Standard Potentials of Ag-AgCl Electrode in Methanol-Propylene Glycol Solvent System at Different Temperatures and Related Thermodynamic Quantities

Kiron K. Kundu, Debabrata Jana, and Mihir N. Das ${ }^{1}$
Department of Chemistry, Jadavpur University, Calcutta 700032, India

Abstract

Standard potentials of the $\mathbf{A g - A g C l}$ electrode were determined in a series of approximately isodielectric media formed by mixing methanol (MeOH) and propylene glycol (PG) at seven temperatures ($5-35^{\circ} \mathrm{C}$) from the emf measurements of the cell; $\mathrm{Pt}, \mathrm{H}_{2}(\mathrm{~g}, 1 \mathrm{~atm}) / \mathrm{HCl}(\mathrm{m})$, solvent $/ \mathrm{AgCl}-\mathrm{Ag}$. These values were utilized to evaluate the thermodynamic quantities, $\Delta \boldsymbol{G}_{t}{ }^{\circ}, \Delta \boldsymbol{S}_{t}{ }^{\circ}$, and $\Delta \boldsymbol{H}_{t}{ }^{\circ}$, accompanying the transfer of 1 mole of HCl from the standard state in methanol to the standard state in other solvents. The variation of $\Delta \boldsymbol{S}_{t}{ }^{\circ}$ with solvent composition was examined in light of the effects of preferential solvation of H^{+}and Cl^{-}by MeOH and PG , respectively, and that of the structural features of the solvents.

In a preceding paper (11) in this series, the standard potentials (E°) of the $\mathrm{Ag}-\mathrm{AgCl}$ and $\mathrm{Ag}-\mathrm{AgBr}$ electrodes in a series of approximately "isodielectric" media comprising methanol ($\mathrm{MeOH}, D_{s}=32.63$) and propylene gly$\mathrm{col}\left(\mathrm{PG}, D_{s}=31.0\right.$) were reported at a single temperature, $25^{\circ} \mathrm{C}$. These values and related thermodynamic quantities were useful in understanding the behavior of HCl and HBr in these solvents and also in undertaking studies of proton transfer equilibria of some weak organic acids (12, 13), as well as of the thermodynamic behavior of some alkali metal halides (14) in these solvents from the emf measurements of galvanic cells comprising these electrodes.

The free energy function is, in most cases, less discriminating than either the entropy or enthalpy function, since many of the effects relating structural aspects of solvents are associated with the corresponding effects on the entropy function (2,5,6, 15). Hence, as a prerequisite to an understanding of the important structural contributions of these "isodielectric" solvents, as would be reflected in the enthalpy or entropy function of some of the systems, we determined ${ }_{s} E^{\circ}$ values of the $\mathrm{AgCl}-\mathrm{Ag}$ electrode in these solvents at seven temperatures ranging from 5° to $35^{\circ} \mathrm{C}$ with an interval of 5°, which are reported in this paper.
The method of determination of ${ }_{s} E^{\circ}$ values of the $\mathrm{AgCl}-$ Ag electrode in MeOH-PG mixtures containing 10, 20 , 50,70 , and $90 \mathrm{wt} \% \mathrm{PG}$ is similar to that described earlier (11). A cell of type $\mathrm{A}: \mathrm{Pt}, \mathrm{H}_{2}(\mathrm{~g}, 1 \mathrm{~atm}) / \mathrm{HCl}(m)$, solvent $/ \mathrm{AgCl}-\mathrm{Ag}$, was used.

Experimental

The general experimental details, including the preparation of solvents, cell solutions, electrodes, and the measurement of densities of the solvents, have been described (11). The procedure for recording the emf's of cell A containing different molalities of HCl at different temperatures is also exactly similar to that described earlier (16). However, one important operation was incorporated in these measurements. Since one component of the solvent mixtures is appreciably volatile at the experi-

[^0]mental temperatures, before allowing the H_{2} gas to enter into the cell, the purified gas was presaturated by passing it first through the particular solvent and then through a series of six bubblers containing the same solution as present in the cell.

The temperature of the cell and the bubblers was the same. This was particularly necessary to avoid the change of composition of solvent in the cell vessel and of concentration of HCl , and hence to have a stable emf at equilibrium. The readings were recorded at intervals of 15 min till three successive readings were constant within $\pm 0.2 \mathrm{mV}$. A period of $4-5 \mathrm{hr}$ was necessary to reach equilibrium at 5°. After recording the emf's at 5°, the temperature of the bath was raised to the next higher temperature, and readings were recorded at equilibrium at that temperature. In this way, emf measurements were made at higher temperatures.

Results

The values of the emf in each solvent at different temperatures were corrected for $1-\mathrm{atm} \mathrm{H}_{2}$ pressure. The vapor pressures of the solvents at different temperatures (Table I) were computed in a manner described earlier (11), the vapor pressure of PG in this temperature range being negligibly small (4). The emf values and corresponding molalities (m) of HCl are presented in Table II.

The standard potentials of the $\mathrm{Ag}-\mathrm{AgCl}$ electrode $\left(E_{m}{ }^{\circ}\right)$ were determined by extrapolation to $m=0$ of the function $E^{\circ \prime}$ defined by Equation 1 (11):
$E^{\circ \prime}=E+2 k \log m-$
$\frac{2 k S_{f} C^{1,2}}{1+2_{0} B C^{1 / 2}}-2 k \log \left(1+0.002 m M_{s}\right)=E_{m}{ }^{\circ}+f(m)(1$
where all terms have their usual significance. The values of Debye-Hückel constants S_{f} and B were computed from the relations $S_{f}=1.824 \times 10^{6} /\left(D_{s} T\right)^{3,2}$ and $B=$ $50.29 /\left(D_{s} T\right)^{1 / 2}$, where D_{s} is the dielectric constant of the solvent at the particular temperature as given in Table 1 . At any temperature the values of D_{s} at different compositions were estimated by assuming the volume fraction additivity rule suitable for ideal mixture for dielectric constants (11). The values so obtained are furnished in Table I.

The dielectric constants of MeOH and PG at different temperatures were computed from the temperature coefficients of the dielectric constant given in the literature (7). The approximate values of C (molar concentration) were calculated by equating it to $m d_{s}$, where d_{s} is the density of the particular solvent at that temperature (Table I). The values of M_{s}, the molecular weight of the pure solvent or the average molecular weight of a solvent mixture, were computed from the usual relation (8). For computing the values of E°, the value of a_{0} was taken as zero. Figure 1 illustrates the typical extrapolation for $E_{m}{ }^{\circ}$ of the $\mathrm{Ag}-\mathrm{AgCl}$ electrode in one of these solvents (50% $\mathrm{PG}) . E_{m}{ }^{\circ}$ values so evaluated at different temperatures are presented in Table III. The $E_{m}{ }^{\circ}$ values in each sol-
vent of this system can be represented as a function of temperature as given below:

$$
\begin{aligned}
& 0 \% \mathrm{PG}(1), E_{m}{ }^{\circ}=-0.0103-1.208 \times 10^{-3} \\
& (t-25)-4.00 \times 10^{-6}(t-25)^{2} \\
& 10 \% \mathrm{PG}, E_{m}{ }^{\circ}=+0.0020-1.26 \times 10^{-3} \\
& (t-20)-6.80 \times 10^{-6}(t-20)^{2} \\
& 20 \% \mathrm{PG}, E_{m}{ }^{\circ}=+0.0023-1.36 \times 10^{-3} \\
& (t-20)-4.90 \times 10^{-6}(t-20)^{2} \\
& 50 \% \mathrm{PG}, E_{m}{ }^{\circ}=-0.0030-1.35 \times 10^{-3} \\
& (t-20)-3.61 \times 10^{-6}(t-20)^{2} \\
& 70 \% \mathrm{PG}, E_{m}{ }^{\circ}=-0.0086-1.48 \times 10^{-3} \\
& (t-20)+4.50 \times 10^{-6}(t-20)^{2} \\
& 90 \% \mathrm{PG}, E_{m}{ }^{\circ}=-0.0174-1.72 \times 10^{-3} \\
& (t-20)+1.14 \times 10^{-5}(t-20)^{2} \\
& 100 \% \text { PG (16), } E_{m}{ }^{\circ}=-0.0323-1.58 \times 10^{-3} \\
& (t-25)-8.968 \times 10^{-7}(t-25)^{2}
\end{aligned}
$$

The standard potentials in molal $\left({ }_{s} E_{m}{ }^{\circ}\right)$ and mole frac tion (${ }_{s} E_{N}{ }^{\circ}$) scales at 25° are presented in Table IV. The subscript s denotes that the values are referred to the particular solvent as the reference state. The values at 25° compare fairly well with those reported earlier (11).

The free energy changes accompanying the transfer of 1 mole of $\mathrm{HCl}, \Delta \mathrm{G}_{t}{ }^{\circ}(\mathrm{HCl})$, from the standard state in the reference solvent methanol to that in other solvents were computed at 25° with the help of Relation 2 :

$$
\begin{equation*}
\Delta G_{t}^{0}(\mathrm{HCl})=-F\left({ }_{s} E_{N}^{\circ}-{ }_{m} E_{N}^{\circ}\right) \tag{2}
\end{equation*}
$$

and are presented in Table V. The subscript m refers to methanol as the solvent. The mole fraction scale has been used to eliminate the effect of changes in concentration (9, 17). The corresponding entropies, $\Delta S_{t}{ }^{\circ}(\mathrm{HCl})$, and enthalpies, $\Delta H_{t}^{\circ}(\mathrm{HCl})$, have also been computed by the usual relations (23) from the constants of the $E_{m}{ }^{\circ}$ temperature equation given above. The $\Delta G_{t}{ }^{\circ}$ values are

Table I. Necessary Parameters for Evaluation of $E^{\circ \prime}$ of Equation 1 in MeOH-PG mixtures at Different Temperatures

	${ }^{\circ} \mathrm{C}$						
	5	10	15	20	25	30	35
$10 \mathrm{wt} \% \mathrm{PG}\left(M_{s}=34.00\right)$							
D_{s}	36.78	35.68	34.57	33.56	32.56	31.59	30.65
Vapor press (p), mm	39.08	52.66	70.04	92.70	120.9	156.4	199.6
Density (d_{s}), g/cc	0.8275	0.8229	0.8183	0.8138	0.8093	0.8045	0.7997
S_{f}	1.763	1.797	1.835	1.869	1.906	1.947	1.987
B	0.4973	0.5003	0.5040	0.5071	0.5104	0.5140	0.5175
$20 \mathrm{wt} \% \mathrm{PG}\left(M_{s}=36.22\right)$							
Ds	36.68	35.58	34.49	33.46	32.47	31.50	30.56
Vapor press (p), mm	36.50	49.00	64.60	85.50	110.9	142.9	183.9
Density (d_{s}), g/cc	0.8496	0.8448	0.8401	0.8354	0.8308	0.8265	0.8222
S_{f}	1.770	1.806	1.842	1.878	1.915	1.955	1.995
B	0.4979	0.5013	0.5046	0.5078	0.5112	0.5147	0.5182
$50 \mathrm{wt} \% \mathrm{PG}\left(M_{s}=45.08\right)$							
Ds	36.35	35.25	34.16	33.14	32.14	31.18	30.24
Vapor press (p), mm	28.40	38.10	50.60	66.50	86.30	111.2	142.9
Density (d_{s}), g/cc	0.9203	0.9158	0.9114	0.9075	0.9036	0.8995	0.8954
S_{f}	1.795	1.829	1.867	1.905	1.945	1.986	2.027
B	0.5002	0.5034	0.5069	0.5102	0.5139	0.5174	0.5210
70 wt \%PG ($\left.M_{s}=53.85\right)$							
Ds	36.02	34.93	33.84	32.81	31.82	30.85	29.92
Vapor press (p), mm	20.40	27.40	36.30	47.80	61.90	79.80	102.6
Density (d_{s}), g/cc	0.9694	0.9654	0.9614	0.9575	0.9537	0.9498	0.9458
S_{f}	1.820	1.855	1.894	1.934	1.974	2.018	2.060
B	0.5025	0.5058	0.5093	0.5129	0.5164	0.5201	0.5237
90 wt \% PG ($M_{s}=66.87$)							
D	35.52	34.43	33.37	32.34	31.35	30.26	29.45
Vapor press (p), mm	8.40	11.30	15.00	19.50	25.60	33.20	42.50
Density (d_{s}), g/cc	1.0220	1.0180	1.0140	1.0100	1.0060	1.0022	0.9984
S_{j}	1.858	1.894	1.936	1.976	2.018	2.066	2.110
B	0.5060	0.5093	0.5130	0.5165	0.5202	0.5243	0.5279

Table II. Emf (Volt) of Cell A in MeOH-PG Mixtures from 5° to $35^{\circ} \mathrm{C}$

$\mathrm{m}_{\mathrm{HCl}}$	${ }^{\circ} \mathrm{C}$						
	5	10	15	20	25	30	35
10 wt \% PG							
0.00572	0.2805	0.2795	0.2780	0.2769	0.2755	0.2736	0.2716
0.01014	0.2571	0.2554	0.2536	0.2517	0.2498	0.2475	0.2453
0.01647	0.2368	0.2349	0.2330	0.2311	0.2292	0.2268	0.2243
0.02032	0.2280	0.2258	0.2240	0.2219	0.2192	0.2173	0.2145
0.02845	0.2142	0.2122	0.2102	0.2083	0.2064	0.2038	0.2013
0.03415	0.2075	0.2051	0.2028	0.2009	0.1990	0.1959	0.1929
0.04009	0.2012	0.1985	0.1968	0.1942	0.1917	0.1888	0.1860

Table II. Continued

$\mathrm{m}_{\mathrm{HCl}}$	${ }^{\circ} \mathrm{C}$						
	5	10	15	20	25	30	35
10 wt \% PG							
0.05061	0.1922	0.1895	0.1869	0.1841	0.1816	0.1787	0.1758
0.06797	0.1792	0.1765	0.1738	0.1709	0.1680	0.1651	0.1622
0.07829	0.1745	0.1719	0.1693	0.1664	0.1634	0.1603	0.1573
0.08584	0.1712	0.1684	0.1656	0.1626	0.1596	0.1563	0.1531
$20 \mathrm{wt} \% \mathrm{PG}$							
0.00493	0.2873	0.2857	0.2842	0.2830	0.2804	0.2794	0.2765
0.00753	0.2682	0.2666	0.2651	0.2637	0.2619	0.2593	0.2568
0.00835	0.2646	0.2628	0.2610	0.2593	0.2575	0.2549	0.2523
0.00989	0.2573	0.2556	0.2540	0.2520	0.2500	0.2476	0.2453
0.01232	0.2483	0.2462	0.2441	0.2418	0.2395	0.2370	0.2345
0.01550	0.2386	0.2367	0.2349	0.2326	9.2313	0.2275	0.2248
0.01700	0.2360	0.2339	0.2317	0.2290	0.2263	0.2234	0.2204
0.02040	0.2280	0.2261	0.2242	0.2214	0.2187	0.2159	0.2131
0.02509	0.2190	0.2169	0.2149	0.2125	0.2090	0.2071	0.2042
0.03141	0.2110	0.2084	0.2058	0.2035	0.2013	0.1979	0.1944
0.03534	0.2054	0.2029	0.2003	0.1979	0.1955	0.1931	0.1908
0.03941	0.2011	0.1969	0.1947	0.1921	0.1896	0.1868	0.1840
0.04879	0.1919	0.1896	0.1864	0.1846	0.1811	0.1791	0.1761
0.05910	0.1834	0.1808	0.1783	0.1759	0.1725	0.1707	0.1680
0.06855	0.1772	0.1746	0.1720	0.1692	0.1665	0.1634	0.1603
0.08005	0.1700	0.1673	0.1647	0.1620	0.1593	0.1565	0.1538
0.08872	0.1656	0.1630	0.1604	0.1577	0.1550	0.1517	0.1485
50 wt \% PG							
0.00501	0.2824	0.2813	0.2802	0.2783	0.2765	0.2744	0.2724
0.00756	0.2652	0.2632	0.2622	0.2601	0.2586	0.2560	0.2538
0.01079	0.2523	0.2503	0.2482	0.2456	0.2430	0.2404	0.2378
0.01240	0.2447	0.2429	0.2411	0.2387	0.2370	0.2342	0.2317
0.01543	0.2356	0.2337	0.2318	0.2296	0.2274	0.2248	0.2223
0.02139	0.2225	0.2206	0.2188	0.2166	0.2144	0.2113	0.2083
0.02550	0.2177	0.2150	0.2124	0.2096	0.2069	0.2042	0.2015
0.03371	0.2056	0.2029	0.2003	0.1979	0.1955	0.1922	0.1890
0.04316	0.1966	0.1942	0.1909	0.1889	0.1859	0.1826	0.1783
0.04861	0.1924	0.1896	0.1869	0.1840	0.1811	0.1780	0.1750
0.06098	0.1828	0.1803	0.1779	0.1751	0.1718	0.1688	0.1658
0.07050	0.1769	0.1744	9.1719	0.1690	0.1662	0.1631	0.1600
0.08241	0.1726	0.1682	0.1654	0.1625	0.1595	0.1561	0.1528
0.09173	0.1673	0.1635	0.1619	0.1595	0.1560	0.1524	0.1488
70 wt \% PG							
0.00452	0.2859	0.2825	0.2800	0.2773	0.2752	0.2740	0.2727
0.01036	0.2502	0.2463	0.2444	0.2423	0.2405	0.2383	0.2351
0.01346	0.2407	0.2374	0.2345	0.2312	0.2288	0.2266	0.2240
0.02232	0.2191	0.2162	0.2132	0.2107	0.2083	0.2051	0.2025
0.03031	0.2072	0.2049	0.2019	0.1989	0.1960	0.1937	0.1904
0.04086	0.1950	0.1916	0.1893	0.1868	0.1841	0.1820	0.1796
0.05213	0.1848	0.1819	0.1790	0.1764	0.1738	0.1711	0.1680
0.06191	0.1772	0.1745	0.1719	0.1700	0.1677	0.1649	0.1617
0.07181	0.1712	0.1685	0.1669	0.1643	0.1617	0.1587	0.1557
0.08305	0.1652	0.1625	0.1609	0.1583	0.1557	0.1523	0.1486
$90 \mathrm{wt} \% \mathrm{PG}$							
0.00513	0.2749	0.2722	0.2681	0.2659	0.2611	0.2585	0.2560
0.01005	0.2474	0.2434	0.2396	0.2345	0.2309	0.2289	0.2258
0.01283	0.2387	0.2347	0.2292	0.2247	0.2209	0.2180	0.2151
0.02001	0.2206	0.2161	0.2116	0.2079	0.2043	0.2007	0.1973
0.02517	0.2102	0.2073	0.2019	0.1975	0.1936	0.1905	0.1874
0.03035	0.2040	0.1997	0.1945	0.1908	0.1860	0.1838	0.1800
0.03517	0.1986	0.1933	0.1885	0.1844	0.1804	0.1767	0.1729
0.04014	0.1922	0.1886	0.1826	0.1795	0.1749	0.1716	0.1685
0.04832	0.1862	0.1820	0.1758	0.1706	0.1673	0.1651	0.1610
0.05470	0.1806	0.1738	0.1710	0.1669	0.1629	0.1592	0.1556
0.06132	0.1764	0.1710	0.1660	0.1630	0.1590	0.1549	0.1508
0.07023	0.1700	0.1658	0.1617	0.1595	0.1534	0.1493	0.1453
0.08139	0.1634	0.1592	0.1550	0.1509	0.1469	0.1433	0.1400
0.09221	0.1583	0.1524	0.1490	0.1457	0.1425	0.1379	0.1333

correct within $\pm 0.02 \mathrm{kcal}$, and the expected errors in $\Delta S_{t}{ }^{\circ}$ and $\Delta H_{t}{ }^{\circ}$ are $\pm 0.2 \mathrm{cal} \mathrm{deg}{ }^{-1}$ and $\pm 0.14 \mathrm{kcal}$, respectively. Note that the observed magnitudes of $\Delta G_{t}{ }^{\circ}$ (HCl) values are slightly at variance with those reported earlier (11). This is because the ${ }_{s} E_{m}{ }^{\circ}$ value of the reference solvent (MeOH) used earlier is different from the present case. The present source of data (loc. cit.) has been utilized, because it incorporates the relevant data at different temperatures.

Discussion

The variations in $\Delta G_{t}{ }^{\circ}, \Delta S_{t}{ }^{\circ}$, and $\Delta H_{t}{ }^{\circ}$ for HCl with weight \% PG are shown graphically in Figure 2. As expected, the variation of $\Delta G_{t}{ }^{\circ}(\mathrm{HCl})$ is less discriminating than those for the other two functions. The values of $\Delta G_{t}{ }^{\circ}(\mathrm{HCl})$ decrease somewhat sharply at first with a distinct tendency to assume limiting values, as the proportion of PG increases (Figure 2), the corresponding variations of $\Delta S_{t}^{\circ}(\mathrm{HCl})$ and $\Delta H_{t}^{\circ}(\mathrm{HCl})$ being quite complex. It is presumably reasonable ($2,5,6,15,18,19$, 25) to assume that the minima at the extreme regions and maxima at about $50-55 \%$ PG are associated with the structural aspects of the solvents, especially because (24) very little electrostatic contribution arising from the small difference of permittivity of the solvents is involved in those values.

It is generally believed that $\mathrm{MeOH}(3,10,20-22)$ and possibly PG (15) are associated-type liquids, but devoid of any water-like characteristic structure. But whether the addition of PG to MeOH, or vice-versa, brings in any change in the respective structures is a matter of special interest, and to obtain some insight into this matter, we

Figure 1. Extrapolation of emf data to give $E_{m}{ }^{\circ}$ for $\mathrm{Ag}-\mathrm{AgCl}$ electrode in 50% methanol and 50% propylene glycol at different temperatures
may examine the observed variation in $\Delta S_{t}{ }^{\circ}(\mathrm{HCl})$ with the composition of the medium. The transfer of an ion from MeOH to any of the other solvents referred to here is expected to bring in the foliowing structural changes (18, 19): (1) breaking down the structure formed by MeOH molecule around the ion concerned; (2) building up of the "characteristic" liquid structure, if any, by the released MeOH molecules; (3) breaking down of the "characteristic" liquid structure of other solvents, if any, so that the solvent molecules may be free to solvate the transferred ion; and (4) building up of the ordered structure by the solvent molecules released by process 3 around the ion. The observed $\Delta S_{t}{ }^{\circ}(\mathrm{HCl})$ should be represented by Equation 3:

$$
\begin{align*}
& \Delta S_{t}^{\circ}(\mathrm{HCl})=\sum_{1}^{4} \Delta S_{i}^{\circ}\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right)= \Delta S_{1}^{\circ}\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right)- \\
& \Delta S_{2}^{\circ}\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right)+\Delta S_{3}^{\circ}\left(\mathrm{H}^{+}\right.\left.+\mathrm{Cl}^{-}\right)- \\
& \Delta S_{4}^{\circ}\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right) \tag{3}
\end{align*}
$$

where $\Delta S_{i}{ }^{\circ}$ refers to the magnitudes of the entropy changes accompanying the respective steps indicated above. The sign and magnitude of the overall change will depend on the relative magnitudes of the individual steps.

The free energy of transfer of $\mathrm{H}^{+}, \Delta G_{t}{ }^{\circ}\left(\mathrm{H}^{+}\right)$, becomes increasingly positive, while that for $\mathrm{Cl}^{-}, \Delta G_{t}{ }^{\circ}$ $\left(\mathrm{Cl}^{-}\right)$, becomes increasingly negative as the proportion of PG increases, the magnitude of the latter being greater than the former at any solvent composition (14). Thus, as the glycophilicity of Cl^{-}exceeds the methanophilicity of H^{+}, it may be expected that with the increasing proportion of PG, the order around the solvated Cl^{-}should ex-

Table IV. Standard Potentials of $\mathrm{Ag}-\mathrm{AgCl}$ Electrode in MeOH-PG Mixtures at $25^{\circ} \mathrm{C}$

Wt \%					
PG	${ }_{s} \mathrm{E}_{m}{ }^{\circ}, \mathrm{V}$	${ }_{s} \mathrm{E}_{N}{ }^{\circ}, \mathrm{V}$	Wt $\%$ PG	${ }_{s} \mathrm{E}_{m}{ }^{0}, \mathrm{~V}$	${ }_{s} \mathrm{E}_{N}{ }^{\circ}, \mathrm{V}$
0	-0.0103	-0.1871	70	-0.0160	-0.1662
10	-0.0044	-0.1781	90	-0.0260	-0.1649
20	-0.0048	-0.1741	100	-0.0323	-0.1646
50	-0.0100	-0.1693			

Table V. Free Energy, Entropy, and Enthalpy of Transfer of HCl from MeOH to $\mathrm{MeOH}-\mathrm{PG}$ Mixtures at $25^{\circ} \mathrm{C}$

Wt \% PG	$\Delta G_{i}^{\circ}(\mathrm{HCl})$, $\mathrm{kcal} \mathrm{mol}^{-1}$	$\Delta \mathrm{S}_{i}{ }^{\circ}(\mathrm{HCl})$, $\mathrm{cal} \mathrm{mol}^{-1} \mathrm{deg}^{-1}$	$\Delta \mathrm{H}_{i}{ }^{\circ}(\mathrm{HCl})$, $\mathrm{kcal}^{2} \mathrm{~mol}^{-1}$
10	-0.20	-2.5	-0.95
20	-0.30	-4.2	-1.55
50	-0.42	-2.8	-1.25
70	-0.48	-3.3	-1.46
90	-0.54	-6.2	-2.39
100	-0.62	-5.1	-2.04

Table III. $\boldsymbol{E}_{m}{ }^{\circ}$ (Volt) of Ag-AgCl Electrode in MeOH-PG Mixtures at Different Temperatures

Wt \% PG	${ }^{\circ} \mathrm{C}$						
	5	10	15	20	25	30	35
10	+0.0194	+0.0139	+0.0081	+0.0020	-0.0044	-0.0113	-0.0184
20	+0.0215	+0.0150	+0.0090	+0.0023	-0.0048	-0.0120	-0.0192
50	+0.0163	+0.0102	+0.0037	-0.0030	-0.0100	-0.0170	-0.0240
70	+0.0145	+0.0070	-0.0010	-0.0086	-0.0160	-0.0225	-0.0300
90	+0.0110	+0.0010	-0.0080	-0.0174	-0.0260	-0.0325	-0.0410

Figure 2. Variation of $\Delta G_{t}^{\circ}(\mathrm{HCl}), \Delta S_{t}^{\circ}(\mathrm{HCl})$, and $\Delta H_{t}^{\circ}(\mathrm{HCl})$ with weight \% PG from MeOH to $\mathrm{MeOH}-\mathrm{PG}$ solvent mixtures at $25^{\circ} \mathrm{C}$
ceed that around the solvated proton. As a result, $\mid \Delta S_{4}{ }^{\circ}$ $\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right) \mid$should increase with increasing proportion of PG. But the observed variation of $\Delta G_{t}{ }^{\circ}\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right)$ suggests that $\left|\Delta S_{4}{ }^{\circ}\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right)\right|$is not likely to increase uniformly, but with a decreasing rate.

The order around an ion, including both the primary and secondary solvation zone of the ion, is greater than that around a central solvent dipole. As a result, $\mid \Delta S_{1}{ }^{\circ}$ $\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right)\left|>\left|\Delta \mathrm{S}_{2}{ }^{\circ}\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right)\right|\right.$and $| \Delta \mathrm{S}_{4}{ }^{\circ}\left(\mathrm{H}^{+}+\right.$ $\left.\mathrm{Cl}^{-}\right)\left|>\left|\Delta \mathrm{S}_{3}{ }^{\circ}\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right)\right|\right.$. And as steps 1 and 2 refer to methanol, the sum $\left[\Delta S_{1}{ }^{\circ}\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right)-\Delta S_{2}{ }^{\circ}\left(\mathrm{H}^{+}+\right.\right.$ $\left.\mathrm{Cl}^{-}\right)$] should be a constant positive quantity. But since steps 3 and 4 are related to solvents other than MeOH , the sum $\left[\Delta S_{3}{ }^{\circ}\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right)-\Delta S_{4}{ }^{\circ}\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right)\right]$should be a negative quantity, the magnitudes of which should, however, vary with the composition of the solvent. So, in all probability the overall value of $\Delta S_{t}{ }^{\circ}(\mathrm{HCl})$ should be dictated largely by the quantity $\left[\Delta S_{3}{ }^{\circ}\left(\mathrm{H}^{+}+\mathrm{Cl}\right)^{-}\right)-$ $\left.\Delta S_{4}{ }^{\circ}\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right)\right]$.

In the methanol-rich region the sharp fall in $\Delta S_{t}{ }^{\circ}(\mathrm{HCl})$ values leads us to suspect that it may be due, not only to a sharper decrease in the values of $-\Delta \mathrm{S}_{4}{ }^{\circ}\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right)$, but also to less positive magnitudes of $\Delta S_{3}{ }^{\circ}\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right)$ for the mixed solvents in this region of composition. This implies that in this region there occurs a breakdown of the individual solvent structures releasing more monomeric forms of the dipoles from their respective associated forms, when PG is added to MeOH . But upon addition of more PG, the sharp increase of $\Delta S_{t}{ }^{\circ}(\mathrm{HCl})$ is possibly due to the relatively less negative magnitudes of
$-\Delta S_{4}{ }^{\circ}\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right)$combined with the increasingly positive magnitudes of $\Delta S_{3}{ }^{\circ}\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right)$. This possibly implies that in this region the solvent dipoles of both kinds form some sort of hydrogen-bonded clusters among themselves, which, however, ultimately break down with further addition of PG, as indicated by the decrease in $\Delta S_{t}{ }^{\circ}(\mathrm{HCl})$ values, resulting in a maximum at $50-60 \mathrm{wt}$ $\%$ of PG.

At the extreme PG-rich region, the observed increase of $\Delta S_{t}{ }^{\circ}(\mathrm{HCl})$ resulting in a minimum perhaps arises from the less nagative magnitudes of $-\Delta S_{4}{ }^{\circ}\left(\mathrm{H}^{+}+\right.$ Cl^{-}), as expected from the nature of variation of $\Delta G_{t}{ }^{\circ}$ (HCl), and partly from the more positive magnitudes of $\Delta S_{3}{ }^{\circ}\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right)$, implying a more associated nature of pure PG. The above conclusions regarding the relative structure of the mixed solvents have, however, to be substantiated by similar studies with HBr and HI .

Literature Cited

(1) Austin, J. M., Hunt, A. H., Johnson, F. A., Parton, H. N., in "Electrochemical Data," B. E. Conway, Ed., p 301, Elsevier, Amsterdam, Holland, 1952.
(2) Bates, R. G., in "Hydrogen-Bonded Solvent Systems," A. K. Covington, P. Jones, Eds., Taylor and Francis, London, England, 1968.
(3) Becker, E. D., in "Hydrogen Bonding," D. Hadzi, H. W. Thompson, Eds., p 155 . Pergamon Press, London, England. 1959.
(4) Curme, G. O., Johnston, F., "Glycols," Reinhold, New York, N.Y., 1952.
(5) Franks. F., Ed., "Physicochemical Processes in Mixed Aqueous Solvents," p 148. Heinemann Educational Books, London. England, 1967.
(6) Franks, F., Ives, J. G., Quart. Rev., 20, 1 (1966).
(7) "Handbook of Chemistry and Physics," 40th ed., Chemical Rubber Publ. Co., Cleveland, Ohio, 1958-59.
(8) Harned, H. S., Owen, B. B., "Physical Chemistry of Electrolyte Solutions," 3rd ed., Reinhold, New York, N.Y.. 1957.
(9) Khoo, K. H., J. Chem. Soc., 1971A, p 2932
(10) Krishnan, C.V., Friedman, H. L., J. Phys. Chem., 75, 388 (1971).
(11) Kundu, K. K., De, A. L., Das, M. N., J. Chem. Soc., 1972, p 373.
(12) Kundu, K. K., De, A. L., Das, M. N., ibid., p 378.
(13) Kundu, K. K., De, A. L.. Das. M. N., ibic., p 386.
(13) Kundu, K. K., De, A. L., Das. M. N., ibic., p 386.
(14) Kundu, K. K., Rakshit, A. K., Das, M. N., ibid., p 381.
(15) Kundu, K. K., Chattopadhyay, P. K., Jana, D., Das, M. N., J. Phys. Chem. 74, 2633 (1970).
(16) Kundu, K. K., Chattopadhyaya, P. K., Jana, D., Das, M. N., J. Chem. Eng. Data. 15, 209 (1970).
(17) Kundu, K. K., Jana, D., Das, M. N., J. Phys. Chem., 74, 2625 (1970).
(18) Kundu, K. K., Indian J. Chem.. 10, 303 (1972).
(19) Kundu, K. K., Jana, D., Das, M. N., Electrochim. Acta, 18, 95 (1973).
(20) Pauling, L., "The Nature of the Chemical Bond," 3rd ed., p 473, Oxford and IBH Publ. Co., Calcutta, India, 1960.
(21) Pierce, W. C. Macmillan, D. P., J. Amer. Chem. Soc., 60, 770 (1538).
(22) Pimental, G. C., in "Hydrogen Bonding," D. Hadzi, H. W. Thompson, Eds., p 107, Pergamon, London, England, 1959.
(23) Sen, U., Kundu, K. K., Das, M. N., J. Phys. Chem., 71, 3665 (1967).
(24) Spink, C. H., Auker, M., ibid, 74, 1742 (1970).
(25) Stern. J. H., Nobilione, J. M., ibia., 72, 3937 (1968)

Received for review October 29, 1973. Accepted July 8, 1974. Financial assistance received from the National Bureau of Standards.

[^0]: To whom correspondence should be addressed.

