Binary Diffusion Coefficients of Low-Density Gases II. Molecular Parameters and Combining Rules

Sukehiro Gotoh, Morten Manner, Jan P. Sørensen, and Warren E. Stewart ${ }^{1}$
Department of Chemical Engineering, University of Wisconsin, Madison, Wis. 53706

Abstract

Lennard-Jones (12-6) parameters are evaluated for 23 gas pairs from the binary diffusion data given in Part 1 . Stockmayer parameters are determined for one additional pair, $\mathrm{CH}_{3} \mathrm{Cl}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$. The data for hydrogen and paraffins are fitted with a relative standard deviation of 0.0045 when both $\sigma_{A B}$ and $\epsilon_{A B}$ are adjusted, vs. 0.016 when either $\sigma_{A B}$ or $\epsilon_{A B}$ is predicted from viscosities of pure A and B, and 0.041 when both $\sigma_{A B}$ and $\epsilon_{A B}$ are thus predicted. The arithmetic-mean rule for predicting $\sigma_{A B}$ is distinctly better than the geometric mean. Corresponding states methods for prediction of $\sigma_{A B}$ and $\epsilon_{A B}$ from pure fluid properties are tested.

Diffusion measurements in gases at low density can provide useful information about forces between unlike molecules, particularly if the measurements cover a range of temperature (3,4). The information obtained is generally model dependent-the results are specific to the model of intermolecular forces that one assumes. Here, we analyze the data of Part I [Gotoh et al. (2)] to obtain collision parameters for 24 molecular pairs. The Lennard-Jones (12-6) and Stockmayer (12-6-3) potentials are used for computational convenience.

Theory

The kinetic theory of gases provides the following expression for $D_{A B}$ at low densities:

$$
\begin{equation*}
c D_{A B}=2.2646 \times 10^{-5} \frac{\sqrt{T\left(1 / M_{A}+1 / M_{B}\right)}}{\sigma_{A B^{2} \Omega^{(1,1) *}\left(k T / \epsilon_{A B}\right)}} f_{D}^{(2)} \tag{1}
\end{equation*}
$$

The details of the collision dynamics are contained in the functions $\Omega^{(1,1) *}\left(k T / \epsilon_{A B}\right)$ and $f_{D}^{(2)}$. (For the Stockmayer potential, $\Omega^{(1,1) *}$ depends on a reduced dipole moment $\delta_{\text {max }}$, in addition to $k T / \epsilon_{A B}$). We use the tables of Monchick and Mason (6) to calculate the needed collision integrals, and we use Mason's Kihara-type expansion (5) for $f_{D}{ }^{(2)}$.

Experiments on self-diffusion (10) have indicated that Equation 1 is accurate nearly up to the critical density, provided that the true molar density c (rather than $p / R T$) is used. The calculation of c was done with two terms of the virial equation with the compressibility parameters given in Part I. For our experiments, the reciprocal compressibility factors CRT/p ranged from 1.0 to 1.03 ; this is comparable to the range of the correction factors $f_{D}{ }^{(2)}$.

Calculations

Calculations were made to compare various methods of determining $\sigma_{A B}$ and $\epsilon_{A B}$ in Equation 1. The results for hydrogen and paraffins are shown in Table 1. Models 1 and 2 use constants determined from viscosity of the pure components; Models 3-5 include constants fitted to the diffusion data for each gas pair; Model 6 uses purecomponent constants fitted to all the diffusion data. Models 7-12 use pure-component constants constrained by

[^0]corresponding states relations of the form:
\[

$$
\begin{gather*}
\left(p_{c} / T_{c}\right)_{i}^{1 / 3} \sigma_{i}=a_{1} \exp \left(b_{1} \omega_{i}\right) \tag{2}\\
\left(\epsilon / k T_{c}\right)_{i}=a_{2} \exp \left(b_{2} \omega_{i}\right) \tag{3}
\end{gather*}
$$
\]

for the paraffins. Expressions of this type were previously used by Tee et al. (8) to represent other properties of normal fluids. The constants for Models 6-12 are given in Tables 3-5 (deposited with the ACS Microfilm Depository Service), along with the individual deviations for several models

Table II shows the fitted constants for each gas pair, determined as in Models 3-5 of Table 1. The standard deviation and the confidence intervals of the fitted parameters are included.

The diffusivity data used here are the same as in Part I, except for the omission of two tests: $\mathrm{CH}_{4}-\mathrm{SF}_{6}$ at 297.6 K and $\mathrm{CH}_{3} \mathrm{Cl}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ at 378.2 K . These tests were deleted because of deviations from the overall trend of results for these two gas pairs.

The factor $f_{D}{ }^{(2)}$ was calculated in all cases from the viscosity parameters given in Part I. The parameters $\sigma_{A B}$ and $\epsilon_{A B}$ for this calculation were obtained as in Model 1 , except for Models 2, 8, and 10 where the combining rules of Model 2 were used.

Discussion of Results (Hydrogen and Paraffins)

Model 1, Table I is the usual method of calculation of $D_{A B}$, based on viscosities of pure A and B, as described by Hirschfelder et al. (3). It predicts $D_{A B}$ with a standard deviation of 4.1% ($s=0.041$). The mean deviation (-0.67%) is smaller than comparisons with previous data have shown (7,9). The individual deviations are shown in Part I and are somewhat systematic.

Model 2 differs from Model 1 in taking $\sigma_{\mathrm{AB}}=\sqrt{\sigma_{A} \sigma_{B}}$, rather than $\sigma_{A B}=\left(\sigma_{A}+\sigma_{B}\right) / 2$. This method of predicting $\sigma_{A B}$ is less satisfactory; the standard deviation ($s=$ 0.073) is nearly twice as large, and the calculated values tend to be too high. This conclusion is different from that reached by Good and Hope (1) from calculations of second virial coefficients, $B_{A B}$. The discrepancy may be due to the different dependence of $D_{A B}$ and $B_{A B}$ on the intermolecular potential, and to the approximate nature of the Lennard-Jones model.

Model 3 and 4 use one Lennard-Jones parameter predicted from viscosity and one fitted to the diffusion data. The accuracies are comparable ($s=0.0162$ and $0.0165)$. Model 5 uses fitted values of both $\sigma_{A B}$ and $\epsilon_{A B}$ and gives the most accurate fit obtainable with the Len-nard-Jones model ($s=0.0045$). The parameters found from Model 5 have larger uncertainties, as indicated in Table II, and three of the systems yielded no solution.

In Model 6 the Lennard-Jones parameters for each pure substance are determined from the diffusion data and combining rules. Within the accuracy shown ($s=$ 0.026), this model may be regarded as an interpolation device for representing both $D_{A B}$ (the binary diffusivity) and $D_{A A}$ (the self-diffusivity) for these substances. The improvement in accuracy over Model 1 thus suggests differences between the Lennard-Jones parameters for viscosity and for self-diffusion.

Table I. Comparison of Calculation Methods for $D_{A B}$ in Paraffin and Hydrogen-Paraffin Systems

Model	Source of Molecular Parameters ${ }^{\text {a }}$						$\mathrm{N}_{p}{ }^{\text {c }}$	$s^{\text {d }}$	Mean dev, \%
	$\sigma_{\mathrm{H}}{ }^{\text {b }}$	¢ $\mathrm{H}_{2}{ }^{\text {b }}$	$\sigma_{1,1 ;} \neq \mathrm{H}_{2}{ }^{\text {b }}$	$\epsilon_{1,1 ; \ldots \mathrm{H}_{2}{ }^{\text {b }} \text { b }}$	$\sigma_{A B}$	$\epsilon_{A B}$			
1	Part 1	Part 1	Part I	Part I	$\left(\sigma_{A}+\sigma_{B}\right) / 2$	$\sqrt{\epsilon_{A A} \epsilon_{B}}$	0	0.041	-0.67
2	Part I	Part I	Part I	Part I	$\sqrt{\sigma_{A} \sigma_{B}}$	$\sqrt{\epsilon_{A} \epsilon_{B}}$	0	0.073	3.20
3	\ldots	Part 1	\ldots	Part I	Fitted	$\sqrt{\epsilon_{A} \epsilon_{B}}$	20	0.0162	0.02
4	Part 1	...	Part 1		$\left(\sigma_{A}+\sigma_{B}\right) / 2$	Fitted	20	0.0165	-0.05
5			...		Fitted	Fitted	34	0.0045	0.00
6	Fitted	Fitted	Fitted	Fitted	$\left(\sigma_{A}+\sigma_{B}\right) / 2$	$\sqrt{\epsilon_{A} \epsilon_{B}}$	14	0.026	0.03
7	Part 1	Part 1	(8,	iii)	$\left(\sigma_{A}+\sigma_{B}\right) / 2$	$\sqrt{\epsilon_{A} \epsilon_{B}}$	0	0.044	0.25
8	Part I	Part I	(8,	iii)	$\sqrt{\sigma_{A} \sigma_{B}}$	$\sqrt{\epsilon_{A \epsilon_{B}}}$	0	0.080	3.58
9	Fitted	Part I	(8,	iii)	$\left(\sigma_{A}+\sigma_{B}\right) / 2$	$\sqrt{\epsilon_{A \epsilon_{B}}}$	1	0.039	-0.88
10	Fitted	Part 1	(8,	iii)	$\sqrt{\sigma_{A} \sigma_{B}}$	$\sqrt{\epsilon_{A} \epsilon_{B}}$	1	0.052	0.19
11	Fitted	Part 1	Equations $b_{1}, b_{2} a$	a_{1}, a_{2} fitted; odel 7	$\left(\sigma_{A}+\sigma_{B}\right) / 2$	$\sqrt{\epsilon_{A} \epsilon_{B}}$	3	0.038	0.17
12	Fitted	Part 1	Equa	2, 3: b_{1}, b_{2} fitted	$\left(\sigma_{A}+\sigma_{B}\right) / 2$	$\sqrt{\epsilon_{A} \epsilon_{B}}$	5	0.029	0.04

a All "Fitted" values are derived from the diffusivity data for these systems (60 experiments). ${ }^{b}$ For use when needed in prediction of $\sigma_{A B}$ and $\epsilon_{A B} .{ }^{c} N_{p}$ is the number of parameters fitted to the diffusion data (60 experiments). ${ }^{d}$ s is the standard deviation of \ln ($D_{A B}$, pred $/$ $\left.D_{A B, \text { obsd }}\right)$ based on ($60-N_{p}$) degrees of freedom. ${ }^{e}$ Result for 17 systems fitted with this model (Table II).

Models 7 and 8 are similar to Models 1 and 2, except that Equations 2 and 3 are used for the paraffins. The constants $a_{1}, a_{2}, b_{1}, b_{2}$ are taken from Tee et al. (8). The accuracy compares well with Models 1 and 2, and the additive rule for $\sigma_{A B}$ is again preferred.

Models 9 and 10 differ from Models 7 and 8 in using values of $\sigma_{H(2)}$ determined from the diffusion data. The predictions with the geometric rule for $\sigma_{A B}$ are considerably improved (from 0.080 to 0.052), but the additive rule remains superior ($s=0.039$).

Comparison of Model 6 ($s=0.026$) with Model 9 ($s=$ 0.039) indicates that Correlation (iii) of Tee et al. (8) (based on gas viscosities) may need adjustment to give better results for diffusion. This idea is tested in Models 11 and 12. In Model 11, Tee's constants b_{1} and b_{2} are retained, but a_{1} and a_{2} are fitted to the diffusion data; this gives very little improvement (s decreases from 0.039 to 0.038). In Model 12, all four constants (a_{1}, a_{2}, b_{1}, b_{2}) are fitted to the diffusion data, and a substantial improvement is found ($s=0.029$, nearly comparable to Model 6). This comparison, like that of Models 1 and 6, indicates a discrepancy between Lennard-Jones parameters for viscosity and self-diffusion.

Discussion of Results (Other Systems)

The remaining four systems give the following standard deviations:

	Model 1	Model 3	Model 4	Model 5
$\mathrm{CH}_{4}-\mathrm{SF}_{6}$	0.0030	0.0028	0.0029	0.0029
$\mathrm{CH}_{4}-\mathrm{CH}_{3} \mathrm{Cl}$	0.0257	0.0038	0.0045	0.0041
$\mathrm{CH}_{3} \mathrm{Cl}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	0.0248	0.0253	0.0256	\ldots
$\mathrm{~N}_{2}-n-\mathrm{C}_{4} \mathrm{H}_{10}$	0.0308	0.0038	0.0072	0.0016

The prediction from viscosity (Model 1) is excellent for the nearly spherical pair $\mathrm{CH}_{4}-\mathrm{SF}_{6}$ and is systematically low for $\mathrm{CH}_{4}-\mathrm{CH}_{3} \mathrm{Cl}$ and $\mathrm{N}_{2}-n-\mathrm{C}_{4} \mathrm{H}_{10}$. For the polar-polar pair, $\mathrm{CH}_{3} \mathrm{Cl}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$, Model 1 with a Stockmayer potential describes the data within their uncertainty. Use of fitted parameters is a substantial improvement except for $\mathrm{CH}_{3} \mathrm{Cl}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$. Model 3 is as good as Model 5 except for $\mathrm{N}_{2}-n-\mathrm{C}_{4} \mathrm{H}_{10}$.

Conclusions

The Lennard-Jones potential allows prediction of $D_{A B}$ from pure gas viscosities with a standard error of about
4%, provided that the combining rules are taken as in Model 1. Use of the geometric mean rule for $\sigma_{A B}$ gives worse results.

The data can be reproduced within their uncertainty by using fitted values of $\sigma_{A B}$ and $\epsilon_{A B}$. These values are given in Table II.

The improvement of Model 6 over Model 1 and of Model 12 over Model 7 indicates that the Lennard-Jones potential needs different parameter values for self-diffusion than for viscosity. This is not surprising in view of the approximate nature of the Lennard-Jones model.

Nomenclature

$a_{1}, a_{2}, b_{1}, b_{2}=$ coefficients in Equations 2 and 3
$c=$ molar density, $\mathrm{mol} / \mathrm{cm}^{3}$
$D_{A B}=$ binary diffusion coefficient, $\mathrm{cm}^{2} / \mathrm{sec}$
$f_{D}{ }^{(2)}=$ correction factor for second approximation of kinetic theory
$M=$ mass number, $\mathrm{g} / \mathrm{mol}$
$p=$ pressure, atm
$s=$ relative standard error
$T=$ absolute temperature, K
$\epsilon / k=$ potential energy parameter, K
$\sigma=$ collision diameter, \AA
$\omega=$ Pitzer acentric factor

Subscripts

$A, B, i=$ chemical species
$\mathrm{c}=$ critical properties

Literature Cited

(1) Good, R. J., Hope, C. J., J. Chem. Phys.. 55, 111 (1971)
(2) Gotoh, S.. Manner, M., Sǿrensen, J. P., Stewart, W. E., J. Chem. Eng. Data. 19 (2), 169 (1974)
(3) Hirschfelder, J. O., Curtiss, C. F., Bird, R. B., "Møiecular Theory of Gases and Liquids," corrected printing with notes added, Wiley, New York, N.Y., 1964.
(4) Marrero, T. R., Mason, E. A., J. Phys. Chem. Ret. Data. 1, 3 (1972).
(5) Mason, E. A., J. Chem. Phys.. 27, 75 (1957).
(6) Monchick, L., Mason, E. A., ibid.. 35, 1676 (1961).
(7) Reid, R. C.. Sherwood, T. K., "The Properties of Gases and Liquids," 2nd ed., p 533, McGraw-Hiil, New York, N.Y., 1966.
(8) Tee, L. S., Gotoh, S., Stewart, W. E., Ind. Eng. Chem. Fundam. 5, 356 (1966)
(9) Tee, L. S., Kuether, G. F., Robinson, R. C., Stewart, W. E., AP। Proceedings, Division of Refining, p 235, 1966.
(10) Trappeniers, N. J., Oosting, P. H., Phys Lett. 23, 445 (1966).

Table II. Molecular Parameters Derived from Diffusion Measurements ${ }^{a}$

${ }^{a}$ To be used with the Lennard-Jones (12-6) potential, except that the Stockmayer (12-6-3) potential is used for the systems $\mathrm{CH}_{4}-$ $\mathrm{CH}_{3} \mathrm{Cl}$ and $\mathrm{CH}_{3} \mathrm{Cl}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$. The models are defined as in Table I, with the combining rules extended as in (3, pp 222-3) for the systems $\mathrm{CH}_{4}-\mathrm{CH}_{3} \mathrm{Cl}$ and $\mathrm{CH}_{3} \mathrm{Cl}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} .{ }^{3} \mathrm{~N}$ is the number of diffusivity data for the given system. ${ }^{c}$ s is the standard deviation based on logarith. mic residuals, In ($D_{A B, \text { pred }} / D_{A B, \text { obsd }}$). ${ }^{d}$ Values preceded by \pm are one-parameter 95% confidence limits calculated by linearization with an error variance $s^{2}=(0.0045)^{2}($ Table I, Model 5$) .{ }^{e}$ Results for these cases are omitted because of large uncertainties in the fitted constants.

Received for review July 10, 1973. Accepted January 10, 1974. Work supported by National Science Foundation through Grants G-14812, GK678X, and GK-17860. Numerical work supported in part by the University of Wisconsin Mathematics Research Center, sponsored by the U.S. Army under Contract No. DA-31-124-ARO-D-462

Supplementary Material Available. Tables 3-5 will appear following the se pages in the microfilm edition of this volume of the journal. Photocopies of the supplementary material from this paper only or microfiche (105 \times $148 \mathrm{~mm}, 24 \times$ reduction, negatives) containing all of the supplementary material for the papers in this issue may be obtained from the Journals Department, American Chemical Society, 115516 th St., N.W., Washing. ton, D.C. 20036. Remit check or money order for $\$ 3.00$ for photocopy or $\$ 2.00$ for microfiche, referring to code number JCED-74-172.

[^0]: To whom correspondence should be addressed.

