X-Ray Powder Data and Unit Cell Parameters of MgBr₂·6H₂O

Charles A. Sorrell¹ and Roy R. Ramey

Department of Ceramic Engineering, University of Missouri, Rolla, Mo. 65401

Detailed X-ray powder data for MgBr₂·6H₂O were obtained by diffractometry by use of CuK_{α} radiation at 22°C. The data were indexed on a bimolecular monoclinic unit cell, space group C2/m, with a = 10.290 ± 0.001 Å; $b = 7.334 \pm 0.001$ Å; $c = 6.211 \pm 0.001$ Å; $\beta = 93^{\circ} 25' \pm 10'$. Calculated density was 2.074 g/cm³, compared with a measured density of 2.07 ± 0.01 g/ cm³.

The structure of magnesium bromide hexahydrate, MgCl₂·6H₂O, was determined by Andress and Gundermann (1), who reported a bimolecular unit cell, space group C2/m, with $a = 10.25 \pm 0.03$ Å; $b = 7.40 \pm 0.03$ Å; $c = 6.30 \pm 0.03$ Å; $\beta = 93^{\circ} 30' \pm 20'$. The only available X-ray powder data appeared in the original Hanawalt compilation (2) and were subsequently included in the "Powder Diffraction File" (3). As was the case with magnesium chloride hexahydrate (4), the data are not complete, and calculation of interplanar spacings, by use of the available unit cell parameters, indicates relatively low precision.

X-ray Procedures

Powder data were acquired at 22°C by conventional methods, with a General Electric XRD-700 recording diffractometer with CuK_{α} radiation generated at 50 kVp and 20 mA. Flat recessed sample holders, machined from

¹ To whom correspondence should be addressed.

Table I	Y-Dav	Powder	Diffraction	Data	for MaR	F 6H.O	a+ 220C
rapie i.	Λ-Ray	Fowder	Diffraction	vala	TOL MIGP	r2.0m20	at 2210

hki	$2 \theta_{obs}$	d _{obs}	d_{calc}	1/11
001	14.285	6.2000	6.2000	23
110	14.84	5.969₃	5.9687	1
200	17.265	5.136	5.1359	8
111	20.29	4.376 ₅	4.3763	1
111 <i>ª</i>	21.01	4.2282	4.2274	100
20ī ª	21.80	4.0767	4.0763	48
201	23.13	3.845 ₂	3.8442	2
020 <i>ª</i>	24.270	3.6671	3.6670	51
021	28.27	3.1567	3.1563	16
310•)	20 70	2 101	3.1025 (71
002 ∫	20.70	5.1019	3.1000 🤇	/1
220 4	29.94	2.9843	2.9844	62
311 °	31.55	2.8356	2.8365	26
112	32.08	2.7900	2.7909	58
202			2.7269)	
22ī ª (22.02	2.7207	2.7262 (05
311 (32.92		2.7164 (95
112			2.7129	
221 (33.78	2.6533	2.6534	4
202	34.68	2.586₅	2.5867	2
400	34.94	2.567,	2.5679	1
40 <u>1</u> ª	37.085	2.424	2.4241	15
130)	37.06	2 370.	2.3782 \	10
022 ⁰ ∫	57.90	2.3702	2.3674∫	19
401 <i>ª</i>	38.745	2.324 ₃	2.3240	31
312	39.99	2.2545	2.2546	1
131	40.43	2.230,	2.2308	<1
131ª	40.84	2.2095	2.2103	16

Table I. Continued								
hki	2 θ _{obs}	dobe	d _{calc}	I/I1				
222	41.26	2.188	2.1882	2				
312	42.31	2.1361	2.1360	6				
222	40.04	0.100	2.1137	~~				
420 • 🚶	42.94	2.1062	2.1035	68				
003 ໌	43.80	2.0668	2.0667	3				
402	44.47	2.0372	2.0381	4				
421	44.81	2.0225	2.0222	<1				
330	45.60	1.9898	1,9896	7				
510°)	45.00	1	1.9782	-				
113	45.96	1.9/46	1.9742	6				
421	46.07	1 000	1.9630 j					
20 3 ∫	40.27	1.9021	1.9581	13				
113	47.02	1.932₅	1.9323	3				
402			1.9221)					
51 <u>1</u> }	47.44	1.9164	1.9167	24				
331			1.9138					
132ª	47.90	1.8990	1.8996	25				
203)			1.8789)					
331 }	48.52	1.8762	1.8756	24				
132			1.8745					
511	49.14	1.8540	1.8540	6				
040	49.73	1.833 ₈	1.8335	10				
023	50.71	1.800_{2}	1.8004	6				
422ª	51.30	1.780 ₉	1.7815	14				
313)	51 87	1 762	1.7645	0				
04 <u>1</u> ∫	51.67	1.7028	1.7582 🖯	8				
223	53 03	1 726.	1.7273	F				
24 <u>0</u> ∫	55.05	1.7208	1.7268)	5				
512	53.52	1,712,	1.7128 \	0				
600 <i>ª</i> {	00102	*** ***1	1.7120 ʃ	0				
422	53.86	1.702	1.7024 \	٨				
332			1.7014 {	4				
313			1.6787					
601	54.89	1.672	1.6760	13				
223			1.6722	10				
2410			1.6721					
403	55.43	1.657 ₆	1.6590	2				
241)	FF 70	1 640	1.6549	-				
332 510 c)	55./6	1.6485	1.6486	5				
512	56.60	1.626,	1.6258	4				
042			1.6255					
520			1.5781					
122.4	58.78	1.570 ₈	1.5728 (7				
103			1.5/0/					
620			1.5051					
004	50 50	1 651	1.5512	10				
133	33.33	1.0014	1.5300	10				
531			1.5454					
602	60.04	1.540_{8}	1 5379	10				
621			1 5244					
242	60.85	1.522_{3}	1 5215	2				
114			1.5130					
423			1.5115					
204	61.36	1.510_{8}	1.5090	12				
531			1.5082					
242 ´	62.04	1.495。	1.4958	2				
440	·		1.4922	-				
114 }	62.38	1.4886	1.4877 }	30				
621		Ŭ	1.4861					

^a Lines reported by "Powder Diffraction File," No. 1-1045.

Lucite, were used. Samples containing approximately 20% high-purity rock crystal quartz as an internal standard were scanned from 2° to 63° 2 θ at a rate of 0.2°/ min, which permitted measurement of 2 θ values to the nearest 0.01°. Samples containing no internal standard were then scanned, following alignment on the (020) line of the bromide, to provide complete interplanar spacing and intensity data. Integrated intensities were obtained from the diffractometer recording chart by counting squares.

Sample Preparation

All measurements were made with Fisher ACS certified MgBr₂·6H₂O crystals. Attempts to grind the crystals to a sufficiently fine powder to obtain reproducible intensities were not successful. The crystals were completely dehydrated, therefore, at 300°C and then allowed to rehydrate at 50°C. After one week at 50°C, the very fine powder was packed in the X-ray sample holder and covered with plastic wrap (Dow Handi-Wrap) to prevent absorption of water during X-ray scanning.

Density Measurements

Densities of rehydrated powder and the crystals were measured by suspension in liquid mixtures at 22°C, as described previously (4). Difficulty was encountered in both cases. It proved to be impossible to grind the crystals sufficiently to remove all included air bubbles, and the powder tended to form a static suspension, presumably because of the very small crystallites (approximately 1 μ m, as measured by X-ray line broadening).

Results

Measured diffraction angles, 2 θ , interplanar spacings, d_{obs} , and relative intensities, $1/I_1$, are given in Table I. The indexing procedure used was as described previously (4). For the bromide, however, it was necessary to estimate the 2 θ angles of the key lines, (001), (200), (020), (401), and (401), to the nearest 0.005° to obtain acceptable agreement between calculated and observed interplanar spacings. The revised lattice parameters are a =10.290 \pm 0.001 Å; b = 7.334 \pm 0.001 Å; c = 6.211 \pm 0.001 Å; $\beta =$ 93° 25′ \pm 10′.

Indexing is in agreement with the reported space group, C2/m, in that h + k = 2 n for all lines. The unit cell volume is 467.89 Å³, and the calculated density, ρ_x , is 2.074 g/cm³. The best value that can be placed on the measured density is 2.07 ± 0.01 g/cm³, in agreement with the calculated value and considerably higher than that obtained from the X-ray data of Andress and Gundermann (1), 2.035, or that reported in the "Handbook of Chemistry and Physics" (5), 2.00.

Literature Cited

-) Andress, K. R., Gundermann, J., Z. Kristallogr.., 87A, 345 (1934).
- Hanawalt, J. D., Rinn, H. W., Frevel, L. K., Ind. Eng. Chem., Anal. Ed., 10, 457 (1938).
 Joint Committee on Powder Diffraction Standards, "Powder Diffrac-
- (3) Joint Committee on Powder Diffraction Standards, "Powder Diffraction File," No. 1-1045, Philadelphia, Pa., 1960.
- (4) Sorrell, C. A., Ramey, R. R., J. Chem. Eng. Data, 19, 31 (1974).
 (5) Weast, R. C., Ed., "Handbook of Chemistry and Physics," 52nd ed., p B-105, Chemical Rubber Co., Cleveland, Ohio, 1971–72.

Received for review March 27, 1974. Accepted June 5, 1974.

Vapor Pressure of Methanol from 288.15 to 337.65K

H. Frank Gibbard¹ and Jefferson L. Creek

Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, III. 62901

Forty-two measurements of the vapor pressure of methanol are made at 5K intervals from 288.15 to 337.65K with a new static vapor-pressure apparatus. The estimated uncertainties in the experimental temperature and pressure are ± 0.002 K and ± 1 Pa, respectively. The measurements are represented by the equation: $\ln (P/kPa) = 15.76129944 - 2.845920984 \times 10^3 K/T - 3.743415457 \times 10^5 K^2/T^2 + 2.188669828 \times 10^7 K^3/T^3$. This equation is compared with the best previous measurements, with agreement generally within the experimental uncertainties reported by other workers.

As part of a study of the vapor pressures of solutions of several nonvolatile solutes in methanol (4), we have measured the vapor pressure of pure methanol. The methanol used was of the highest purity; it contained less than 0.005 mol % water and even less of any other volatile impurity. Our new static vapor-pressure apparatus operates with a precision of ± 0.002 K in the temperature (temperatures in this paper are expressed as International Practical Kelvin Temperatures T_{68} , which for most purposes are indistinguishable from thermodynamic temperatures T) and ± 1 Pa in the pressure. No previous measurements of this precision have been reported for methanol.

Materials

The methanol used as a starting material was Fisher certified reagent grade, rated by the manufacturer as 99.9 mol % pure. This material was distilled through a 1-m vacuum-jacketed column filled with 0.6-cm glass helices into a degassing apparatus similar to that of Taylor (15). This methanol contained less than 0.001 wt % water by Karl Fischer titration (9) and less than 0.003% acetone and formaldehyde by the test of Morton and Mark (10). A second batch of methanol, prepared by addition of potassium hydroxide and dimethyl phthalate to methanol and distillation of the mixture, contained 0.025 wt % water.

Apparatus

The static vapor-pressure apparatus contains an oil thermostat, regulated at ± 0.001 K, for the vapor-pressure cell, and an air thermostat, regulated to ± 0.01 K, for the null manometer. The vapor-pressure cell is similar to the one used by Scatchard et al. (13); it is fitted with the de-

¹ To whom correspondence should be addressed.