PVT Properties of Liquid \boldsymbol{n}-Alkane Mixtures

Phillip S. Snyder, ${ }^{1}$ Montford S. Benson, ${ }^{2}$ H. S. Huang, and Jack Winnick ${ }^{3}$
Department of Chemical Engineering, University of Missouri-Columbia, Columbia, Mo. 65201

Abstract

Four liquid-phase isotherms are measured for two binary and one ternary mixture made from four straight-chain hydrocarbons. The accuracy is estimated at $\pm 0.06 \%$ in the volume. A brief description of the modified Bridgmantype sylphon-bellows piezometer used is given, followed by the results of the four isotherms between 25.00° and $85.00^{\circ} \mathrm{C}$ for equimolar binary mixtures of n-decane with n-tetradecane and n-dodecane with n-hexadecane. The ternary mixture is 0.6000 mole fraction n-decane with 0.2000 mole fraction n-tetradecane and 0.2000 mole fraction n-hexadecane. Excess volumes are calculated for the three mixtures at five representative pressures.

Liquid PVT properties of the three mixtures were determined by use of a modified Bridgman-type (5) sylphonbellows piezometer. The data taken in this study represent the first high-accuracy mixture PVT data taken in which the pressure range extends from atmospheric pressure to just below the freezing pressure on all isotherms for liquid mixtures. The unsmoothed PVT data are tabulated as a function of temperature and pressure for the three mixtures. Pure component data over the same ranges of temperature and pressure have been reported elsewhere (24). However, the molecular weight of n-tetradecane was incorrectly taken as $196.37 \mathrm{~g} / \mathrm{g}-\mathrm{mol}$. Thus, molar volume values must be multiplied by 198.40/ 196.37 to obtain the correct molar volumes for n-tetradecane

Experimental

Apparatus. The operation of the PVT cell can be described with the aid of Figure 1. The two main components of the PVT cell are the bellows, marked B on the drawing, and the slide wire. S. The slide wire is a section of Karma wire approximately 1 in . in length and 0.010 in . in diameter. Karma is a trademark of the Driver-Harris Co., Harrison, N.J., and is an alloy of nickel, chromium, and aluminum. Karma wire was used as the slide wire because of its low-temperature coefficient of resistivity (0 $\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$), its precision drawn diameter, and its highly uniform linear conductivity (experimentally determined as $3.87800 \pm 0.00002 \mathrm{~cm} / \mathrm{ohm}$ for the $0.010-\mathrm{in}$. diameter Karma wire) (23). There are three electrical contacts. labeled $\mathrm{E}_{1}, \mathrm{E}_{2}$, and E_{3} on Figure 1, made to the Karma slide wire. The slide wire is held against the edge of contact C by a Teflon plunger-spring arrangement. Contact C is a piece of $0.010-\mathrm{in}$. diameter Karma wire soldered to a brass plate. The retainer. R, supports the bellows and the associated electrical components. The bellows is held in the retainer by three screws. marked P on the drawing.

As the bellows and sample compress longitudinally under hydrostatic load, the Karma slide wire is drawn past the fixed contact C of Figure 1. The change in length of the bellows is calculated from the change in

[^0]electrical resistance across E_{1}, E_{2}, and E_{3} after thermal equilibrium is attained.

A Leeds and Northrup Model G-2 Mueller bridge and a Model 2284d galvanometer and scale were used in conjunction with a four-position mercury contact commutator to make the necessary resistance measurements. The bridge had been calibrated by Leeds and Northrup using National Bureau of Standards calibrated reference resistors, and a set of correctional constants was provided with the bridge. The measuring circuit was wired to eliminate lead wire and contact resistance (23).

The pressure-generating system consisted of three hydraulic handjacks and a piston intensifier. The system is capable of pressures to $200,000 \mathrm{psi}$ with a maximum temperature limit on the PVT cell of $150^{\circ} \mathrm{C}$. Two Heise gages, one $0-1500$-psi gage and one $0-50,000$-psi gage, were used for pressure measurements below 50,000 psi. These were temperature compensated and accurate to 0.1% of full scale. The two Heise gages were calibrated by the Heise Bourdon Tube Co. using a National Bureau of Standards approved dead weight tester. A report of the calibration was supplied with each gage. In addition, the calibration of the two gages was rechecked in this laboratory with a Ruska dead weight tester for the $0-1500$ psi gage and an Aminco 100,000-psi dead weight tester for the $0-50,000-\mathrm{psi}$ gage. For pressures above 50.000 psi, a Manganin cell pressure transducer was used in conjunction with the Mueller G-2 bridge. The Manganin cell, calibrated at $25.00^{\circ} \mathrm{C}$ with the Aminco 100,000 -psi dead weight tester, was maintained at $25.00 \pm 0.01^{\circ} \mathrm{C}$ during each isotherm by an Aminco constant-temperature bath.

A Hallikainen constant-temperature bath and Hallikainen Thermitrol controller were used to control the temperature of the PVT cell. A Sola constant voltage transformer was used as the Thermitrol's power supply. The temperature of the bath was measured to $\pm 0.01^{\circ} \mathrm{C}$ with a platinum resistance thermometer previously calibrated by the National Bureau of Standards on the 1948 International Practical Temperature Scale. All isotherms were run at the set point temperature with measured variations of $\pm 0.003^{\circ} \mathrm{C}$ about the set point.

Data reduction. The change in volume of the sample in the bellows relative to the volume at atmospheric pressure as pressure is applied to the system is a function of the following: The vacuum corrected weight of the sample in the bellows, $W_{v c}$, the atmospheric pressure density

Figure 1. Detail of bellows-slide wire arrangement
of the sample, $\rho_{o, T}$, the temperature and pressure corrected cross-sectional area of the bellows, $A_{P, T}$, and the change in length of the bellows with pressure. ΔL_{B}. Appropriate temperature and pressure corrections were applied to ΔL_{B} and $A_{P, T}$ to obtain the true compression of the sample as represented by Equation 1

$$
\begin{equation*}
\left(v_{o}-v_{i}\right) / v_{o}=\left(\Delta L_{B} \cdot A_{P, T} \cdot \rho_{o, T}\right) / W_{v c} \tag{1}
\end{equation*}
$$

The quantity $\left(v_{o}-v_{i}\right) / v_{o}$ is the compression of the sample where v_{i} is the specific volume at temperature T and pressure P_{i}, and v_{o} is the specific volume at temperature T and atmospheric pressure P_{O}.

With the exception of the atmospheric pressure density, $\rho_{o, T}$, all terms on the right-hand side of Equation 1 were obtained during the course of this study. The atmospheric pressure density, $\rho_{o, T}$, for the mixtures were determined from pycnometric measurements (12, 15, 22). For the binary system at temperatures from 25° to $65^{\circ} \mathrm{C}$, inclusively, and the ternary system at 25° and $45^{\circ} \mathrm{C}$, the experimental excess volume at each temperature for each exact mole fraction was estimated from a curve fit to the data. This value was then used in combination with the pure component densities reported $(12,15,22)$ to determine the mixture density. For isotherms at other temperatures, pure component densities and mixture excess volume were obtained by linear temperature interpolation or extrapolation of experimental results for each system. The mixture densities were then calculated as above. The estimated maximum error introduced was $0.0001 \mathrm{~g} / \mathrm{cm}^{3}$ in the density at $85^{\circ} \mathrm{C}$.

An error analysis technique used by the National Bu-
reau of Standards and detailed by Mickley et al. (18), indicates that the errors in the PVT measurements made with this system are no greater than $0.0006 \mathrm{~cm}^{3} / \mathrm{cm}^{3}$.

A direct comparison of these results with those previously reported for some of the pure components $(4,6$, $8,9)$ was not possible since the investigations were not conducted at the same temperatures. However, Snyder and Winnick (24) have fitted the isothermal compressibilities of Boelhouwer (4), Bridgman (6), and Cutler et al. $(8,9)$ with temperature and then interpolated to the temperature of the present study. The relative volume of decane, dodecane, and hexadecane then calculated as a function of pressure agrees with our results within the precision allowed by the temperature interpolation, generally to $\pm 0.2 \%$ at the highest pressure.

Materials. Decane. dodecane, tetradecane, and hexadecane were obtained from Humphrey Chemical Co., North Haven, Conn. They were manufactured from naturally occurring, even-numbered, straight-chain fatty alcohols. Their purity was at least 99%, as determined from a chromatographic analysis. The most probable impurities would be the adjacent even-numbered n-alkanes. The sample was degassed before the bellows was filled. These were the same materials as used in the atmospheric pressure density determinations (12, 15, 22).

Results and Discussion

Experimental data. The relative volumes for each of the three mixtures studied as a function of pressure at $25.00^{\circ}, 45.00^{\circ}, 65.00^{\circ}$, and $85.00^{\circ} \mathrm{C}$ are presented in Table l. The relative volume, \bar{v}_{i}, is defined as 1.0000 -

Table I. Mole Fraction Mixtures

$25.00^{\circ} \mathrm{C}$		$45.00^{\circ} \mathrm{C}$		$65.00^{\circ} \mathrm{C}$		$85.00^{\circ} \mathrm{C}$	
Press, atm	Rel vol, cc/cc	0.5000 Mole fraction mixture of n-decane n-tetradecane					

$\rho_{o, T}=0.74488 \mathrm{~g} / \mathrm{cm}^{3}$	
1.0	1.0000
17.3	0.9992
70.5	0.9949
99.1	0.9920
137.1	0.9894
176.1	0.9858
208.6	0.9838
239.5	0.9808
273.9	0.9790
312.7	0.9752
377.3	0.9712
514.1	0.9623
585.5	0.9572
646.1	0.9546
717.5	0.9497
786.9	0.9467
852.3	0.9427
921.0	0.9398
991.1	0.9357
1058.4	0.9331
1131.2	0.9294
1183.0	0.9271
1257.8	0.9241

$\rho_{0} . T^{\prime}=$	$0.71560 \mathrm{~g} / \mathrm{cm}^{3}$
1.0	1.0000
17.9	0.9980
32.6	0.9960
70.2	0.9916
101.4	0.9879
135.1	0.9849
214.0	0.9764
518.8	0.9510
614.1	0.9441
722.3	0.9373
823.0	0.9306
927.8	0.9255
1026.5	0.9198
1131.2	0.9151
1234.7	0.9092
1500.7	0.8976
1720.5	0.8901
1901.5	0.8830
2322.7	0.8692
2725.6	0.8585
2927.0	0.8539
3131.1	0.8481

$\rho_{0} . T=0.70067 \mathrm{~g} / \mathrm{cm}^{3}$	
1.0	1.0000
9.9	0.9991
15.4	0.9985
18.1	0.9977
20.9	0.9976
26.9	0.9963
35.4	0.9954
42.0	0.9940
48.8	0.9930
55.7	0.9922
63.9	0.9907
70.9	0.9903
71.0	0.9900
86.3	0.9876
101.4	0.9857
137.1	0.9822
208.5	0.9739
307.9	0.9638
417.4	0.9528
613.4	0.9379
728.4	0.9303
824.4	0.9235
926.4	0.9175
1031.9	0.9114
1226.5	0.9014
1373.5	0.8953
1510.3	0.8882
1635.5	0.8842
1770.9	0.8781
1990.0	0.8714

Table I. Continued

$25.00^{\circ} \mathrm{C}$		$45.00^{\circ} \mathrm{C}$		$65.00^{\circ} \mathrm{C}$		$85.00^{\circ} \mathrm{C}$	
Press, atm	Rel vol, $\mathrm{cc} / \mathrm{cc}$	Press, atm	Rel vol, cc/cc	Press, atm	Rel vol, CC/CC	Press, atm	Rel vol, $\mathrm{cc} / \mathrm{cc}$

0.5000 mole fraction mixture of n-dodecane and n-hexadecane

$\rho_{0}, T=0.75891 \mathrm{~g} / \mathrm{cm}^{3}$	
1.0	1.0000
17.6	0.9984
72.6	0.9934
84.7	0.9926
135.7	0.9885
175.9	0.9851
205.1	0.9831
239.2	0.9808
271.1	0.9783
308.6	0.9757
344.6	0.9732
380.0	0.9707
411.3	0.9684
446.7	0.9664
480.7	0.9641
512.0	0.9625
550.1	0.9602

$\rho_{0, T}=0.74490 \mathrm{~g} / \mathrm{cm}^{3}$	
1.0	1.0000
18.1	0.9977
85.9	0.9912
98.7	0.9901
135.1	0.9864
275.2	0.9756
339.2	0.9707
410.0	0.9652
484.1	0.9596
548.8	0.9561
618.9	0.9518
684.9	0.9476
754.3	0.9439
822.3	0.9400
889.0	0.9367
958.4	0.9332
1019.6	0.9302
1082.9	0.9273
1159.8	0.9240
1225.8	0.9212

$\rho_{0 . T}=0.73062 \mathrm{~g} / \mathrm{cm}^{3}$	
1.0	1.0000
17.2	0.9985
35.0	0.9961
68.7	0.9925
97.1	0.5896
137.1	0.9858
208.5	0.9786
307.9	0.9700
409.3	0.9617
515.4	0.9541
617.5	0.9470
812.1	0.9354
924.4	0.9297
1018.3	0.9248
1130.6	0.9188
1221.7	0.9146
1368.7	0.9083
1498.0	0.9032
1640.2	0.8979
1753.2	0.8937
1971.6	0.8862
2168.9	0.8798

$\rho_{0 . T}=0.71628 \mathrm{~g} / \mathrm{cm}^{3}$	
1.0	1.0000
36.4	0.9953
97.6	0.9879
137.8	0.9835
205.8	0.9763
403.8	0.9579
517.5	0.9489
616.8	0.9414
718.9	0.9347
825.0	0.9281
929.1	0.9222
1018.3	0.9173
1134.0	0.9118
1227.9	0.9069
1369.4	0.9008
1497.3	0.8952
1646.4	0.8891
1770.2	0.8844
1913.8	0.8796
2045.1	0.8751
2249.2	0.8686
2443.8	0.8628
2664.3	0.8571
3076.7	0.8464
3269.7	0.8421

Mixture of 0.6000 mole fraction n-decane and 0.2000 mole fraction each n-tetradecane and n-hexadecane

$\rho_{0, T}=0.74503 \mathrm{~g} / \mathrm{cm}^{3}$	$\rho_{o, T}=0.73048 \mathrm{~g} / \mathrm{cm}^{3}$		
1.0	1.0000	1.0	1.0000
16.7	0.9982	18.6	0.9981
35.0	0.9968	97.5	0.9893
68.9	0.9931	137.8	0.9860
100.3	0.9910	210.6	0.9793
137.1	0.9876	308.6	0.9704
206.5	0.9819	518.2	0.9547
255.9	0.962	68.2	0.9487
352.1	0.9711	723.7	0.9419
410.6	0.9662	817.6	0.9369
472.6	0.9631	931.9	0.9305
550.8	0.9573	1021.7	0.9263
616.8	0.9538	1130.6	0.9206
688.3	0.9494	1225.8	0.9169
752.2	0.9463	1499.4	0.9052
820.3	0.9420	1636.8	0.8998
953.6	0.9356	1779.7	0.8955
1025.8	0.9330	1899.5	0.8912
1076.1	0.9302	2041.7	0.8872
1154.4	0.9266		

$\rho_{0, T}=0.71571 \mathrm{~g} / \mathrm{cm}^{3}$	$\rho_{0, T}=0.70085 \mathrm{~g} / \mathrm{cm}^{3}$		
1.0	1.0000	1.0	1.0000
17.8	0.9974	17.1	0.9976
31.6	0.9957	40.4	0.9944
68.2	0.9912	67.8	0.9906
201.1	0.9767	201.7	0.9745
308.6	0.9672	318.8	0.9622
411.3	0.9588	410.6	0.9537
497.7	0.9513	517.5	0.9447
616.1	0.9432	624.3	0.9367
717.5	0.9363	720.9	0.9296
926.4	0.9242	824.4	0.9231
1021.7	0.9193	1021.7	0.9117
1130.6	0.9139	1129.2	0.9058
1223.1	0.9093	1232.6	0.9009
1372.8	0.9027	1368.7	0.8944
1497.3	0.8974	1502.8	0.8885
1645.0	0.8913	1644.3	0.8827
1763.4	0.8873	1771.9	0.8778
1919.9	0.8817	1991.3	0.8700
2039.7	0.8777	2178.5	0.8637
2265.6	0.8708	2584.0	0.8521
2450.7	0.8659	2794.3	0.8463
2663.0	0.8595	2939.6	0.8415
2881.4	0.8544	3186.9	0.8366
2981.4	0.8515	3386.3	0.8321
3126.3	0.8484	3543.7	0.8286

$\left(v_{0}-v_{i}\right) / v_{0}$. The compression $\left(v_{0}-v_{i}\right) / v_{o}$ is defined by Equation 1. No smoothing of the data has been done in Table 1 .

Representation of experimental data by Tait equation. An empirical equation usually known as the "Tait" equation has been used to represent the PVT behavior for a number of liquids (2, 3, 8-11, 14, 17, 19-21, 23-25). The "usual" Tait equation has been commonly written as

$$
\begin{equation*}
v_{i}=v_{o}-J \ln \left[\left(P_{i}+L\right) /\left(P_{o}+L\right)\right] \tag{2}
\end{equation*}
$$

where $v_{0}=v_{o}\left(P_{0}\right)$, a reference volume, the parameters J and L are taken pressure-independent. Macdonald (16) suggested that Equation 2 is better written in the form involving two physical quantities, K_{0} and $K_{0}{ }^{\prime}$, where K_{0} is the bulk modulus at reference pressure, $K_{o}=\left.K\right|_{P=P(o)}$, and $K_{O}{ }^{\prime}=\left.(\partial K / \partial P)_{T}\right|_{P=P(O)}$. This form of the UTE may be written in terms of the relative volume as

$$
\begin{equation*}
\bar{v}_{i}=1-1 /\left(K_{o}{ }^{\prime}+1\right) \ln \left[1+\left(K_{o}{ }^{\prime}+1\right)\left(P_{i}-P_{o}\right) / K_{o}\right] \tag{3}
\end{equation*}
$$

where \bar{v}_{i} is the relative volume at pressure P_{i}.
The two parameters, K_{o} and $K_{o}{ }^{\prime}$, were evaluated from the experimental PVT data on each of the mixtures for each of the isotherms by a new generalized least-squares regression technique (1,7). The results are shown in Table II. The pure component data tabulated in ref. 24 were reevaluated by this new technique. The best-fit values for K_{0} and $K_{0}{ }^{\prime}$ are also reported in Table 11 . The
worst deviation of any data point from the smooth curve was $0.0011 \mathrm{~cm}^{3} / \mathrm{cm}^{3}$.

The curves shown in Figure 2 are the results by using Equation 3 with the parameters as given in Table II. The raw experimental data for the 0.5000 mole fraction n decane and n-tetradecane mixture are also shown. In order to see the difference in the fit of Equation 3 to the experimental mixture PVT data, it was necessary to plot differences in compression as a function of pressure at constant temperature. Figure 3 presents such a representative plot for the 0.5000 mole fraction n-dodecane and n-hexadecane mixture at $85.00^{\circ} \mathrm{C}$.

The original Tait equation (13), $\left(v_{o}-v\right) / v_{o}=A P /(B+$ P), and the equation referred to by Macdonald as $3 B E$ (16), a series expansion of \bar{v}_{i} in terms of ($P-P_{o}$) up to third degree, were also tested. However, neither the pure component nor the mixture data were represented as well as with Equation 3, even though only two parameters are required by Equation 3.

Experimental excess volumes. The excess volume at any temperature, pressure, and composition is defined as

$$
\begin{equation*}
V^{E}(T, P, x)=V_{m}(T, P, x)-\Sigma x_{i} V_{i}(T, P) \tag{4}
\end{equation*}
$$

where V_{m} is the molar volume of the mixture, and V_{i} and x_{i} are the molar volume and mole fraction of the ith component, respectively. The molar volumes of the three mixtures and the four pure components are calculated by

Table II. Compression Parameters K_{o} and $K_{o}{ }^{\prime}$

a Pressure range of data insufficient to accurately determine parameters.

Figure 2. Compression results for decane-tetradecane equimolar mixture curves are calculated from Equation 3 by using parameters listed in Table II

Figure 3. Difference between calculated (Equation 3) and experimental compression for dodecane-hexadecane equimolar mixture at $85^{\circ} \mathrm{C}$

Table III. Experimental Excess Volumes

$25^{\circ} \mathrm{C}$		$45^{\circ} \mathrm{C}$	
P, atm	$\mathrm{V}^{E}, \mathrm{cc} / \mathrm{mol}$	P, atm	$V^{E}, \mathrm{cc} / \mathrm{mol}$
$\mathrm{C}_{10}+\mathrm{C}_{14}\left(\mathrm{x}_{1}=0.5000\right)$			
1	-0.04 ± 0.04	1	-0.10 ± 0.04
100	0.16 ± 0.04	400	0.00 ± 0.05
300	0.42 ± 0.05	800	0.07 ± 0.06
500	0.54 ± 0.05	1200	0.13 ± 0.08
600	0.58 ± 0.06	1600	0.18 ± 0.09
$65^{\circ} \mathrm{C}$		$85^{\circ} \mathrm{C}$	
1	-0.09 ± 0.04	1	-0.09 ± 0.04
700	0.10 ± 0.06	1000	-0.07 ± 0.07
1300	0.12 ± 0.09	2000	0.08 ± 0.09
1900	0.12 ± 0.09	3000	0.21 ± 0.11
2400	0.11 ± 0.11	3600	0.28 ± 0.12
$\mathrm{C}_{12}+\mathrm{C}_{16}\left(\mathrm{x}_{1}=0.5000\right)$			
$45^{\circ} \mathrm{C}$		$65^{\circ} \mathrm{C}$	
1	-0.03 ± 0.04	1	-0.06 ± 0.04
200	-0.12 ± 0.04	500	-0.09 ± 0.05
500	-0.18 ± 0.05	1000	-0.11 ± 0.07
800	-0.21 ± 0.06	1500	-0.12 ± 0.09
1000	-0.21 ± 0.07 $35^{\circ} \mathrm{C}$	2000	-0.13 ± 0.09
$1 \quad-0.06 \pm 0.04$			
$800 \quad 0.10 \pm 0.06$			
$1600 \quad 0.14 \pm 0.09$			
$2400 \quad 0.16 \pm 0.10$			
2900	$2900 \quad 0.17 \pm 0.11$		
$\mathrm{C}_{10}+\mathrm{C}_{14}+\mathrm{C}_{16}\left(\mathrm{x}_{1}=0.6000, \mathrm{x}_{2}=0.2000\right)$			
$45^{\circ} \mathrm{C}$		$65^{\circ} \mathrm{C}$	
1	-0.11 ± 0.04	1	-0.16 ± 0.04
200	-0.13 ± 0.04	500	-0.18 ± 0.05
500	-0.14 ± 0.05	1000	-0.15 ± 0.07
800	-0.13 ± 0.06	1500	-0.11 ± 0.09
1000	-0.13 ± 0.07	2000	-0.07 ± 0.09
$85^{\circ} \mathrm{C}$			
1	-0.20 ± 0.04		
800	-0.24 ± 0.06		
1600	-0.22 ± 0.09		
2400	-0.19 ± 0.10		
2900	-0.17 ± 0.11		

using Equation 3 with the parameters as given in Table II, the standard molecular weights, and the densities at pressure P_{0} (1 atm).

The experimental excess volumes of the two binary mixtures and one ternary mixture at five characteristic pressures are presented in Table III. The experimental uncertainties in the calculated excess volumes are also reported.

Acknowledgment

Most of the computing was done with the help of the University of Missouri Research Center and the Engineering Computer Center.

Nomenclature

$A_{P, T}=$ cross-sectional area of the sylphon-bellows, cm^{2}
$J=$ coefficient in Equation $2, \mathrm{~cm}^{3} / \mathrm{g}$
$K=$ isothermal bulk modulus, atm
$K_{0}=$ isothermal bulk modulus at $P=P_{0}$, atm
$K_{o}{ }^{\prime}=\left.(\partial K / \partial P)_{T}\right|_{P=P(o)}$, dimensionless
$L=$ coefficient in Equation 2, atm
$\Delta L_{B}=$ change in length of the sylphon-bellows as a function of P and T, cm
$P_{o}=$ atmospheric pressure. atm
$P_{i}=$ pressure. atm
$t=$ temperature, ${ }^{\circ} \mathrm{C}$
$T=$ temperature, K
$v_{o}=$ atmospheric pressure specific volume, $\mathrm{cm}^{3} / \mathrm{g}$
$v_{i}=$ specific volume at ith pressure, $\mathrm{cm}^{3} / \mathrm{g}$
$\bar{v}_{i}=$ relative volume at i th pressure, dimensionless
$V_{i}=$ molar volume of i th component, $\mathrm{cc} / \mathrm{mol}$
$V_{m}=$ molar volume of mixture, $\mathrm{cc} / \mathrm{mol}$
$V^{E}=$ excess volume. cc/mol
$x=$ mole fraction
$W_{v c}=$ vacuum corrected weight of sample in bellows. grams
$\rho_{o, T}=$ atmospheric pressure density at temperature T, $\mathrm{g} / \mathrm{cm}^{3}$

Literature Cited

(1) Benson, M. S., PhD dissertation, University of Missouri-Columbia. Columbia, Mo.. 1973.
(2) Benson, M. S., Snyder. P. S.. Winnick, J., J. Chem. Thermodyn., 3, 891-98 (1971)
(3) Benson, M. S.. Winnick, J., J. Chem. Eng. Data, 16, 154-57 (1971).
(4) Boelhouwer, J. M. W., Physica, 26, 1021 (1960).
(5) Bridgman, P. W.. "The Physics of High Pressure." G. Bell and Sons, London, England, 1949
(6) Bridgman, P. W., Proc. of Amer. Acad., 66, 183 (1930).
(7) Britt, H. I.. Luecke, R. H., Technometrics, 15 (2), 233 (1973).
(8) Cutler, W. G., PhD dissertation, Pennsylvania State University. University Park, Pa., 1955.
(9) Cutler, W. G., MoMickle, R. H., Webb, W., Schiessler, R. W., J. Chem. Phys., 29, 727 (1958).
(10) Eduljee, H. E., Newitt, D. M.. Weale, K. E., J. Chem. Soc., 1951, p 3088
(11) Gibson, R. E., J. Amer. Chem. Soc., 56, 4 (1934)
(12) Harrison. C., Winnick, J., J. Chem. Eng. Data, 12, 176-8 (1967).
(13) Hayward. A. T. J., Brit. J. Appl. Phys., 18, 965 (1967).
(14) Hirschfelder, J. O., Curtis, C. F., Bird, R. B., "Molecular Theory of Gases and Liquids," p 261, Wiley, New York, N.Y., 1954.
(15) Lin L. Y. C., Master's thesis, University of Missouri-Columbia. CoIumbia, Mo., 1972.
(16) Macdonald, J. R., Rev. Mod. Phys., 38, 669 (1966)
(17) McDuffie, G. E.. Forbes, J. W.. Madigowsky. W. M., Von Bretzel, J. J., J. Chem. Eng. Data, 14, 176 (1969)
(18) Mickley, H. S., Sherwood, T. K., Reed, C. E., "Applied Mathematics in Chemical Engineering." pp 46-60. McGraw-Hill, New York, N.Y., 1957.
(19) Rowlinson, J. S.. "Liquids and Liquid Mixtures." pp 32-38. Academic Press. New York, N.Y., 1959.
(20) Schamp. H. W.. Hastings, J. R., Weissman, S.. Phys. Fluids, 8, 8 (1965).
(21) Shavers, O. R.. PhD dissertation, University of Houston. Houston, Tex., 1965.
(22) Sims, M. J., Winnick, J., J. Chem. Eng. Data, 14, 164-66 (1969).
(23) Snyder, P. S. PhD dissertation, University of Missouri-Columbia. Columbia, Mo., 1969. Loan copies available.
(24) Snyder, P. S., Winnick, J., Proc. ASME, Fifth Symposium on Thermophysical Properties, Boston, Mass., October 1970.
(25) Winnick. J., Powers, J. E., A/ChE J., 12, 460 (1966).

Received for review September 14, 1973. Accepted December 6. 1973. Work supported by the National Science Foundation througn Grants NSF GK-1303, NSF GP-2764, and NSF GK-18635; the Department of Defense through Project Themis; and the National Aeronautics and Space Administration through a NASA traineeship (P. S. S.).

[^0]: ${ }^{1}$ Present address, Celanese Chemical Corp., Technical Center, Corpus Christi, Tex. 78404
 ${ }^{2}$ Present address, Air Products and Chemicals, Inc., Allentown, Pa 18103.
 ${ }^{3}$ To whom correspondence should be addressed

