Vapor-Liquid Equilibrium Relationships of Binary Systems Propane-*n*-Octane and *n*-Butane-*n*-Octane

Webster B. Kay,¹ Joseph Genco,² and David A. Fichtner³

Department of Chemical Engineering, The Ohio State University, Columbus, Ohio 43210

The *P*- ρ -*T*-*x* relationships of the propane–*n*-octane and the *n*-butane–*n*-octane systems are determined. The experimental results cover a range from about 150 lb/in.² abs and room temperature to the highest pressure and temperature at which liquid and vapor can coexist. The data are presented in tabular form. *P*-*T*-*x*, ρ -*T*-*x*, and isobaric *T*-*x* diagrams are given.

This paper presents the $P-\rho$ -T-x relationships of the binary systems of propane–n-octane and n-butane–n-octane. It is the third of a series (5, 6) in a study of the effect of the relative size of the molecules on the phase diagram of mixtures of n-alkanes.

Experimental

The apparatus and experimental procedure for the determination of the $P-\rho-T-x$ phase diagrams of binary systems at elevated temperatures and pressures were the same as described in previously published papers (5, 6).

¹ To whom correspondence should be addressed.

² Present address, Battelle Memorial Institute, Columbus, Ohio 43201.

³ Present address, Goodyear Tire & Rubber Co., Akron, Ohio 44305.

900 MOL % PROPANE 1- 0.00 2- 21.43 3- 33.06 4- 57.29 5- 71.75 6-77.50 800 -86.40 700 8-95 89 00.00 600 PRESSURE LBS/IN.² (ABS) PROPA 500 400 300 200 OCTANE 100 °40 80 120 160 200 240 280 320 TEMPERATURE °C

Figure 1. Pressure-temperature diagram of propane-n-octane system

A small air-free sample was contained over mercury in the sealed end of a precision bore glass capillary tube, hereafter termed the experimental tube, which was surrounded by a constant-temperature bath. The tube was fastened in a compressor block which was essentially a mercury-in-steel U-tube. This, in turn, was connected through a manifold to a high-pressure gas cylinder. By admitting nitrogen gas to the system, pressure was applied via the mercury to the sample in the capillary.

For the measurement of the pressure, a sensitive precision spring gauge with a 16-in. dial marked in 2-lb divisions, was attached to the manifold. The gauge had a sensitivity of 0.2 lb/in.² and could be read accurately to 0.5 lb/in.². The constant-temperature bath surrounding the experimental tube consisted of a double-walled, silvered, and evacuated glass jacket with viewing slits and with a side-arm boiling flask attached below the double wall. By refluxing the vapors of a series of organic compounds of different boiling points contained in the flask and by controlling the pressure over the boiling liquid, a range of temperature, constant to within 0.02°C, could be obtained.

The temperature was measured by means of an ironconstantan thermocouple in conjunction with a sensitive potentiometer capable of reading the millivolt equivalent

Figure 2. Pressure-temperature diagram of *n*-butane-*n*-octane system

of 0.005°C. Both the pressure gauge and the thermocouple were calibrated; the former by comparison with a calibrated dead-weight gauge and the latter by comparison with a platinum resistance thermometer which had been calibrated by the National Bureau of Standards. A previous calibration of the experimental tube made it possible to determine the volume of the sample by measuring the length of the tube which it occupied to within 0.02 mm by means of a cathetometer. The total volume of the tube was expressed analytically as a function of the distance from the sealed end.

The coefficients of the equation were determined by a least-squares procedure with experimental values of the mass of mercury required to fill the tube to various levels.

Figure 3. Density-temperature diagram of propane-n-octane system

Figure 5. Isobaric temperature-composition diagram of propanen-octane system

276 Journal of Chemical and Engineering Data, Vol. 19, No. 3, 1974

Figure 4. Density-temperature diagram of *n*-butane-*n*-octane system

Figure 6. Isobaric temperature-composition diagram of *n*-butane-*n*-octane system

Equilibrium between the liquid and vapor phases was attained by moving a small steel ball enclosed in the tube, by means of a magnet around the outside of the jacket. Pressure and volume were measured at a series of constant temperatures covering the range desired.

Materials and Preparation of Mixtures

The propane, *n*-butane, and *n*-octane were supplied with a purity of better than 99.90 mol % by the Phillips Petroleum Co. They were used without further purification

except for the removal of air. Deaeration was accomplished by a series of operations which involved freezing the sample with liquid nitrogen and pumping off the residual gas over the solid, followed by melting the solid sample and distilling it at low pressure.

Measured amounts of the degassed propane and nbutane were then transferred to glass ampuls, sealed, and stored for use in the preparation of mixtures with noctane. The procedure for preparing and loading the experimental tube with a mixture of known composition has

 Table I. Summary of Temperature, Pressure, and Density Relationships at Phase Boundaries for Propane-n-Octane System:

 Data by Genco (3)

	Liq	uid	Va	por	.	Liq	quid Va		apor	
Press, lb/in,²abs	Temp, °C	Density, g/cc	Temp, °C	Density, g/cc	Press, Ib/in.² abs	Temp, °C	Density, g/cc	Temp, °C	Density, g/cc	
	Composit	ion: 21.43 mc	% propane			Compositi	on: 71.75 mc	ol % propane		
100	98 0	0.628			200	56.0	0.519	177.0	0 0280	
150	127.5	0.592	•••	•••	250	70.5	0.501	185.6	0 0349	
200	153.0	0.552	•••	•••	300	83.5	0 487	193.0	0.0345	
250	174 0	0.531	247 A	0.0642	350	94.3	0 474	199 0	0.0500	
300	194.0	0.508	257 0	0.0042	400	104.0	0 462	205.0	0.0561	
350	210 0	0.000	265 7	0.0971	400	113.0	0.450	211 0	0.0501	
400	227 0	0.453	272 5	0.0071	500	121.2	0 440	215.6	0.0000	
450	242 5	0.455	277 3	0.1590	550	129.5	0 427	218 5	0.0879	
500	258 0	0.410	276 7	0.1000	600	137.5	0 415	219.6	0 1020	
510	262 0	0.374	276 0	0.2399	650	145.6	0.403	219.6	0.1080	
520	266 5	0.337	270.0	0.2355	700	154.0	0.387	218 9	0 1200	
520	274 0	0.000		•••	750	162.2	0 371	216 5	0 1450	
525 8	279.0	0.270	•••	•••	800	171.1	0.348	212 0	0 1631	
525.0	270.0	0.517	•••		820	176.0	0.332	208.3	0 1940	
			1.00		840	182 3	0.312	202.8	0 2199	
	Composit	ion: 33.06 mg	ol % propane		850	185 5	0.293	20210	0.2155	
150	92.5	0.611	•••	•••	850	198.0	0.247		•••	
200	113.0	0.590	•••	•••	854 8	193.2	0.268		•••	
250	132.5	0.566			004.0	155.2	0.200	•••	•••	
300	149.5	0.545	243.5	0.0700		Compositi	on: 86.40 mo	1% propane		
350	166.0	0.529	251.0	0.0820	300	69.0	0.480		• • •	
400	181.5	0.502	257.5	0.0999	350	78.5	0.468	164.5	0.0429	
450	196.0	0.480	263.0	0.1180	400	86.7	0.454	168.8	0.0481	
500	210.0	0.455	266.5	0.1499	450	94.4	0.439	172.5	0.0570	
550	224.0	0.427	266.5	0,1699	500	101.4	0.425	175.5	0.0660	
600	238.9	0.385	262.5	0.247	550	108.6	0.411	177.8	0.0750	
610	242.7	0.370			600	114.8	0.395	179.3	0.0870	
610	260.5	0.270	•••	• • •	650	121.5	0.377	179.5	0.1049	
620	247.0	0.355			700	128.0	0.358	179.5	0.1049	
620.0	258.0	0.293		• • •	750	134.9	0.335	178.4	0.1200	
626.7	253.0	0.328	•••	•••	800	143.0	0.305	176.1	0.1450	
					820	147.7	0.280	174.5	0.1560	
	Compositi	on: 57.29 mc	l % propane		840			170.0	0,1760	
200	71 8	0 568			840	• • •	• • •	115.0	0.2439	
250	87.0	0.550	206 0	0.0400	848	• • •	• • •	162.8	0.2090	
300	100.5	0.533	214 5	0.0490		Compositio	on: 95-89 mol	1% propane		
350	112 0	0.508	222.0	0.0580	200	61 6	0 454	,0 p. op		
400	122 5	0 504	227.5	0.0690	350	70.0	0.434	 115 0	0.0370	
450	134 0	0.489	232.0	0.0780	400	70.0	0.433	122.6	0.0370	
500	144 2	0 474	235 5	0.0910	400	83.5	0.425	127.5	0.0401	
550	154.3	0.460	238.3	0.1110	500	89.8	0.302	130.0	0.0025	
600	164 5	0.450	239.7	0.1200	550	95.9	0.332	131.8	0 1049	
650	174.5	0.425	240.0	0.1300	600	101 8	0.373	132 1	0 1100	
700	185.0	0.405	238.2	0.1749	650	107.4	0.319	131.9	0.1089	
750	196.5	0.376	232.5	0.2069	700	114.0	0.220	130,4	0.1749	
770	202.0	0.360	229.0	0.2300	710	115.8	0.250	130.0	0.1800	
780	205.0	0.350			720			118,1	0.2300	
780	225.5	0.258			720	•••		129.2	0.1499	
790	208.5	0,337			730			120.3	0.2149	
790	222.0	0.276			730			128.0	0,1600	
784	215.3	0.311			738.4			124.9	0.1829	
								-		

	Liq	Liquid Vapor		·····	Liq	uid	Vapor		
Press, Ib/in.²abs	Temp, °C	Density, g/cc	Temp, °C	Density, g/cc	Press, Ib/in.²abs	Temp, °C	Density, g/cc	Temp, °C	Density, g/cc
	Compositio	on: 18.23 mol	% n-Butane			Compositio	on: 67.09 mo	ol % n-butane	
100	153.7	0.573			600	210.9	0,331	227.5	0.186
150	182.7	0.536			610	213.2	0.319	225.8	0.207
200	205.1	0.504			615	214.5	0.311	223.9	0,231
250	223.3	0.475							
300	238.9	0.446	264.7			Compositio	n: 81.83 mo	1% n-butane	
350	253.5	0.412	273.0	0.110	100	73.8	0 551		
400	266.5	0.372	280.5	0.150	150	93.3	0.526		
420	271.8	0.348	282.3	0.179	200	108.8	0.504	•••	
430	274.5	0.332	282.3	0.219	250	121 6	0.483		
440	277.7	0.307	281.0	0.256	300	133.5	0 463	183.8	0.050
	Compositio	n. 46 31 mol	%		350	143.8	0 444	190.4	0.060
1.00	100 7	0.511101	/6 11-0 atane		400	153 5	0 425	195.9	0.072
100	102.7	0.5/9	• • •	•••	450	162.4	0.405	200.2	0.085
150	127.2	0.551		• • •	500	170 9	0.384	203.2	0.099
200	146.8	0.527	•••		550	179 3	0.357	205.2	0 128
250	163.6	0.506		•••	600	188 5	0.337	205.4	0 157
300	178.3	0.485	242.0	•••	610	100.5	0.313	203.4	0.167
350	192.1	0.463	246.6	• • •	620	102.0	0.301	204.0	0.189
400	204.8	0.440	250.8		625	195.0	0.262	203.0	0.207
450	216.8	0.412	254.1	0.124	025	195.0	0.255	201.0	0.207
500	228.7	0,380	256.3	0,157		Compositio	n: 94.61 mol	1% л-butane	
520	233.6	0.364	256.4	0.175	100	66.3	0.527		
540	238.8	0.345	255.2	0,199	150	84 5	0.501	•••	•••
550	241.5	0.332	253.5	0.228	200	98 7	0.001		
555	243.2	0.332	251.9	0.248	250	110 6	0.4595	•••	•••
560	245.5	0.309	250.0	0.270	200	121 1	0.4355	•••	•••
	Compositio	on: 67.09 mol	% n-butane		360	121.1	0.440	151.6	•••
100	91.3	0 560	, ·		400	138.8	0.402	158.5	•••
150	103 2	0.545	•••	•••	400	146 5	0,402	163.9	
200	120 /	0.545			400	153 7	0.356	167.4	0.231
200	120.4	0.525	•••		500	155.7	0,330	169 /	0.231
200	1/19 0	0.000	 21/ 1	•••	550	162 /	0.315	170.2	0.155
250	140.0	0.407	× 210 7	• • •	37U 590	103.4	0.230	170.2	0.170
300	170 5	0.407	210./ 222 £	•••	38U 505	166 2	0.275	170.4	0.139
400	10.5	0.447	222.0	• • •	585 507 5	100.3	0.204	166 95	0.143
400	100 5	0.420	220.2	0 176	500 5	167 6	0.237	100.00	0,23/
500	190.0	0.402	220.4	0.1/0	588.5	107.0			
550	200.2	U.34/	229.4	•••	589.8	T09./			

 Table II. Summary of Temperature, Pressure, and Density Relationships at Phase Boundaries for n-Butane-n-Octane System:

 Data by Fichtner (2)

been described elsewhere (7, 8). The purity of each of the components was checked by measuring the difference in the pressure between the isothermal dew and bubble points. This difference was always less than 2.0 lb/in.².

Equilibrium Data

The pressure, temperature, and volume at the bubble and dew points of five mixtures each of propane-*n*-octane and *n*-butane-*n*-octane were measured over a temperature range from room temperature to the highest temperature at which liquid and vapor could coexist. For each mixture, 25-35 data points were determined. In the compilation of the data, the measured specific volumes were expressed as densities. The experimental points were plotted, and the *P*-*T* border curves and the densitytemperature curves are shown in Figures 1-4.

The vapor pressure and saturated density curves of the pure components were constructed by use of data taken from the literature (1, 4, 9). Large-scale plots of these diagrams were constructed from which values of the temperature and density at the bubble and dew points were read at regular intervals of the pressure. These values are listed in Tables I and II. *T*-*x* data at different pres-

sures were obtained from cross plots of Figures 1 and 2, and are listed in Tables III and IV, where the temperatures at the bubble and dew points at regular intervals of the composition are given. Isoberic temperature-composition curves are shown in Figures 5 and 6. From the T-xdiagrams, the vapor-liquid equilibrium ratios, K = y/x, for each of the components were derived and are given in Tables V and VI.

The critical point was determined visually by the disappearance-of-the-meniscus method, whereas the codrdinates of pressure, temperature, and density at the maximum pressure and maximum temperature points were obtained graphically from large-scale plots of the P-T and ρ -T border curves in the critical region of the mixture. The critical constants of the pure compounds and mixtures and the coordinates of the maximum pressure (cricondenbar) and maximum temperature (cricontentherm) points of each system are listed in Tables VII and VIII. The coordinates of the maximum pressure point on the P-T critical locus curve are as follows: Propane-noctane: $P = 864 \pm 1.0 \text{ lb/in.}^2 \text{ abs}; T = 182.6 \pm 0.5^{\circ}\text{C};$ mol % propane, 77.5 \pm 0.3. *n*-Butane-*n*-octane: P = $628.6 \pm 1.0 \text{ lb/in.}^2 \text{ abs; } T = 208.6 \pm 0.2^{\circ}\text{C; mol } \% n$ butane, 75.4 ± 0.3 .

Table III. Isobaric Temperature-Composition Relations of Propane-n-Octane System

			Tem	р, °С			
			Press, Ib	/in.² abs			
Compn, mol %	3	50	4	00	500		
propane	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	
0	293.8	293.8		• • • •	•••		
5.0	•••	•••	291.0	291.0		•••	
10	254.9	280.8	271.3	286.1		•••	
18.0		•••	• • •	•••	273.0	273.0	
20	216.0	267,8	232.6	273.7	262.6	277.8	
30	177.2	256.3	193.8	261.4	222.2	269.6	
40	146.0	244.4	160.8	249.1	186.4	258.2	
50	125.0	232.2	138.2	236.8	159.9	245.9	
60	108.8	218.8	120.0	224.0	140.1	232.6	
70	95.8	202.2	106.1	208.2	123.5	218.0	
80	84.8	181.9	94.5	186.8	109.1	195.4	
90	75.0	150.4	83.6	156	96.7	161.8	
100	66.4	66.4	73.0	73.0	85.6	85.6	
	60	00	70	00	80	00	
	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	
29.8	255.0	255.0					
30	252.4	257.6		• • •			
40	210.4	260.3			• • •		
43.1	•••		233.2	233.2			
50	182.2	249.0	205.6	243.6			
57.8	•••				212.0	212.0	
59	•••				203.6	218.0	
60	159.4	236.1	179.8	235.4	200.0	219.5	
70	140.6	222.3	157.4	221.5	174.9	216.2	
80	124.0	200.0	138.2	200.8	155.0	196.4	
85					145.8	181.3	
90	108.9	166.6	120.2	166.2	137.2	162.6	
91					136.4	157.6	
92.6					143.0	143.0	
95			112.0	137.6			
97.7			116.0	116.0			
100	95.0	95.0					

The accuracy of the tabulated data is estimated to be as follows: temperature, $\pm 0.5^{\circ}$ C; pressure, ± 2.0 lb/in.²; density, ± 0.001 g/cc for the liquid; and ± 0.0001 g/cc for the vapor. In the critical region, the uncertainties in the values reported may be somewhat greater because of the difficulty in assessing the accuracy of the measurements in this region.

The unsmoothed experimental data have been deposited with the ACS Microfilm Depository Service.

Acknowledgment

Acknowledgment is made to the Phillips Petroleum Co. for samples of the pure hydrocarbons.

Literature Cited

- (1) Deschner, W., Brown, G. G., Ind. Eng. Chem., 32, 836 (1940).
- (2) Fichtner, David, MS thesis, Ohio State University, Columbus, Ohio, 1962.
- (3) Genco, Joseph, MS thesis, Ohio State University, Columbus, Ohio,

- (3) Genco, Joseph, MS thesis, Ohio State University, Columbus, Ohio, 1962.
 (4) Kay, W. B., *Ind. Eng. Chem.*, **32**, 358 (1940).
 (5) Kay, W. B., *J. Chem. Eng. Data*, **15**, 46 (1970).
 (6) Kay, W. B., *ibid.*, **16**, 137 (1971).
 (7) Kay, W. B., Donham, R., *Chem. Eng. Sci.*, **4**, 1 (1955).
 (8) Kay, W. B., Rambosek, G. M., *Ind. Eng. Chem.*, **45**, 221 (1953).
 (9) McMicking, J. H., Kay, W. B., *Proc. Amer. Petrol. Inst., Sect. 111*, **45** (3), 75 (1965).

Table IV. Isobaric Temperature-Composition Relations of n-Butane-n-Octane System

			Tem	p, °C		
			Press, Ib	/in.² abs		
Compn,		00	35	50	4(00
butane	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
0	282.4	282.4	293.6	293.6		
8.6	•••	•••			287.6	287.6
10	258 .0	272.5	271.6	282.2	283.5	288.5
20	234.4	263.2	249.6	271.2	262.2	278.7
30	211.3	255.0	227.0	261.8	239.0	268.2
40	190.2	247.0	205.3	252.4	217.6	257.9
50	172.0	238.0	185.4	242.8	197.8	246.1
60	156.8	225.3	169.2	229.6	181.0	233.0
70	144.8	209.0	156.4	213.2	166.8	218.0
80	134.8	188.0	145.8	194.0	155.2	199.8
90	125.8	161.0	135.2	167.8	144.2	174.4
100	116.4	116.4	125.0	125.0	133.0	133.0
		=====				
				JU 		
	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
20	277.0	277.0				
22.0	271.4	278.4			• • •	
30	252.5	272.6				
31.2			266.0	266.0		• • •
32.0	• • •		263.2	267.6		
40	230.1	261.5	242.8	262.8		
43.1					251.2	251.2
45.0				• • •	244.4	253.8
50	209.2	249.6	220.8	251.7	233.0	251.2
60	191.2	236.6	202.0	238.4	212.8	239.9
70	176.6	221.5	186.5	223.6	195.6	225.0
80	164.4	203.6	173.2	206.6	181.6	208.5
90	152.2	180.0	160.0	182.4	167.8	184.4
100	140.0	140.0	146.4	146.4	152.0	152.0
		00	1.001	1.01.1	10210	
	Liquid	Vapor				
58.7	231.5	231.5				
60	226.2	233.0				
70	205.8	223.8				
80	191.1	208.5				
90	176.0	186.2				
92	173.2	179.2				
92.8	174.0	174.0				

Table V. Vapor-Liquid Equilibrium Ratios of Propane-n-Octane System

Press, lb/in.²			Temp	, °C		
abs	90	100	110	120	150	200
		$K_i = y$	i/xi for pr	opane		
350	1.30	1.45	1.62	1.79	2.34	2.94
400	1.18	1.30	1.45	1.60	2.05	2.61
500	1.04	1.13	1.24	1.34	1.69	2.18
600	•••	1.04	1.11	1.18	1.44	1.85
700	•••			1.08	1.26	1.54
800	000				1.11	1.31
		$K_j = y_j$	$_{i}/x_{j}$ for n-	octane		
350	0.0843	0.0928	0.103	0.114	0.161	0.38
400	0.0688	0.0729	0.0818	0.0952	0.155	0.354
500	0.0714	0.0859	0.0922	0.108	0.167	0.339
600		0.105	0.120	0.132	0.190	0.353
700				0.253	0.263	0.411
800	•••			• • •	0.457	0.538

Table VI. Vapor-Liquid Equilibrium Ratios of n-Butane-n-Octane System

Press, lb/in. ²			Tem	ıp, °C			Press,			Tem	o, °C		
abs	150	175	200	225	250	275	abs	150	175	200	225	250	275
		$\mathbf{K}_i = \mathbf{y}_i$	$/x_i$ for n-	butane					$K_j = y_j$	$/x_j$ for n-	octane		
300	1.425	1.77	2.09	2.51	2.78	2.55	300	0.201	0.284	0.410	0.600	0.726	0.954
350	1.250	1.56	1.81	2.03	2.16	1.95	350	0.215	0.280	0.398	0.536	0.714	0.913
400	1.136	1.40	1.64	1.79	1.86	1.66	400	0.238	0.281	0.395	0.543	0.711	0.892
450	1.070	1.29	1.48	1.60	1.595	1.35	450	0.265	0.289	0.404	0.557	0.730	0.910
465.5						1.000	465.5					•••	1.000
500	1.020	1.19	1.36	1.445	1.385		500	0.300	0.310	0.433	0.591	0.773	
531.0	1.000				••••		531.0	1.000					
550		1.09	1.25	1.30	1.19		550		0.404	0.479	0.648	0.855	
560					1.000		560	•••				1.000	
600		1.02	1.15	1.145			600	•••	0.678	0.578	0.781		
602.6		1.000					602.6		1.000				
613.8							613.8		•••	•••	1.000		• • • •
627.5	•••		1.000	1.000	•••	• • •	627.5		• • •	1.000	• • •	• • •	

Table VII. Critical Constants of Propane-n-Octane System

		Critical point		Po	pint of max pr	ess	Point of max temp		
Mol %, C ₃	<i>T</i> _c , ℃	P _c , Ib/in.² abs	Density , g/cc	T _{Pmax} , °C	₽ _{Pmax.} Ib/in.² abs	Density, g/cc	T _{Tmax} , °C	P _{Tmax} , Ib/in.² abs	Density, g/cc
0	295.6ª	360.7ª	0.232ª		• • •				
21.4	274.8	514.0	0.257	270	525.8	0.321	278.2	479	0.186
33.1	262.1	601.7	0.247	253	626.7	0.325	266.9	537	0.169
57.3	226.1	778.1	0.248	215	798.4	0.310	240.1	639	0.139
71.8	198.0	849.9	0.240	192	854.8	0.264	219.5	678	0.0996
77.5	182.6	864.5	0.247	183	864.6	0.253			
86.4	154.7	839.2	0.245	164	848.0	0.211	179.8	669	0.106
95.9	116.8	714.9	0.245	125	738.4	0.182	132.2	646.2	0.104
100	96.87 ^b	617.9 ^b	0.266						

^a Ref. 9. ^b Ref. 5.

Table VIII. Critical Constants of n-Butane-n-Octane System

Compr		Critical poir	nt	Р	oint of max pro	ess	Р	oint <mark>o</mark> f max te	mp
mol % n-butane	τ _c , °C	₽ _c , lb/in.² abs	Density, g/cc	T _{Pmax,} ℃	P _{Pmax} . Ib/in.² abs	Density, g/cc	7 _{™max} . °C	₽ _{Tmax,} Ib/in.² abs	Density, g/cc
0	295.6ª	360.7ª	0.232ª		•••				
18.23	280.89	437.9	0.2398	278.83	442.1	0.2811	282.49	426.9	0.1914
46.31	251.80	555.1	0.2480	248.09	562.1	0.2854	256.51	511.3	0.1626
67.07	221.89	618.3	0.2463	219.51	619.6	0.2670	229.82	565.9	
81.83	195.42	625,6	0.2423	198.72	627.0	0.2238	205.74	582.1	0.1413
94.61	166.85	587.3	0.2369	168.86	589.9	0.2045	170.53	575.1	0.1584
100	152.2%	550.5%	0.2280		•••			••••	

^a Ref. 9. ^b Ref. 4.

Received for review January 22, 1974. Accepted April 24, 1974. Financial aid for J. M. Genco was received from the Ohio State University and the Union Carbide Corp., Linde Division. microfilm edition of this volume of the journal. Photocopies of the supplementary material from this paper only or microfiche (105×148 mm, $24 \times$ reduction, negatives) containing all of the supplementary material for the papers in this issue may be obtained from the Journals Department, American Chemical Society, 1155 16th St.. N.W., Washington, D.C. 20036. Remit check or money order for \$4.00 for photocopy or \$2.00 for microfiche, referring to code number JCED-74-275.

Supplementary Material Available. An Appendix containing two tables of unsmoothed experimental data will appear following these pages in the