- (17) Kant, J. A., J. Chem. Phys., 41, 1872 (1964).
- (18) Kelley, K. K., "Contributions to the Data on Theoretical Metallurgy; XIII. High Temperature Heat Content, Heat Capacity, and Entropy Data for the Elements and Inorganic Compounds," Bulletin 584, Bureau of Mines, Washington, D.C., 1960.
- Kellogg, H. H., J. Chem. Eng. Data, **14**, 41 (1969). Kieffer, L. J., Dunn, G. W., *Rev. Mod. Phys.*, **38**, 1 (1966). King, E. G., *J. Amer. Chem. Soc.*, **79**, 2399 (1957). (20)(21)
- (22) Langmuir, I., Jones, H. A., MacKay, G. M. J., Phys. Rev., 30, 26 (1927).
- Langmuir, I., "The Collected Works of Irving Langmuir," Vol 9, p 3, (23)
- Pergamon, New York, N.Y., 1916. Mallet, L., Rosen, B., *Bull. Soc. Roy. Sci., Liege*, **14**, 382 (1945). Mandel, John, "The Statistical Analysis of Experimental Data," (25)
- Chap. 5, Interscience, New York, N.Y., 1964.
- (26) Mandel, John, Paule, R. C., Anal. Chem., 42, 1194 (1970).
 (27) Moore, C. E., Nat. Bur. Stand., Circular No. 467, 1959.
 (28) Morris, J. P., Zellars, G. R., Payne, S. L., Kipp, R. L., "Vapor Pressure of Liquid Iron and Liquid Nickel," U.S. Bureau of Mines, Report No. 5364, 1957.
- (29) Nesmeyanov, An. N., Tik-Mang, Teh, Dokl. Akad. Nauk SSSR, 116, 230 (1957).
- (30) Nesmeyanov, An. N., Tik-Mang, Teh, Izv. Akad. Nauk SSR, Otd. Tekh. Nauk (1), 75 (1960).
- (31) Nesmeyanov, An. N., "Vapor Pressure of the Elements," J. I. Carasso, Transl., p 396, InfoSearch, London, England, 1963.

- (32) Oetvos, J. W., Stevenson, D. P., J. Amer. Chem. Soc., 78, 546 (1956).
- (33) Paule, R. C., Mandel, John, "Analysis of Interlaboratory Measurements on the Vapor Pressures of Cadmium and Silver," NBS Spec. Publ. 260-21, Nat. Bur. Stand., Washington, D.C., 197

- (34) Pauling, L., "Nature of the Chemical Bond," (a) p 62, (b) p 256, Cornell Univ. Press, Ithaca, N.Y., 1960.
 (35) Rovner, L. H., Norman, J. H., J. Chem. Phys., 52, 2496 (1970).
 (36) Rutner, Emile, Haury, G. L., "The Vapor Pressure and Heats of Vaporization of Nickel," Tech. Report AFML-TR-72-217, Air Force Materials Lab, Wright-Patterson AFB, Ohio, 1972.
 (37) Stull, D. R., Sinke, G. C., "Thermodynamic Properties of the Elemets" American Chemical Society. Workington D. C. 1956.
 - ments," American Chemical Society, Washington, D.C., 1956. Trivedi, Hrishikesha, *Proc. Nat. Acad. Sci., India*, 4, 27 (1935)
- Wang, K. L., Brody, M. D., Crawford, C. K., Air Force Materials Lab, Report AFML-TR-69-5, Jan. 1969. Weast, R. C., Ed., "Handbook of Chemistry and Physics," 47th ed., (39) (40)
- Chemical Rubber Co., Cleveland, Ohio, 1966. (41)
- Wickes, C. E., Block, F. E., "Thermodynamic Properties of 65 Ele-ments, Their Oxides, Halides, Carbides, and Nitrides," Bulletin 605, Bureau of Mines, Washington, D.C., 1963, Yamashito, Jiro, Masa, Kojima, J. Phys. Soc., Japan, 7 (3), 261
- (42)(1952).

Received for review May 14, 1973. Accepted September 27, 1973.

Liquid and Vapor Densities of Aluminum Bromide

David S. Olson, Fred C. Kibler, Jr., David W. Seegmiller, Armand A. Fannin, Jr., and Lowell A. King¹ Frank J. Seiler Research Laboratory (Air Force Systems Command) and Department of Chemistry, United States Air Force Academy, Colo. 80840

The orthobaric liquid and vapor densities of aluminum bromide were measured from 92° to 319°C. The method simultaneously yielded the liquid and vapor densities for each (arbitrary) experimental temperature. The experimental precision was ± 0.0025 g/cm³, which corresponds to 0.1% of the liquid densities, and ranged from 6 to 100% of the vapor densities over the temperature range covered. A single empirical equation was derived which was symmetrical about the rectilinear diameter and which represented both liquid and vapor densities.

As part of a program for the investigation of certain low-melting, molten salt electrolytes for high energy density batteries, we needed to know the densities of aluminum bromide liquid and vapor. Many of the physical properties of aluminum bromide have been collected in a review by Boston (2). Biltz and Voight (1) earlier had measured a few liquid densities from 100° to 265°C, Zhuravlev (10) measured liquid densities from 170° to 450°C, and Johnson et al. (4) determined liquid and vapor densities in the temperature ranges 101-490°C and 270-488°C, respectively. We were interested primarily in the densities near the melting point, which was reported to be 97.5°C (9).

Experimental

Aluminum bromide was synthesized by dropping Mallinckrodt analytical reagent Br2 onto J. T. Baker purified granular aluminum contained in a flask in which a slight positive pressure of dry Ar was maintained. After the synthesis was complete, AlBr3 was distilled out of the reaction flask into a clean container. The distillate crystals were transferred (inside a glove box) to an ampul which

was then evacuated and sealed, and a further purification carried out by growing crystals from the vapor phase. This latter process was done in a manner analogous to the method we formerly used for $AICI_3$ (8).

Orthobaric liquid and vapor densities were simultaneously determined from 363 measurements made substantially as we reported earlier for our work with aluminum chloride (5, 7). Thirteen sealed borosilicate glass dilatometric tubes were used. These each consisted of two bulbs connected by a calibrated, graduated capillary. The tubes were held vertically, such that liquid AlBr₃ filled the lower bulb and extended into the graduated capillary. The upper part of the capillary and the upper bulb contained AIBr3 vapor.

The filled bulbs were immersed in a molten salt bath. and at each different temperature the distance from the bottom of the AIBr3 meniscus to an arrow etched on the capillary was measured with the aid of a cathetometer. From this measurement and the tube calibration data, the liquid volume was calculated.

The dilatometric tubes were identical in general size and design to those described in ref. 5. They were calibrated in the same manner employed for tubes A, B, C, and D of that report. Meniscus corrections and thermal expansion corrections, the molten salt bath, and the bath temperature control were also as described therin. Bath temperature was determined by measuring the resistance of a 4-wire platinum resistance element (Electric Thermometers Trinity, Inc., Bridgeport, Conn. 06604) (100 Ω nominal) calibrated against the platinum Air Force Reference Standard Thermometer which we used earlier (7).

Tube calibration data are given in Tables I and II. The distances from AIBr₃ menisci to the arrows etched on the capillaries are shown in Table III. Without using unduly large capillaries (or small bulbs), it was not possible for a single tube to span the entire temperature range of interest. We divided the 13 tubes into five groups covering

¹ To whom correspondence should be addressed.

overlapping temperature ranges. The data in Table III were not all taken in the order listed; measurements were made with both ascending and descending temperature.

Results

At a given temperature, liquid and vapor densities are related to the tube parameters and mass of AIBr3 by the set of equations

$$DV_i + d(T_i - V_i) - m_i = 0$$
 (1)

According to the law of the rectilinear diameter, the mean of the orthobaric densities of a substance is a linear function of temperature; that is,

$$\rho_m = \frac{D+d}{2} = \rho_c + a_0 \tau \tag{2}$$

where

$$\tau = t_c - t_i t_c = 490^{\circ} C (4)$$

In other words, the liquid and saturated vapor densities of a substance should describe a symmetrical function about the rectilinear diameter. We assumed the liquid and vapor densities of AlBr3 were related to temperature by the equation

$$\tau + a_2 Q^2 + a_3 Q^3 = 0 \tag{3}$$

where

$$Q = D - \rho_m = \rho_m - d \tag{4}$$

From Equations 1, 2, and 4, it is possible to derive the equation

$$Q_{\text{tube}} = \frac{\rho_m - \rho}{1 - 2\phi} \tag{5}$$

Table I. Calibration of Density Tubes: 7 and m

Tube identifier	Total enclosed vol, cm³ (25°C)	Mass of AlBr₃ in tube, g		
Al	79.17°	27.797		
B 7	108.47	34.943		
CI	55.30	28.273		
DI	31.28	25.701		
E1	26.11	29.967		
A2	81.64	25.510		
D2	36.54	24.329		
F2	56.96	22.835		
A3	80.31	24.141		
C3	56.14	25.146		
D3	31.65	22.828		
E3	26.72	26.747		
G3	84.56	29.50		

^aEstimated uncertainty in $\tau = \pm 0.05$ cm³. ^bEstimated uncertainty in $m = \pm 0.003$ gram.

Fable II. Calibration	of Density Tu	bes: Fixed Pa	rameters
------------------------------	---------------	---------------	----------

Letter of tube identifier	Vol to arrow, cm³ (25°C)	Vol of capillary, cm³/cm (25°C)
A	10.478 ± 0.001	0.0653 ± 0.0006
В	13.8127 ± 0.0006	0.0610 ± 0.0004
с	10.898 ± 0.003	0.066 ± 0.002
D	10.018 ± 0.002	0.0662 ± 0.0009
E	11.7297 ± 0.0007	0.0665 ± 0.0004
F	9.468 ± 0.001	0.0669 ± 0.0004
G	12.798 ± 0.004	0.066 ± 0.001

28 Journal of Chemical and Engineering Data, Vol. 19, No. 1, 1974

Т H

able III.	Experimental Me	asurements	
eight of	meniscus — heigi	ht of etched arrow, c	mª
Temp, °C	, Tube	Tube	Tube
01.00	1.000		
91.89	·		
102 21			
102.21	0.1/5		
1107.32	0.893		
112.07	1.000		
122 00	2.500		
122.50	3.045		
123.19	J.745 A AQ5		
138.63	5 1 25		
143 93	5.105	-2 590	
149.30		-1.380	
154.53		-0.340	
157.49		0.110	
158.49		0.200	
159.82		0.535	
160.04		0.470	
161.04		0.700	
162.32		0.875	
165.04		1.360	
165.18		1.520	
166.17		1.555	
168.97		2.105	
169.99		2.395	
170.63		2.550	
171.31		2.620	
172.79		2.865	
175.00		3.260	
175.99		3.475	
1/9.64		4.155	
1/9.99		3.030	
100.13		4.200	
182 66		4 080	
182.00		4.575	
184 07		4 460	
185.19		5.140	
185.34		4,715	
186.72		5,335	
186.80		5.050	
188.11		5.365	
	.		
	C1	DI	EI
93.12	-4.485	4.505	
98.28	-4.080	4.695	
103.40	-3.1/0	-4,015	E 20E
100.04			-1 790
108.0/	-2,405		-4.700
112 07	1 580	_3 230	
116 45	-1 285	2 740	-3.485
120 18	-0.630		-2.900
121 81	-0.500	-1.615	-2.665
124.40	01000	-1.270	-2.220
126,96	0.285	-0.910	-1.850
129.61	0.720	-0.550	1.420
132.15	1.055	-0.115	0.995
134.78	1.435	0.255	-0.580
136.18	1.625	0.435	0.375
137.47	1.810	0.620	0.185
138.84	1.990	0.795	0.005
140.16	2.215	0.980	0.260
141.45	2.395	1.1/0	0.480
142.80	2.010	1.3/0	0.725
744.03	2.775	1.000	0.505

(Continued)

 Table III. Continued

 Height of meniscus—height of etched arrow, cm^a

Temp,				Temp,			
°C	Tube	Tube	Tube	°C	Tube	Tube	Tube
					1.5		
	CI	DI	El		A3	D3	E3
145.46	2.990	1.770	1.115	234.70	-4.845		-3.960
146.71	3.195	1.955	1.335	236.53	-4.080		
148.08	3,350	2.120	1.545	237.70	-4.815		
149.36	3.580	2.325	1.795	239.73	-4.350	3.145	-3.035
150.28	3.675	2.450	1.925	240.31	-3.795		
152.96	4.145	2.855	2.370	243,81	-4.125	2.690	-2.385
153.92	4.520		2.600	245.24	-3.630		
155.01	4.545	2.870	2.525	247.10	-3.830		
155.14	4.725	3.130	2.830	248,24	-3.805		
155.72	4.810	3.210	2.925	249.06	-3.805		
155.78	4.520	3.130	2.805	249.07	-3.805		
156.92	4.990	3.370	3.130	249.30	-3.750	1.905	-1,430
157.61	5.110	3.475	3.235	250.17	-3.100		
158.28		3.575	3.370	253.34	-3.565	-1.350	-0.730
158.28		3.580	3.360	254.62	-3.575		
158.57	4.900	3.535	3.295	255.13	-2.780		
158.78		3,650	3.455	258.40	-3.080	-0.665	0.160
159.45		3,740	3.570	259.68	-2.750		
159.85		3.770	3.640	264.48	-2.740	0.150	1.230
161.15		3,920	3,755	264.54	-2.775		
163.20		4,265	4,195	264 87	-2.390		
163.90		4.340	4,200	269 48	-2.905		
				269.59	-2.305		
	A2	F2	D2	269.59	-2.900		
165.77	-4.225	-5.150	-3.930	269.59	-2.920		
171.33	3.540	-4.465	-3.210	269.65	-2.685		
175.94	-2.910	-3.810	-2.540	269.66	-2.460		
176.10	2.845	-3.995	-2.535	269.67	-2.725		
178.50	-2.640	-3.845	-2.395	269.69	-2 630		
182.22	-2.150		1.690	269.73	2 555		
182.33	1.905	3.150	-1.635	269.86	-2 200		
183.73	1.780	-2.975	-1.455	209.00	-2 395	1 330	2.815
185.38	-1.555	-2.780	-1.225	273.13	-2.090	1.000	
188.26	-1.395	-2.675	-0.860	274.77			
192.26	-0.740	-1.980	0.275	282 82	-2 225	2 625	4,595
195.67	-0.440	-1.825	0.175	202.02		2.020	4.000
197.34	-0.375	-1.670	0.190	288 75	2 525		
200.66	0.170	-1.280	0.860	288.75	-1 890		
203.32	0.475	-0.975	1.230	203.00			
205.57	0.725	-0.730	1.540	201 28	-2 260	4 170	
208.19	0.995	0.455	1.900	205.68	-2 620	412/0	
209.36	1.075	0.315	1.895	317 64	-3 525		
210.78	1.305	-0.165	2.260	320 03	-4 405		
213.26	1.590	0.110	2.590	525.05	4,405		
215.64	1.915	0.460	2.905		C3	G3	
215.74	1.860	0.380	2.940	244.19	-2.475	5.395	
218.23	2.095	0.635	3.245	249.11	-1.740	-4.480	
220.69	2.355	0.940	3.640	254.73	-1.125	-3.670	
221.08	2.485	1.205	3.505	257.80	-0.855	-3.660	
223.13	2.620	1.185	3.980	261.44	-0.380	-3.155	
225.66	2.885	1.470	4.310	264.81	-0.100	-2.990	
228.02	3.115	1.825	4,640	268.44	0.375	-2.550	
229.24	3.085	2.360	4.785	277.28	1.335	-1.855	
230.08	3.310	2.075	4.960	282.04	1.640	-1.845	
230.38	3.515	2.375	4.965	287.28	1.965	-1.530	
231.10	3.540	2.730	5.050	292.04	2.355	-1.345	
231.12	3.540	2.665	5.100	296.63	2.680	-1.170	
		D 0	ED	301.71	2.975	-1.015	
_	A3	D3	ËS	308.90	3.420	-0.390	
224.99	-5.435			318.75	3.710	0.150	
229.53	-5.195	-4.665	-4.865				
229.90	-5.180			AT - 1 - 1	الاحتماد المتطع	۲	an medacia +-
230.55	-5.110	-4.505	-4.725	"iotal estim	ated uncertaint	y in distance fro	tomporatives to
232.39	-5.010	-4.220	-4.355	$arrow = \pm 0.00$	up cm. "Estimate	eu uncertainty in	temperature =
233.16	-5.200			±0.05°C.			

Journal of Chemical and Engineering Data, Vol. 19, No. 1, 1974 29

where

$$\rho = \frac{m}{\tau} \text{ and } \phi = \frac{V}{\tau}$$

Equation 5 is a function of the cathetometer measurements and the tube calibration data. The value of Q_{tube} can be calculated for each tube at each temperature from the adjustable constants a_0 and ρ_c and the data from Tables I-III.

Equation 3 is cubic in Q. For the particular values of a_2 and a_3 which best represent our data, Equation 3 has two imaginary roots and one real root. The real root is

$$Q_{\text{eqn}} = \{ -(A + B\tau) + [(2A + B\tau)B\tau]^{1/2} \}^{1/3} + \{ -(A + B\tau) - [(2A + B\tau)B\tau]^{1/2} \}^{1/3} - A^{1/3}$$
(6)

where

$$A = \left(\frac{a_2}{3 a_3}\right)^3 \text{ and } B = \frac{1}{2 a_3}$$

Equation 6 is a function of the adjustable constants a_2 and a_3 and is not directly dependent on the data of Tables 1–111.

A least-squares fit was made of the function

$$z_i = Q_{\text{eqn},i} - Q_{\text{tube},i} \tag{7}$$

for the values of adjustable constants $a_{\rm 0},~a_{\rm 2},~a_{\rm 3},$ and ρ_c which minimized the sum

$$\sum_{i=1}^{n} (z_i)^2$$

All the experimental points represented in Table III were given equal weights in the least-squares calculations. The standard deviation is in Q and is defined by

$$\sigma = \left[\frac{1}{n-4} \sum_{i=1}^{n} (z_i)^2\right]^{1/2}$$
(8)

The results of the least-squares fit are given in Table IV. The estimated errors in each of the parameters are the changes in that parameter which will change Q by one standard deviation, σ .

Table IV. Equations for AIBr₈ Density^a For liquid: 92–319°C; vapor: 180–319°C

D or d (g/cm³) =
$$\rho_c + a_0 \tau \pm \left[\left\{ -(A + B\tau) + \left[(2A + B\tau)B\tau \right]^{1/2} \right\}^{1/3} + \left\{ -(A + B\tau) - \left[(2A + B\tau)B\tau \right]^{1/2} \right\}^{1/3} - A^{1/3} \right]$$
 (10)

$$A = \left(\frac{\sigma_2}{3 a_3}\right)^3; B = \frac{1}{2 a_3}$$

$$a_0 = (1.176 \pm 0.001) \times 10^{-3}$$

$$a_2 = 55 \pm 2$$

$$a_3 = -214 \pm 1$$

$$\rho_c = 0.8622 \pm 0.0003 \text{ g/cm}^3$$

$$\sigma = \pm 0.0025 \text{ g/cm}^3$$
For vapor: 97.5-180°C

$$d = b_0 + b_1\tau + b_2\tau^2 + b_3\tau^3$$

$$b_0 = -2.5509 \times 10^{-2}$$

$$b_1 = 3.3803 \times 10^{-4}$$

$$b_2 = -1.2122 \times 10^{-6}$$

$$b_3 = 1.3176 \times 10^{-9}$$
(11)

"In Equation 10, + term yields D and - term yields d.

Equations 3 or 10 can be solved to yield vapor density over the entire experimental temperature region; however, the estimated error becomes larger than the actual AlBr₃ vapor density at low temperatures. One result of this is that the equation predicts vapor densities which *increase* as the temperature falls below approximately 165° C. The calculated densities all fall within the range of experimental scatter down to the lowest temperature reached, 92°C; nevertheless, this clearly is an unsatisfactory situation. Several other functions were fit instead of Equation 3, including the form we used with AlCl₃ (7) and the modified Guggenheim equation previously used with AlBr₃ (4). Without exception, all of these equations even more poorly represented the vapor density-temperature behavior at low temperatures.

Accordingly, we decided to represent the low-temperature vapor densities by the polynomial in $\boldsymbol{\tau}$

$$d = \sum b_i \tau^i \tag{9}$$

The selected polynomial was to be monotonic over its entire range of use. In addition, the following four constraints were applied: The density and slope calculated from Equation 9 were required to match the density and slope calculated from Equation 10 at their point of intersection. Also, the density and slope calculated from Equation 9 were required to match the density and slope at the melting point, 97.5°C, as calculated from the ideal gas law and the vapor-pressure data of Fischer et al. (3). (These values are $d_{\text{melting point}} = 9.46 \times 10^{-5} \text{ g/cm}^3$ and $(\partial d/\partial t)_{\text{melting point}} = 4.59 \times 10^{-6} \text{ g/cm}^3 \text{ deg}$).

The lowest convenient intersection temperature (to the nearest even number of degrees) which yielded a monotonic function from the melting point to the intersection temperature (indeed, to the critical point) was 180°C. Since there were four specific constraints, we chose a polynomial having four terms, thereby specifying each of the parameters, b_i . The resulting equation is given in Table IV as Equation 11.

Discussion

Together, Equations 10 and 11 yield the liquid densities with an estimated error of $\pm 0.1\%$, which compares well with previous results for AlBr₃ (4) and with our results for AlCl₃ (5, 7). The vapor densities have an estimated error of $\pm 6\%$ at the highest temperatures. This is about the same error as reported by Johnson et al. (4) at the same temperature region, which was the minimum temperature reached in their vapor density measurements. The error in vapor density increases, of course, as temperature falls.

If the experimental liquid and vapor densities were to be plotted on Figure 1, which illustrates the entire coexistence curve for AlBr₃, virtually all 726 points would fall within the thickness of the line (which is 2 σ wide) used to portray Equations 10 and 11.

The critical temperature has been reported variously as 490° (4), 495° (10), and 499°C (6). We used 490°C in our equations. Critical densities of 0.8605 \pm 0.0023 g/cm³ (4) and 0.8875 g/cm³ (10) have been reported. Even though our highest temperature investigated was approximately 170° below the critical point, we found a least-squares fit ρ_c which lay within the estimated error limits of Johnson et al. (4). Their value of a_0 , 1.1758 \times 10⁻³, also agrees with the present value of (1.176 \pm 0.001) \times 10⁻³. It should not be surprising, then, that Equations 10 and 11 can be used to find liquid and vapor densities over the entire liquid region up to the critical

Figure 1. Coexistence curve for aluminum bromide , Calculated from Equations 10 and 11; O, Biltz and Voight (1); X, Zhuravlev (10); +, Johnson et al. (4). Arrows indicate highest experimental temperature reached in present work

temperature. Indeed, the experimental points observed by Johnson et al. lie slightly below Equation 10 at temperatures above our highest temperature. Similarly, Zhuravley's liquid density data lie slightly above our Equation 10, also above our highest temperature. These data are shown in Figure 1.

Safety

The same precautions should be taken as were reported previously (5) for the containment of liquids above their normal boiling points in glass vessels.

Nomenclature

- $a_i = empirical coefficients$
- A = constant, a function of a_2 and a_3

- $b_i = \text{empirical coefficients}$
- $B = \text{constant}, \text{ a function of } a_3$
- $d = \text{density of AIBr}_3 \text{vapor}$
- $D = \text{density of AlBr}_3$ liquid
- $m_i = \text{mass of AlBr}_3$ in *i*th tube
- n = number of individual experimental measurements
- Q = positive difference between rectilinear diameter and d or D
- T_i = total enclosed volume in *i*th tube
- t = temperature in degrees centigrade
- t_c = critical temperature
- V_i = liquid AlBr₃ volume in *i*th tube
- = residual; function to be treated by least-squares fit- \mathbf{Z}_i tina
- $\rho = \text{overall tube average density; i.e., } m/T$
- ρ_c = density at critical temperature
- ρ_m = rectilinear diameter; i.e., (d + D)/2
- $\sigma =$ standard deviation in Q
- τ = distance from critical temperature, i.e., $t_c t$
- = fraction of total tube volume occupied by liquid; φ i.e., V/T

Literature Cited

- Biltz, W., Voight, A., Z. Anorg. Allgem. Chem., **126**, 39 (1923).
 Boston, C. R., in "Advances in Molten Salt Chemistry," Chap. 3, J. Braunstein, G. Mamantov, and G. P. Smith, Eds., Plenum Press, (2)New York, N.Y., 1971.
- (3)Fischer, W., Rahlfs, O., Benze, B., Z. Anorg. Allgem. Chem., 205, 1 (1932).
- (4) J. W., Silva, W. J., Cubicciotti, D., J. Phys. Chem., 72, Johnson. 1664 (1968). (5)
- (6)
- King, L. A., Seegmiller, D. W., *J. Chem. Eng. Data*, **16**, 23 (1971). Rotinjanz, L., Suchodski, W., *Z. Phys. Chem.*, **87**, 635 (1914). Seegmiller, D. W., Fannin, Jr., A. A., Olson, D. S., King, L. A., *J. Chem. Eng. Data*, **17**, 295 (1972). (7)
- Seegmiller, D. W., Rhodes, G. W., King, L. A., Inorg. Nucl. Chem. (8) Lett., 6, 885 (1970).
- (9) "Selected Values of Chemical Thermodynamic Properties," Nat. Bur. Stand. Circular 500, p 731, 1952. (10) Zhuravlev, D. I., *Zh. Fiz. Khim.*, **10**, 325 (1937).

Received for review May 29, 1973. Accepted September 19, 1973.

X-Ray Powder Data and Unit Cell Parameters of MgCl₂·6H₂O

Charles A. Sorrell¹ and Roy R. Ramey

Department of Ceramic Engineering, University of Missouri, Rolla, Mo. 65401

Detailed X-ray powder data for MgCl₂·6H₂O were obtained by diffractometry by use of CuK_{α} radiation at 22°C. The data were indexed on a bimolecular monoclinic unit cell, space group C2/m, with a = 9.858 \pm 0.001 Å; b = 7.107 \pm 0.001 Å; c = 6.069 \pm 0.001 Å; $\beta = 93^{\circ} 47' \pm 10'$. Calculated density was 1.591 g/cm³, compared with a measured density of 1.593 \pm 0.003 g/ cm³.

The structure of magnesium chloride hexahydrate, MgCl₂·6H₂O, was determined by Andress and Gundermann (1), who reported a bimolecular unit cell, space group C2/m, with $a = 9.90 \pm 0.03$ Å; $b = 7.15 \pm 0.03$ Å; $c = 6.10 \pm 0.03$ Å; $\beta = 94^{\circ} \pm 20'$. The only available X-ray powder data appeared in the original Hanawalt et al. compilation (3) and was subsequently included in the "Powder Diffraction File" (5). Comparison of the struc-

¹ To whom correspondence should be addressed.

ture factors calculated by Andress and Gundermann with the powder data indexed by J. V. Smith indicates the incomplete nature of the powder data. This, coupled with the relatively low precision, of the reported unit cell parameter measurements, prompted acquisition of the data reported in this work.

X-Ray Procedures

Powder data were acquired at 22°C by conventional methods by use of a General Electric XRD-700 recording diffractometer with CuK_{α} radiation generated at 50 kVp and 20 Ma. Flat recessed sample holders machined from Lucite were used. Samples containing approximately 20% high-purity rock crystal quartz as an internal standard were scanned from 2° to 60° 2 θ at a rate of 0.2° per min, which permitted measurement of 2 heta values to the nearest 0.01°. Samples containing no internal standard were then scanned, following alignment on the (020) line of the chloride, to provide complete interplanar spacing and intensity data.

Journal of Chemical and Engineering Data, Vol. 19, No. 1, 1974 31