Liquid Density of Light Hydrocarbon Mixtures

LeRoy C. Kahre
Research and Development Department, Phillips Petroleum Co., Bartlesville, Okla. 74004

Abstract

Liquid-density data were obtained for binary systems composed of ethane, propane, butane, and isobutane at 15.6° and $54.4^{\circ} \mathrm{C}$ and saturation pressure. To validate the mixture densities, data on the pure components were also obtained at several temperatures. The data obtained on pure components agreed with recent literature data normally within $\pm 0.1 \%$. The mixture data sioned measurable deviations from ideal mixing (shrinkage) for all systems except butane-isobutane at $15.6^{\circ} \mathrm{C}$. The maximum shrinkage observed was about 5\% for the ethane-propane system.

There is increasing interest in the petroleum industry in the properties of light hydrocarbon mixtures. Ethane-propane mixtures, available because of more efficient extraction of natural gas, are transported in pipeline quantities. Liquefied petroleum gas (LPG), besides being used as fuel, has a prominent position as an inexpensive aerosol propellant.

In spite of this general interest, little data are available for the volume change on mixing at saturation pressures (shrinkage) of light hydrocarbons. The only published data found for mixtures are the recent values of Tomlinson (3) for ethane-propane. The LPG components are normally considered ideal, but apparently, this assumption has not been verified experimentally.

Density data were obtained for ethane-propane, pro-pane-isobutane, propane-n-butane, and butane-isobutane at saturation pressure and $15.6^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)$ and $54.4^{\circ} \mathrm{C}\left(130^{\circ} \mathrm{F}\right)$ (except for ethane-propane). These temperatures were chosen because $60^{\circ} \mathrm{F}$ is a standard condition in the petroleum industry, and $54.4^{\circ} \mathrm{C}$ is a reasonable upper limit for atmospheric conditions. Data on the pure components were also obtained in the interest of validating the mixture densities.

Experimental

Equipment. The experimental equipment (Figure 1) was designed for the measurement of phase-equilibria data and consequently has the advantage of obtaining liquid samples at exactly saturation conditions. No extrapolation (as for isochoric data) or interpolation (as for normal bubble-point data) is required.

The saturated liquid was trapped in sample cylinders, removed by condensing into a weighing cylinder with liquid nitrogen, and weighed on an analytical balance. The sample cylinders were constructed with conical heads to ensure that gas bubbles would not be trapped in them. The volume of the sample cylinders at $15.6^{\circ} \mathrm{C}$ was determined by calibration with propane, isobutane, and n-butane. Using accepted values (1) for the densities of these materials, the volumes were calculated from measured weights, and the average volumes were used in future work (Table 1). The volume at other temperatures was calculated from the thermal expansion of stainiess steel. The expansion of the cylinders with pressure was measured and was negligible.

The cell temperature was measured with a thermocouple and checked against the bath temperature (to better than $0.1^{\circ} \mathrm{F}$) which was measured with an ASTM tag thermometer. The cell pressure was measured with a cali-
brated Heise gage which was exposed to cell liquid for runs above room temperature (to eliminate possible condensation of the vapor phase).

Procedure. Pure component data. A sample of Phillips' research-grade hydrocarbon was charged to the evacuated cell, and the bath brought to the desired temperature. A sample of vapor from the cell was obtained and analyzed to assure that the sample was not contaminated with air. The circulating pump was shut off to allow any gas bubbles in the liquid sample cylinders to escape, and the valves of both cylinders were closed. The tared. evacuated, weighing cylinder was attached to the liquid sample line (Figure 1), the connecting lines were evacuated, and the sample from one of the cylinders was condensed into the weighing cylinder with liquid nitrogen. The weighing cylinder was allowed to warm to room temperature, dried thoroughly, and weighed on an analytical balance to $\pm 1 \mathrm{mg}$. No buoyancy correction was required in the weighings, since the sample was weighed by difference in a stainless-steel container.

The sample in the second cylinder was removed with the same procedure.

Ethane-propane data. After the samples of propane were obtained at $15.6^{\circ} \mathrm{C}$, one of the sample cylinders was opened to the cell, and Phillips' research-grade ethane was added to about 10%. The system was equilibrated by recirculating vapor and liquid, and the phases were analyzed by chromatography. The recirculating pump was stopped, the valves of the first sample cylinder were closed, those of the second cylinder opened, and more ethane was added. After the equilibrium liquid from the second run was trapped, both samples were removed from the system and weighed.

Figure 1. Vapor-liquid equilibrium cell

Table I. Calibration of Sample Cylinders at $15.6^{\circ} \mathrm{C}$

Calibrating liquid	Density, $\mathrm{g} / \mathrm{cm}^{8}(\mathbf{1})$	Volume, cm^{3}	
	Cylinder 1	Cylinder 2	
Propane	0.5072	27.99	27.95
Isobutane	0.5625	28.035	27.98
n-Butane	0.5838	28.06	27.99
Average		28.03	27.97

Temperature		Pressure		Density, $\mathrm{g} / \mathrm{cm}^{8}$		Tomlinson	Deviation, \%	Sliwinski	Deviation, \%
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	Psia	Atm	Sample 1	Sample 2				
Ethane									
-5.7	21.8	301.5	20.52	0.4133	0.4133	(0.4141)	-0.19
4.4	40.0	383	26.06	0.3898	0.3898	0.3896	+0.05	(0.3897)	+0.02
15.6	60.0	492.5	33.51	0.3562	0.3564	0.3563	0.00	0.3557	+0.17
21.1	70.0	556	37.83	0.3354	0.3359	0.3349	+0.22	0.3338	+0.55
26.7	80.0	624	42.46	0.3063	0.3066	0.3058	+0.21	0.3047	+0.57
Propane									
4.4	40.0	79.5	5.41	0.5225	0.5226	0.5227	-0.03	0.5223	+0.05
15.6	60.0	108	7.35	0.5066	0.5068	0.5069	-0.04	0.5064	+0.06
26.7	80.0	143	9.73	0.4898	0.4900	0.4900	-0.02	0.4896	+0.06
37.8	100.0	188	12.79	0.4716	0.4717	0.4716	+0.01	0.4714	+0.05
54.4	130.0	272	18.51	0.4383	0.4384	(0.4404)	-0.47	0.4402	-0.42
Isobutane									
4.4	40.0	27	1.84	0.5755	0.5755	0.5753	+0.04
15.6	60.0	38	2.59	0.5626	0.5627	...	\ldots	0.5621	+0.10
26.7	80.0	52.5	3.57	0.5485	0.5487	0.5484	+0.04
37.8	100.0	71.5	4.87	0.5345	0.5343	0.5341	+0.06
54.4	130.0	110	7.48	0.5101	0.5101	...	-	0.5109	-0.16
n-Butane									
15.6	60.0	26	1.77	0.5844	0.5844	0.5834	+0.14
54.4	130.0	79	5.38	0.5370	0.5369	\ldots	. \cdot	0.5365	+0.08

This procedure was repeated, then ethane was charged to the cell, and propane added incrementally for six more runs.

Propane-butane-isobutane binary data. For these systems the desired mixtures were premixed in relatively large quantities from Phillips' pure-grade hydrocarbons. The particular samples of propane, butane, and isobutane used had purities (as determined by gas chromatography) of $99.8,99.9$, and 99.75%, respectively. It was felt that the small amounts of impurities present would not appreciably affect the mixture densities.

The hydrocarbon mixture was charged to the cell and treated as though it were a pure component (taking the samples for density in duplicate). No analyses were made on these samples, since it was felt that the synthesis would be more accurate than any analyses.

Results

Density data for the pure components are presented in Table II and Figures 2 and 3. The agreement with the re-

Figure 2. Liquid density of ethane at saturation pressure
cent data of Sliwinski (2) and Tomlinson (3) is good, in general, better than 0.1%. The greatest deviation is 0.6% for ethane at $26.7^{\circ} \mathrm{C}$. The value for ethane listed in the NGPSA data book (1) (0.3767 ($60^{\circ} \mathrm{F}$) disagrees considerably (nearly 6%) from any of the recent measurements.

The data for ethane-propane mixtures (Table III) include values for the relative volatilities for ethane to propane. These relative volatility values are included primarily as validation for the measured compositions since they are a sensitive test for the internal consistency of the data (Figure 4).

The liquid-density data for the mixtures at $15.6^{\circ} \mathrm{C}$ (Tables III and IV) are plotted as a function of composition in Figure 5. The ethane-propane densities agree within about 0.2% with those of Tomlinson. The deviation of these curves from linearity is not a true measure of the shrinkage to be expected in a mixture. Ideal mixing de-

Figure 3. Liquid density of hydrocarbons at saturation pressure

Pressure			Composition, mol \%		$K=y / x$	Relative volatility	Liquid density, $\mathrm{g} / \mathrm{cm}^{3}$	$\begin{gathered} \text { Molar vol, } \\ \mathrm{cm}^{3} / \mathrm{g} \\ \mathrm{~mol} \end{gathered}$	Vol change on mixing, $\mathrm{cm}^{8} / \mathrm{g} \mathrm{mol}$
Psia	Atm		Liquid	Vapor					
423.5	28.82	C_{2}	86.35	93.65	1.084	2.33	0.3897	82.06	-2.69
		C_{3}	13.65	6.35	0.465				
389	26.47	C_{2}	78.67	90.09	1.145	2.46	0.4060	81.44	-3.51
		C_{8}	21.33	9.91	0.465				
342.5	23.31	C_{2}	68.10	84.63	1.243	2.58	0.4248	81.33	-3.90
		C_{3}	31.90	15.37	0.482				
319	21.71	C_{2}	62.09	81.34	1.310	2.66	0.4342	81.51	-3.88
		C_{8}	37.91	18.66	0.492				
287	19.53	C_{2}	53.46	76.21	1.426	2.79	0.4470	81.86	-3.75
		C_{3}	46.54	23.79	0.511				
270	18.37	C_{2}	48.55	72.90	1.502	2.85	0.4530	82.32	-3.42
		C_{3}	51.45	27.10	0.527				
239.5	16.30	C_{2}	40.37	66.59	1.650	2.94	0.4649	82.66	-3.30
		C_{3}	59.63	33.41	0.560				
206	14.03	C_{2}	30.94	57.50	1.858	3.02	0.4757	83.56	-2.64
		C_{3}	69.06	42.50	0.615				
169.5	11.53	C_{2}	20.03	43.76	2.185	3.11	0.4878	84.62	-1.87
		C_{3}	79.97	56.24	0.703				
140	9.53	C_{2}	10.78	27.95	2.593	3.21	0.4983	85.45	-1.28
		C_{3}	89.22	72.05	0.808				

Figure 4. Relative volatility for ethane-propane at $15.6^{\circ} \mathrm{C}$

Figure 5. Saturation densities of light hydrocarbon mixtures at $15.6^{\circ} \mathrm{C}$
fines a system whose volumes are additive, not whose densities are additive.

A measure of the shrinkage of hydrocarbon mixtures at $15.6^{\circ} \mathrm{C}$ is presented in Figure 6. The volume change on mixing is calculated as the difference between the actual volume and ideal mixing volume:

$$
\begin{gathered}
\Delta V=V_{E X P}-\Sigma X_{i} V_{i} \\
V_{E X P}=\frac{\Sigma X_{i} M W_{i}}{\rho}
\end{gathered}
$$

where
$\Delta V=$ volume change on mixing, $\mathrm{cm}^{3} / \mathrm{g} \mathrm{mol}$
$V_{E X P}=$ experimental molar volume
$X_{i}=$ mole fraction of component i
$V_{i}=$ molar volume of component i
$M W_{i}=$ molecular weight of component i
$\rho=$ experimental liquid density, $\mathrm{g} / \mathrm{cm}^{3}$

Figure 6. Volume change on mixing at $15.6^{\circ} \mathrm{C}$ and saturation pressure

Table IV. Liquid Density of Propane-Butane-Isobutane Binaries

Figure 7. Volume change on mixing at $54.4^{\circ} \mathrm{C}$ and saturation pressure

The maximum deviation observed at $15.6^{\circ} \mathrm{C}$ was about $4 \mathrm{~cm}^{3} / \mathrm{g} \mathrm{mol}$ for the ethane-propane system. This represents about 5% shrinkage on mixing or gain in volume on
separation (by distillation, for instance). The other systems studied showed much less nonideality. The pro-pane-n-butane and propane-isobutane exhibited only 0.5 and 0.2%, respectively. The data actually indicate an expansion on mixing for the butane-isobutane system of about 0.03%, but since this is within experimental error, the system should be considered ideal at $15.6^{\circ} \mathrm{C}$.

All the systems studied at $54.4^{\circ} \mathrm{C}$ (Figure 7) showed greater nonideality than at $15.6^{\circ} \mathrm{C}$. Even the butane-isobutane system exhibited measurable shrinkage (about 0.25% maximum) at this temperature.

Literature Cited

(1) "Engineering Data Book," 8th ed., p 154, Natural Gas Processors Suppliers Association, Tulsa, Okla., 1966 (available from Natural Gas Processors Association, 808 Home Federal Building, Tulsa, Okla. 74103).
(2) Sliwinski, P., Z. Phys. Chem. N.F., 63, 263-79 (1969)
(3) Tomlinson, J. R., Natural Gas Processors Association, Technical Publication TP-1, 1971 (available from NGPA, 808 Home Federal Building, Tulsa, Okla. 74103).
Received for review July 13, 1972. Accepted April 5, 1973.

