.06); 218(3.98);
_		1550m, 1535m,	1040m	725s, 690w	235(3.36); 345(2.98)
		1375m, 1325s			· · · · · · · · · · · · · · · · · · ·
۱ _f	3400	1680s, 1625s,	1112m, 1035w,	820m, 770m,	201(3.52); 223(3.86);
		1360w, 1325s,	985s, 920m,	730m	310(4.03)
11'0		1650s, 1335w,	1075m, 1025m,	810m, 720m,	. ,
		1292s	975m	680w	
1g'b		1650s, 1343m	1225w, 1224m,	895s, 770m,	202(2.96); 220(3.20);
			1165w, 1105w	725m, 700m	262(3.95)
1 n' "		1650s, 1600w	1218m, 1165w	935m, 805w,	· · ·
				755m, 735m	
l _h	3400	1 [.] 700s, 1650s,	1100m, 1165w	925m, 775w,	
		1540m, 1308m		735s, 725w,	
				695w	
il _a	3400	1620s, 1545m,	1065w, 1040m,	875m, 870w,	
		1525m, 1345s,	915s	770s, 745m,	
		1305w		725m, 690w	
Пъ	3450	1650s, 1605s,	1195m, 1120w,	910s, 845m,	201(4.02); 223(4.25);
		1550m, 1520s,	1063m, 1020w,	830s, 775w,	268(4.27)
		1385s	950m	745s, 720m,	
				690w	

^a s = strong, m = medium, w = weak, EtOH = absolute ethanol. $b | f'_{f} | g'_{f}$, and h'_{h} refer to hydrobromides.

Table IV. Nmr Data For 2-Aminothiazoles^a

	Solvent	Aliphatic-H	Aromatic H ^b	NH ₂ or NH ₃ +b	H-5	J _{ab} , ^c Hz	J _{bc} , ^d Hz	J _{ac} , ^d Hz
la	DMSO	6.93m, 7.55m	2.25d, 2.47d, 2.58d	4.05b	2.65s	8.7	2	
	CDCl ₃	7.02m, 7.85m	2.3d, 2.6d, 2.68d	4.75b	3.26	9.0	2	
1 _c	DMSO		1.28d, 2.13d	2.70s	2.53s	6.0		
۱a	DMSO		1.5d, 1.85d	4.06b	2.28s	9.0		
lf	DMSO	7.67s, CH₃ 7.57s, COCH₃		6.17b	2.53s			
$ _{f}'$	DMSO	7.47, CH ₃ 7.40, COCH ₃		0.33b				
\ <i>ڇ</i> '	DMSO	7.5m, 8.24m		0.60b				
۱ _n	DMSO	6.0, CH ₂	2.5m	2.9s	2.10s			
h'	DMSO	6.0, CH ₂	1.85m, 1.95m	0.33b	1.93s			
H _b	DMSO	6.96m, 6.63m	2.44d, 1.87dd, 1.6d	2.80b		8.0	2.5	0.70
	TFA	6.95m, 6.61	2.26d, 1.53dd, 1.42d	1.40b		8.0	3.0	0.70

^a Compounds not mentioned in this table were insoluble in the solvents employed. ^b s = singlet, d = doublet, dd = double doublet, m = multiplet, b = broad, ^c J_{ab} = coupling constant in all AB systems. ^a J_{ac} and J_{bc} are coupling constants in all ABC systems. (J_{ab} , J_{bc} , and J_{ac} are from first-order analysis of aromatic protons. Chemical shifts are given in τ -units.

vent was distilled off under reduced pressure. Recrystallization of the crude product gave pure α -bromoketone. When oily products were obtained, extraction with ether was necessary. After removal of the ether, the oily products were distilled under vacuum. Condition of the reaction, yields, and physical properties of α -haloketones are listed in Table I.

General procedure for preparation of substituted 2-aminothiazoles. Method A. The halogen (0.2 mole) was added to a mixture of the ketone (0.2 mole) and thiourea (0.4 mole). When iodine was used, it was added all at once, but bromine was added dropwise. The reaction mixture was heated in a steam bath for $\frac{1}{2}$ hr, diluted with water, and heated until the solid dissolved. The free sulfur was filtered off, the solution was cooled and made alkaline with concentrated ammonia solution. Recrystallization of the crude product gave the pure 2-aminothiazole derivative.

Method B. Thiourea (0.2 mole) in ethanol (50 ml) was added to the α -haloketone (0.2 mole) in ethanol (50 ml). The reaction mixture was refluxed for 4 hr. Excess alcohol was removed, the solution cooled and filtered. Recrystallization of the product gave pure 2-aminothiazole derivatives. Conditions of the reaction, yields and physi-

cal properties of the synthesized 2-aminothiazoles are summarized in Table II. Some derivatives of 2-aminothiazoles were prepared by the method of Shriner et al. (12) and are listed in Table II.

Literature Cited

- Badger, G. M., "The Chemistry of Heterocyclic Compounds," pp 207, 209, Academic Press, New York, N. Y., 1961.
- (2)Dodson, R. M., J. Amer. Chem. Soc., 67, 2242 (1945).
- (3) Dodson, R. M., *ibid.*, **66**, 871 (1946).
 (4) Dodson, R. M., *ibid.*, **69**, 1813 (1947).
 (5) Dodson, R. M., *ibid.*, **72**, 3722 (1950).

- (6) Hantzsch, H., Ann., 249, 1, 31 (1888)
- Hantzsch, H., Ann., **250**, 257, 281 (1889). Mijovic, M. P., Waker, J., *J. Chem. Soc.*, 3381 (1961). (7)(8)
- Modena, G., Risaliti, A., Bull. Sci. Fac. Chim. Ind. Bolgara, 11 (9)
- (1953).
- Okamiya, J., J. Chem. Soc. (Japan), 80 (1959).
 Randall, H. M., Fowler, R. B., Fuson, N., Dangle, J. R., "Infrared Determinations of Organic Structures," Van Nostrand, New York, N. Y., 1950.
- (12) Shriner, R. L., Fuson, R. C., Curtin, D. Y., "Systematic Identifica-tion of Organic Compounds," pp 226, 229, Wiley, New York, N. Y., 1956.

Received for review February 16, 1972, Accepted October 10, 1972, Research was supported by the University of Bachdad.

Synthesis and Spectral Data For Quinoxaline Derivatives

George Y. Sarkis¹ and Subhi Al-Azawe

Department of Chemistry, College of Science, University of Baghdad, Baghdad Adhamiya-Iraq

Thirteen quinoxaline derivatives were synthesized by the interaction of o-phenylenediamine with either α bromoketones or the glyoxal derivatives of the corresponding methylketones. The uv, ir, and nmr spectral data for the quinoxaline derivatives obtained are presented.

Thirteen quinoxaline derivatives were prepared by the interaction of o-phenylenediamine with either α -bromoketones (Method A) (3, 10, 11), or the glyoxal derivatives of the corresponding methylketones (Method B) (6). The α -bromoketones used were: 2-bromoacetylfluorene, p-

¹Present address; Department of Chemistry, McGill University, Montreal 101, Que., Canada. To whom correspondence should be addressed.

Table I. Physical Properties of Quinoxaline Derivatives^a

hydroxyphenacylbromide, p-nitrophenacylbromide, 2bromo-1-tetralone, 3-bromoacetoacetic ester, 5-bromoacetylindane, 3-bromoacetylindol, and 2-bromo-7-nitro-1tetralone. The ketones used in Method B were: p-hydroxyacetophenone, 7-nitro-1-tetralone, 2-acetylthiophene, 2acetylfuran, and α -, β -, and γ -acetylpyridines. The structure and physical properties of the synthesized quinoxalines are given in Table I. The uv, ir, and nmr spectral data are presented in Tables II and III.

Dihydroquinoxaline, which is the primary condensation product, is so readily oxidized to the corresponding quinoxaline that it is not isolated under the standard conditions (7). In Method B, the ketones were oxidized to the corresponding glyoxal derivative with selenium dioxide in dioxane solution. It was not attempted in this study to

Molocular					% Yield Method		Def		4-N-oxide	
	formula	R ₁ (or X)	R ₂	Mp, °C	A	в	time	Crystn solvent	(crystn solvent)	
اھ	C ₂₁ H ₁₄ N ₂	2-fluorenyl	н	200–201 <i>^b</i>	75		5	Ethanol		
ŀъ	C ₁₄ H ₁₀ N ₂ O	C ₆ H₄∙OH(p)	Н	209–210°	68	73	2	Benzene	234-235 (Benzene)	
۱ _c	C ₁₄ H ₁₉ N ₃ O ₂	C ₆ H₄∙NO ₂ (p)	Н	189–190 ^d	60		4	Ligroin (bp 120)	267–268 (Acetic acid)	
۱a	$C_{12}H_{12}N_2O_2$	CH3	CO ₂ Et	70–71 ^e	25		8	Water		
le	C17H14N2	5-Indanyl	н	116–117	50		4	Methanol		
ir	C ₁₆ H ₁₁ N ₃	3-Indolyl	н	208–209 ⁷	60		4	Acetic acid		
١g	C12H8N2S	2-Thienyl	н	120121 ^{<i>s</i>}	55	65	5	Methanol		
1 _h	C13H9N3	α -Pyridyl	н	113–114 ^{<i>h</i>}		60	5	Methanol		
! i	C13H9N3	β -Pyridyl	н	243-244		55	5	Methanol		
ا ا	C ₁₃ H ₉ N ₃	γ -Pyridyl	н	255-256		45	6	Methanol		
I _k	C12H8N2O	2-Furyl	н	101–102 ⁱ		72	5	Methanol-water		
lla	$C_{16}H_{12}N_2$	н		152–153 ^j	55		4	Ligroin (bp 40–60)		
Нъ	$C_{16}H_{11}N_3O_2$	NO ₂		300301	65	75	2	Acetic acid		

^a Elemental analyses (C,H,N) in agreement with theoretical values were obtained and submitted for review. ^b Ref. 9. mp 193°C. ^c Ref. 8. mp 204°C. ^d Ref. 3. 4. mp 187-188°C. ^e Ref. 1. mp 73°C. ^f Ref. 14. mp 202-203.

^g Ref. 5, mp 117-119°C. ^h Ref. 16. mp 112-114°C. ⁱ Ref. 6, mp 101°C. ^j Ref. 13, 152.5°C.