Literature Cited

- (1) American Petroleum Institute Research Project 44, Texas A&M University, "Selected Values of Press, Pittsburgh, Pa., 1953. "Selected Values of Properties of Hydrocarbons," Carnegie
- (2) Andrews, L. J., Keefer, R. M., J. Amer. Chem. Soc., 72, 5034 (1950).
- Anschultz, R., Reitter, H., "Die Destillation unter vermindetem Druck in Laboratorium," 2nd ed., Cohen, Bonn, Germany, 1895.
 Bohon, R. L., Claussen, W. F., J. Amer. Chem. Soc., 73, 1571
- (1951) (5) Buttery, R. G., Ling, L. C., Guadagni, D. G., J. Ag. Food Chem., 17,
- 385 (1969). (6) Chandler, B. V., Int. Fruchtsattunion. Wiss. Tech. Komm. Ber., No.
- 10 41 (1970). (7) Chandrasekaran, S. K., King, C. J., Chem. Eng. Progr., Symp. Ser., 67 (108), 122 (1971).
- (8) Deno, N. C., Berkheimer, H. E., J. Chem. Eng. Data, 5, 1 (1960).
 (9) Klevens, H. B., J. Phys. Colloid Chem., 54, 283 (1950).
 (10) Linder, E. G., J. Phys. Chem., 35, 531 (1935).
 (11) McAuliffe, C., *ibid.*, 70, 1267 (1966).

- (12) Pierotti, G. J., Deal, C. H., Derr, E. L., Ind. Eng. Chem., 51, 95
- (1959). (13) Quayle, O. R., Chem. Rev., 53, 484 (1953).
- (14) Wauchope, R. D., Getzen, F. W., J. Chem. Eng. Data, 17, 38 (1972).

Received for review December 29, 1972. Accepted May 14, 1973. One of the authors (H. A. M.) was supported by a fellowship from the Consejo Nacional de Investigaciones Científicas y Tecnicas de la República Argentina. Partial support of expenses was also received from the U.S. Department of Agriculture, Agricultural Research Service Grant No. 12-14-100-9906(74)

Density and Partial Equivalent Volumes of Hydrated Melts: Tetrahydrates of Calcium Nitrate, Cadmium Nitrate, and Their Mixtures with Lithium, Sodium, and Potassium Nitrate

Surender K. Jain

Department of Chemistry. Hindu College, University Enclave, Delhi 110007, India

Densities of Ca(NO₃)₂·4H₂O-(Li, Na)NO₃ and Cd(NO₃)₂·4H₂O-(Li, Na, K)NO₃ mixtures, as a function of temperature and alkali metal nitrate content, were determined by measuring the volume of a certain amount of melt in a precalibrated densitometer. For any pair of salts, the isotherms of equivalent volume vs. equivalent fraction of the monovalent ion were linear. The partial equivalent volume (V_{equiv}) of the constituents was independent of the nature and composition of the melt at a given temperature.

The studies of concentrated aqueous electrolytes are of great importance in understanding the behavior of molten salts (1-6). Angell (1-3) postulated the existence of hydrated divalent cations in hydrated melts of calcium and magnesium nitrate and emphasized that these melts could be considered as analogs of molten salts.

Braunstein et al. (6), during their investigations on various aspects of some aqueous nitrate melts, measured the densities of calcium nitrate tetrahydrate-potassium nitrate mixtures at 100°C and found that the assumption of additivity in strongly concentrated aqueous solutions may be a useful approximation. This study is aimed to explore, if the additivity of equivalent volumes can be regarded as a general characteristic of hydrated melts, particularly for the mixtures containing smaller monovalent cations, e.g., lithium and sodium ions.

Experimental

Material. LiNO₃, NaNO₃, KNO₃, Ca(NO₃) \cdot 4H₂O (BDH), and $Cd(NO_3) \cdot 4H_2O$ (Reanal, Hungary) of analar grade were used without further purification. (An analytical cross check for the water content was done volumetrically by use of EDTA. The results established the composition of the tetrahydrates within ± 0.01 to the stoichiometric composition.) Mixtures of varying compositions were prepared separately by melting the requisite amounts of the components in a sealed glass vessel and digesting them at 60-70°C for about 6 hr.

Apparatus and procedure. The manometric densitometer used by Husband (8) and Cleaver et al. (7) was modified to allow a direct measurement of the volume of a known amount of the melt. The volume capacity of the bulb was indicated by fixed fiducial marks on both limbs and was determined at room temperature with distilled water. No correction was made for the thermal expansion of the densitometer at higher temperatures. During measurements the meniscus of the liquid in the shorter limb was kept at a fixed mark by applying pressure from a manometer, and the expansion was read on the longer capillary (calibrated to 0.01 ml). A liquid paraffin bath (10 liters) was used as constant temperature bath. The temperature was controlled and measured with a precision better than $\pm 0.1^{\circ}$ C.

Results and Discussion

Densities of the various mixtures tabulated in Tables I and II varied linearly with temperature and were expressed by the equation

$$\zeta = a - bt (°C)$$

The linear density-temperature equations for the various mixtures investigated are presented in Tables III and IV.

Table I. Densities of Ca(NO₃)₂·4H₂O-MNO₃ Mixtures

X′ _{MNO3}	Temp, °C	Density, g/cm³
	Ca(NO ₃) ₂ ·4H ₂ O-LINO	3
0.0	14.5	1.7556
	23.0	1.7470
	34.3	1.7395
	39.9	1.7346
	49.2	1.7273
	60.2	1.7187
	69.2	1.7119
	79.3	1.7025
	83.7	1.6986

(Continued on page 398)

Table I. Continued

X' _{MNO3}	Temp, °C	Density, g/cm³	of
	Ca(NO ₃) ₂ ·4H ₂ O-LiNO ₃		10 M
0.099	8.2	1.7721	tio
	15.4	1.7645	1.
	33.8	1.7495	1.
	44.2	1.7413	
	51.6	1.7358	fr
	60.2	1.7280	w
	80.8	1.7113	e
0.147	5.9	1.7702	la
	15.0	1.7624	re
	25.7	1.7534	ec
	42.8	1.7399	TH
	51.2	1.7337	ta
	58.6	1.7275	th
	65.8	1.7219	10
	75.6	1.7138	of
	81.5	1.7086	74
0.232	5.1	1.7857	
	16.0	1.7767	
	24.8	1.7695	-
	35.5	1.7606	1
	43.2	1.7547	
	59.0	1.7420	
	70.8	1.7327	
	82.1	1.7223	
0.305	10.7	1./8/8	
	17.8	1.7818	
	27.2	1.7/3/	
	36.4	1.7660	
	43.3	1.7608	
	54.4	1.7423	
	61.4	1./34/	
	70.3	1./2/5	
	80.0	1./198	
0.05	$Ca(NO_3)_2 \cdot 4H_2O - NaNO_3$	1 7560	
0.05	19.3	1.7003	
	30.0	1 7202	
	40.8	1./383	
	49.7	1.7311	
	55.9	1.7205	
	70.2	1.7197	
	70.2	1.7143	
0.09	10 9	1.780/	
0.08	11.0	1 7766	
	10 2	1 7721	
	17.4 20 1	1,7625	
	20.1	1,7549	
	Δ7 Δ	1,7488	
	-7/ 54 A	1.7430	
	60 9	1.7384	
	68 1	1,7319	
	72 2	1,7280	
	78 0	1.7238	
0 711	20.2	1 7762	
0.111	29.9	1.7670	
	<u>4</u> 3.5	1.7564	
	59.3	1.7433	
	71.0	1.7340	
	76.4	1,7291	
	85.4	1.7203	
0.143	50.0	1.8012	
0.2.0	53.3	1.7984	
	57.0	1.7957	
	59.9	1.7933	
	64.7	1.7395	
	74.6	1.7810	
	78.0	1,7779	

None of the experimental points deviated from straight line by more than 0.2%. Present results on the densities of calcium nitrate tetrahydrate, $\zeta = 1.7668 - 0.804 \times 10^{-3} t$, show good agreement with those reported by Moynihan (10), $\zeta = 1.768 - 0.85 \times 10^{-3} t$. Extrapolation of the present results to 100°C leads to a value of 1.686 g/cm³, which compares well with the value of 1.688 g/cm³ obtained by Braunstein et al. (6).

Isotherms of equivalent volume (V_{equiv}) vs. equivalent fraction (X') of the monovalent nitrate in the mixture were linear over the composition range studied. Partial equivalent volumes (\bar{V}_{equiv}) were computed by extrapolating these linear plots. Table V records the equations representing the temperature dependence of partial equivalent volumes of the constituents of each mixture. The average \bar{V}_{equiv} at 75°C for LiNO₃, NaNO₃, KNO₃ obtained in these studies agree favorably (Table VI) with the values obtained by extrapolating the values of equivalent volumes (computed from literature density data (9) of these salts from the temperature of measurements to 75°C (a hypothetical supercooled state). This reflects

Table II.	Densities	of Cd(NO ₂)	.4H.O-MNO	Mixtures
-----------	-----------	-------------------------	-----------	----------

	Temp,	Density,
^ MNO ₃		g/cill*
	Cd(NO ₃) ₂ ·4H ₂ O–LiNO ₃	
0.0	42.9	2.3017
	49.0	2.2955
	53.6	2.2905
	58.6	2.2836
	66.9	2.2/4/
	/4.8	2.2684
	82.4	2.2588
0.005	90.2	2.2002
0.095	4/.4	2.2090
	07.9 65.0	2.243/
	67 9	2.2300
	60 F	2.2000
	77.2	2.2311
	77.5	2.2220
	03.5	2.2150
0 355	51.2 71 Ω	2.2072
0.555	77.2	2.1009
	92 4	2.1349
	91 1	2.1403
	$Cd(NO_{2}) \cdot 4H_{2}O - NaNO_{2}$	2.1000
0.081	48 9	2 2669
0.001	56.5	2 2567
	65.3	2.2462
	77.5	2.2322
	90.0	2.2168
0.143	57.3	2.2583
••	66.3	2,2478
	80.5	2.2316
	90.0	2,2206
	Cd(NO ₈) ₂ ·4H ₂ O-KNO ₈	
0.112	42.9	2.2765
	49.0	2.2698
	53.6	2.2646
	58.6	2.2585
	66.9	2.2495
	74.8	2.2400
	82.4	2.2307
	90.2	2.2226
0.392	47.4	2.2503
	59.7	2.2370
	86.1	2.2050
	94.0	2.1963

Table III. Density Equations for Ca(NO₃)₂·4H₂O-(Li, Na)NO₃

Equiv of	Temp.	$\zeta = a - bf (g/cc)$		cc)
MNO ₃	°C	a	Ь	SE
			LINO ₃	
0.0	14.5-84	1.7668	$0.804 imes10^{-3}$	$0.63 imes10^{-3}$
0.099	8-81	1.7780	0.829	0.52
0.147	6-81	1.7746	0.805	0.30
0.232	5-82	1.7898	0.814	0.34
0.305	11-80	1.8009	1.031	2.37
			NaNO ₃	
0.053	19–79	1.7719	0.821	0.33
0.081	11–78	1.7883	0.827	0.51
0.111	20-85	1.7927	0.838	0.54
0.143	50-78	1.8428	0.829	0.18

Table IV. Density Equations for Cd(NO₃)₂·4H₂O-(Li, Na, K)NO₃

Equiv of	Temp.	$\zeta = \alpha - bt (g/cc)$		/cc)		
MNO ₃	°C	a	Ь	SE		
			LiNO ₃			
0.0	43-90	2.3479	$1.08 imes10^{-3}$	$0.68 imes 10^{-3}$		
0.095	47-91	2.3138	1.18	0.58		
0.355	71-91	2.2412	1.12	0.08		
			NaNO ₃			
0.081	49–90	2.3253	1.20	0.40		
0.143	57-80	2.3241	1.15	0.08		
			KNO3			
0.112	43-90	2.3260	1.15	0.28		
0.392	47-94	2.3063	1.17	0.45		

Table V. Partial Equivalent Volumes for One Equivalent of NO₃-

System	$V_{\mathcal{M}'(\mathrm{NO}_3)_2\cdot ^4\mathrm{H}_2\mathrm{O}}$	$\overline{\mathbf{V}}_{\mathrm{MNO}_{3}}$
Ca(NO ₃) ₂ ·4H ₂ O-LiNO ₃	$69.11 + 3.2 \times 10^{-2}$ (t - 75)	$38.15 + 3.5 \times 10^{-2}$ (t - 75)
$Ca(NO_3)_2 \cdot 4H_2O-NaNO_3$	$69.23 + 3.2 \times 10^{-2}$ (t - 75)	$41.04 + 2.6 \times 10^{-2}$ (t - 75)
$Cd(NO_3)_2 \cdot 4H_2O - LiNO_3$	$68.25 + 3.4 \times 10^{-2}$ (t - 75)	$38.06 + 2.5 \times 10^{-2}$ (t - 75)
$Cd(NO_3)_2 \cdot 4H_2O-NaNO_3$	$68.18 + 3.3 \times 10^{-2}$ (t - 75)	$43.75 + 4.0 \times 10^{-2}$ (t - 75)
$Cd(NO_3)_2 \cdot 4H_2O-KNO_3$	$68.23 + 3.3 \times 10^{-2}$ (t - 75)	$47.79 + 3.0 \times 10^{-2}$ (t - 75)

Table VI. Comparison of $\overline{\nu}_{\rm equiv}$ with Extrapolated Values

Salt	\overline{V}_{equiv} , av	V _{equiv} , extrapolated
LINO ₃	38.11	36.74
NaNO ₃	42.40	41.04
KNO₃	47.79	49.00
$Ca(NO_3)_2 \cdot 4H_2O$	69.17	
Cd(NO ₃) ₂ ·4H ₂ O	69.22	

that the additivity of equivalent volumes in hydrated melts could be regarded a general characteristic of these systems. However, the discrepancy in LiNO₃ appears to be significant because of the smaller liquid state extrapolation.

The additivity of volumes and the fact that the \bar{V}_{equiv} of Ca(NO₃)₂·4H₂O and Cd(NO₃)₂·4H₂O are insensitive to the nature of the "foreign" ion present in the mixture suggest that in the mixtures containing smaller monovalent ions, e.g., Li+, the water remains preferentially attached to divalent ions, or the changes in hydration occur

systematically with composition change in such a way that the volume-composition plot remains linear. However, these results alone are not sufficient to provide definite information regarding the preferential hydration-dehydration phenomenon in such systems.

Literature Cited

- (1) Angell, C. A., J. Electrochem. Soc., 112, 1224 (1965).

- Angell, C. A., J. Erectrocritem, Soc., 112, 1224 (1965).
 Angell, C. A., J. Phys. Chem., 69, 2137 (1965).
 Angell, C. A., *ibid.*, 71, 2759 (1967).
 Braunstein, J., Hess, J. M. C., Braunstein, H., J. Inorg. Nucl. Chem., 26, 811 (1964).
 Chem. 26, 811 (1964).
- (5) Braunstein, J., *Inorg. Chim. Acta.* 2, 19 (1968).
 (6) Braunstein, J., Orr, L., McDonald, W., *J. Chem. Eng. Data.* 12, 415 (1967). (7) Cleaver, B., Rhodes, E., Ubbelohde, A. R., Proc. Roy. Soc., A262,
- 435 (1961).
- (8) Husband, L. J. B., J. Sci. Instrum., 35, 300 (1958).
- (9) Janz, G. J., "Molten Salts Handbook," Academic Press, New York, N.Y., 1967.
- (10) Moynihan, C. T., J. Phys. Chem., 70, 3399 (1966).

Received for review January 10, 1973. Accepted May 7, 1973. Financial assistance was received from University Grants Commission, New Delhi, India.