- (38) Shipman, L. M., Kohn, J. P., J. Chem. Eng. Data, 11 (2), 176 (1966).
 (39) Sprow, F. B., Prausnitz, J. M., Trans. Faraday Soc., 62 (521), 1097
- (1966).
- (40) Stearns, W. V., George, E. J., Ind. Eng. Chem., 35 (5), 602 (1943).

- (41) Stegemeier, G. L., PhD thesis, University of Texas, Austin, Tex., 1959.
 (42) Stegemeier, G. L., Hough, E. W., *Prod. Mon.*, 25 (11), 6 (1961).
 (43) Stegemeier, G. L., Hough, E. W., *ibid.*, 26 (6), 20 (1962).
 (44) Stegemeier, G. L., Pennington, B. E., Bauer, E. B., Hough, E. W., *Am.* Chem. Soc. Div. Petrol. Chem., Preprints 5 (2), A27-A32 (1960).
- (45) Van Der Waals, J. D., Z. Phys. Chem., 13, 716 (1894).
- (46) Weber, J., *AlChE J.*, 1, 210 (1955).
 (47) Weinaug, C. F., Katz, D. L., *Ind. Eng. Chem.*, **35**, 239 (1943).
 (48) Wright, F. J., *J. Appl. Chem.*, **11**, 193 (1961).
- (49) York, R., White, E. F., Trans. Am. Inst. Chem. Eng., 40, 227 (1944).

Received for review August 19, 1974. Accepted April 12, 1975. Work jointly supported by the American Gas Association and the U.S. Atomic Energy Commission.

Volumetric Properties of Liquid Propylene

Thomas A. Zordan¹ and Raymond M. Henry²

Gulf Research & Development Co., P.O. Drawer 2038, Pittsburgh, Pa. 15230

The available PVT data for liquid propylene were critically evaluated. From the resulting data, correlations were obtained which can accurately reproduce the vaporpressure curve, the saturated liquid densities, and densities of the compressed liquid. The equations were applicable from 40° to 160°F and from saturation pressures to 1600 psia. The derived relationships were used to obtain factors for correcting a measured volume of liquid propylene to standard conditions, here chosen to be 60°F and saturation pressure.

Numerous investigations have resulted in experimental vapor-pressure data for propylene (6, 9, 10, 12-14, 19, 21). The experimental data were plotted both on a P vs. T basis and on an Ln P vs. 1/T basis to allow visual screening of the data. Only the data of Maass and Wright (10) appeared to be inconsistent with the remainder of the data. The thermometer which they used was calibrated incorrectly, and unfortunately, they do not give sufficient detail to allow their results to be corrected to the proper temperature scale. As a result, none of their data (10) was used in the evaluation of the coefficients in the vapor-pressure equation. The remaining data sets (6, 9, 12-14, 19, 21) appeared consistent.

On the Ln P vs. 1/T plot, the data fell about a straight line covering the range -20° to 160° F. Both the Antoine equation

$$Log P = A + \frac{B}{C+T}$$
(1)

and the Kelvin equation

$$\ln P = A + \frac{B}{T} \tag{2}$$

were used to correlate the data by standard regression analysis techniques. The Kelvin equation performed much better than the Antoine equation in that it was not necessary to alter the temperature scale to account for any deviation from linearity over the temperature range of interest. Table I gives the experimental data used and the fit of the Kelvin equation. The Kelvin equation reproduces the entire input data set of 28 points with an average deviation of 0.55 psi (0.33%). By removal of the most widely scattered points from the data set, the equation reproduces 23 points with an average deviation of 0.37 psi (0.24%).

Two widely cited compilations (2, 8) also tabulate vaporpressure data for propylene. Canjar et al. (2) correlated vapor pressure using an analytical function with a graphical residual. As such, their method could not be adopted here. Hanson (8) does not state his method of correlation. Since both reports (2, 8) tabulate correlated values, they were not used as input data for this work.

Manley and Swift (12) give $\pm 0.1\%$ as the precision in their determinations. None of the other investigations cites tolerance limits. As a result, the uncertainty in all data cited has been assumed as $\pm 0.25\%$.

Table II gives values of the vapor pressure calculated from the Kelvin equation used here. Table III includes the coefficients for the Kelvin equation, as derived in this work.

able I. FIUPPIElle Vapul-Flessule Dal	Гаі	ble	Ι.	Propyle	ne Va	por-Pi	essure	Data
---------------------------------------	-----	-----	----	---------	-------	--------	--------	------

Τ,	P _s (exptl),	P _s (calc), ^a		
°F	psia	psia		
-20 (12) ^b	32.04	32.03		
10	57.73	57.44		
40	96.42	96.03		
70	151.69	151.46		
100	226.34	227.50		
76.61 (14)	166.56	166.31		
111.44	262.56	262.71		
151.40	416.76	416.27		
166.56	489.58	488.14		
25.5(9)	76.30	75.51		
82.7	180.80	180.92		
128.7	322.50	322.96		
134.9	346.50	346.81		
10 (19)	58.00	57.44		
40	96.90	96.03		
100	227.30	227.50		
160	455.30	456.07		
86 (13)	189.43	189.21		
122	298.18	298.52		
167	492.02	490.34		
40 (6)	97.50	96.03		
70	152.10	151.46		
100	227.30	227.50		
130	327.10	327.86		
160	456.60	456.07		
32 (21)	84.50	84.24		
77	167.24	167.22		
122	298.03	298.52		
167	492.32	490.34		

^a Calculated using Equation 2. See Table III for coefficients. ^b Numbers in parentheses are literature references.

Present address, Westinghouse Electric Corp., Pittsburgh, Pa.

² To whom correspondence should be addressed.

Density of Saturated Liquid

Experimental data for the density of saturated liquid propylene have been reported (6, 10, 15-17, 21). A plot of density vs. temperature was constructed to aid in preliminary screening of the data. The data given by Vaughan and Graves (21) deviated widely from those of the remaining investigations. The data presented (21) are not internally consistent and were removed from further consideration. Also, the data of Maass and Wright (10) were not used because of the inaccuracies of their temperature measurements, as discussed earlier in the section on the vapor pressure of propylene. The NGPA data (16) were determined by a technique (4) known to give erroneous results (3). Data used in this work (6, 15, 17) were correlated as described below.

Several equations were used in attempts to correlate the density data. A simple power series in temperature was found inadequate. Likewise an equation by Francis, as recommended by the "API Technical Data Book" (1), was not sufficient. Another equation proposed by Rackett (18) was used, and it too did not correlate the data with the necessary accuracy. Optimization of the coefficients of these various equations with the input data set led to an uncertainty of $\pm 0.25\%$.

Because a correlation with 0.1% uncertainty was desired, another equation proposed by Guggenheim (7) was evaluated. By analyzing numerous data for a series of light, nonpo-

Table II. Saturation Properties of Propylene

_	-		V ₈ ,	-	•		Vs,
1, °E	Ps, nsia	D_s ,	mol	7, °F	rs, nsia	g/cc	mol
	p31a	g/cc		<u> </u>		6,00	
40	96.03	0.5400	1.2481	91	202.30	0.4922	1.3694
41	97.58	0.5392	1.2501	92	205.00	0.4912	1.3723
42	99.16	0.5383	1.2522	93	207.72	0.4901	1.3752
43	100.75	0.5374	1.2542	94	210.46	0.4891	1.3781
44	102.36	0.5366	1.2562	95	213.24	0.4881	1.3811
45	104.00	0.5357	1.2583	96	216.04	0.4870	1.3841
46	105.65	0.5348	1.2603	97	218.86	0.4859	1.3871
47	107.32	0.5339	1.2624	98	221.72	0.4849	1.3901
48	109.01	0.5331	1.2645	99	224.59	0.4838	1.3932
49	110.72	0.5322	1.2666	100	227.50	0.4827	1.3963
50	112.45	0.5313	1.2687	101	230.43	0.4817	1.3994
51	114.20	0.5304	1.2708	102	233.39	0.4806	1.4026
52	115.97	0.5295	1.2730	103	236.38	0.4795	1.4058
53	117.76	0.5286	1.2751	104	239.40	0.4748	1,4090
54	119.57	0.5277	1.2773	105	242.44	0.4773	1.4122
55	121.40	0.5268	1.2795	106	245.51	0.4762	1.4155
56	123.26	0.5259	1.2817	107	248.61	0.4751	1.4188
57	125.13	0.5250	1.2839	108	251.74	0.4740	1.4222
58	127.03	0.5241	1.2861	109	254.89	0.4728	1,4256
59	128.94	0.5232	1.2884	110	258.07	0.4717	1.4290
60	130.88	0,5223	1.2906	111	261.28	0.4706	1.4324
61	132.84	0.5214	1.2929	112	264.32	0,4694	1.4359
62	134.82	0.5204	1.2952	113	267.79	0.4683	1.4394
63	136.82	0,5195	1.2975	114	271.09	0.4671	1.4430
64	138.85	0,5186	1.2998	115	274.41	0,4650	1,4466
65	140.89	0.5177	1.3021	116	277.77	0,4648	1.4503
66	142.96	0,5167	1,3045	117	281.15	0.4636	1.4539
67	145.05	0.5158	1.3069	118	284.57	0.4624	1.4577
68	147.17	0.5148	1.3092	119	288.01	0.4612	1.4614
69	149.30	0.5139	1.3116	120	291.48	0.4600	1.4653
70	151.46	0.5130	1.3141	121	294,98	0,4588	1,4691
71	153.64	0.5120	1.3165	122	298.52	0.4576	1,4730
72	155.85	0.5110	1.3190	123	302.08	0.4564	1.4770
73	158 08	0.5101	1.3214	124	305.67	0.4551	1.4810
74	160.33	0.5091	1.3239	125	309.29	0.4539	1.4850
75	162.60	0.5082	1.3264	126	312.94	0.4526	1,4891
76	164.90	0.5072	1.3290	127	316.63	0.4514	1,4933
77	167.22	0.5062	1.3315	128	320.34	0.4501	1.4975
78	169.57	0.5053	1.3341	129	324.08	0.4488	1.5018
79	171.94	0.5043	1.3367	130	327.86	0.4476	1.5061
80	174.33	0.5033	1.3393	131	331.67	0.4463	1.5104
81	176.75	0.5023	1.3419	132	335.50	0.4450	1.5149
82	179.19	0.5013	1.3446	133	339.37	0.4436	1.5194
83	181.66	0,5003	1.3472	134	343.27	0.4423	1.5239
84	184.15	0,4993	1.3499	135	347.20	0.4410	1.5286
85	186.67	0,4983	1.3526	136	351.16	0.4396	1.5333
86	189.21	0.4973	1.3554	137	355.16	0.4383	1,5380
87	191.78	0,4963	1.3581	138	359.19	0.4369	1.5429
88	194.37	0.4953	1.3609	139	363.24	0.4355	1.5478
89	196.99	0.4943	1.3637	140	367.33	0.4341	1.5528
90	199.63	0.4932	1.3666				

lar molecules, Guggenheim derived the following expression for the saturated liquid density:

$$D_{S,T} = D_C (1 + 1.75 \,\theta + 0.75 \,\theta^3) \tag{3}$$

Tomlinson (20) has modified this expression for heavier molecules, with pronounced nonspherical symmetry, by replacing D_C with function of θ . The function

$$D_{S,T} = (A_1 + A_2 \theta) (1 + 1.75 \theta + 0.75 \theta^3)$$
(4)

correlated the data very well.

Table IV gives the experimental data and comparisons with values calculated from Equation 4. Table II gives calculated values of the density and of the molar volume of the saturated liquid over the range 30° to 160° F. Table III gives the values of the coefficients used in Equation 4. This correlation leads to a value of 0.5223 g/cc for the density at saturation pressure and 60° F. The corresponding specific gravity at 60/60 is 0.5228.

Compressed Liquid Density

The compressed liquid density of propylene has been the object of three investigations (5, 6, 12), all of which agree to within 0.25% over the normal metering range. This agreement is excellent in view of the widely different methods of investigations used.

A plot of the isothermal P vs. D data was made. Several equations were used in attempts to correlate the data. The isotherm expression

$$D_T = \sum a_i P_T^i \tag{5}$$

with *i* ranging from 2 to 4 proved unsatisfactory. Attempts to derive an expression for the isothermal bulk modulus of the form

$$\beta_T = \sum b_i P_T^i \tag{6}$$

with *i* ranging from 2 to 3 did not give sufficient sensitivity. Finally, the Tait equation was tested and found to be satisfactory. This equation was used in the form

$$v_{P,T} = v_{S,T} \left[1 - C \ln \left\{ \frac{B+P}{B+P_s} \right\} \right]$$
(7)

The $v_{P,T}$ data (5, 6, 12) and the $v_{S,T}$ values from Equation 4 were subjected to standard nonlinear regression analysis to optimize the values of *C* and *B* for each isotherm. For the range from 32° to 140°F, there were 13 experimental isotherms. The parameter B is strongly temperature dependent, whereas C is essentially temperature independent.

The results of the nonlinear regression analysis showed that C could be treated as a true constant. Undoubtedly, this is true because the temperature range under consideration is quite small, on an absolute basis, and occurs well below the critical temperature of propylene.

The parameter B, however, was quite temperature dependent. By treating C as a true constant, it was possible to derive a rather simple expression for the temperature dependence of B. The equation

$$B = \frac{A_3}{T} + \frac{A_4}{T^2} \tag{8}$$

correlated the behavior very well.

The *PVT* surface of propylene, as determined by Farrington and Sage (6), contains a constant bias of nearly 0.20% when compared to that surface as determined by Dittmar et al. (5). The data of Manley and Swift (*12*) cover a much narrower range and generally agree with Farrington and Sage (6) to within 0.15%.

Farrington and Sage (6) claim an accuracy in their data of $\pm 0.3\%$. Dittmar et al. (5) claim a precision in their data of $\pm 0.1\%$ but do not give a figure for accuracy. An analysis of

the individual uncertainties for each of their instruments indicates that their accuracy should be approximately $\pm 0.3\%$ also. Manley (*11*) cites a precision of $\pm 0.1\%$ and accuracy of $\pm 0.4\%$ for the *PVT* data reported (*12*).

Since within the accuracies given all three investigations (5, 6, 12) are identical, there is no reason to weight one study more heavily than the others. As a result, the *PVT* surface described by the correlation presented here lies between the *PVT* surface of Farrington and Sage (6) and the *PVT* surface of Dittmar et al. (5). Combining the data from all three sources (5, 6, 12), there are 13 isotherms containing 56 *PVT*.

Table III. Equations and Conversion Factors

Vapor pressure

Ln
$$P_{S} = A + \frac{B}{T}$$
 (Equation 1)
 $A = 12.60996$ P_{s} , psia
 $B = -4020.0$ T , $^{\circ}R$
Saturated liquid density
 $D_{S,T} = (A_{1} + A_{2}\theta)(1 + 1.75\theta + 0.75\theta^{3})$ (Equation 4)
 $A_{1} = 14.358$ $\theta = (1 - T/T_{C})^{1/3}$
 $A_{2} = 0.8459$ $D_{S,T}$ in lb/ft³
Compressed liquid molar volumes
 $v_{P,T} = v_{S,T} \left[1 - C \ln \left\{ \frac{B + P}{B + P_{s}} \right\} \right]$ (Equation 7)
 $B = \frac{A_{3}}{T} + \frac{A_{4}}{T^{2}}$
 $C = 0.10$ $P_{P,S}$, psia
 $A_{3} = -689.0234 \times 10^{4}$ T , $^{\circ}R$
 $A_{4} = 426.972427 \times 10^{7}$ $v_{P,T}$, $v_{S,T}$ in ft³/lb-mol
Molecular weight = 42.081 $\frac{lb}{lb-mol} = 42.081 \frac{g}{g-mol}$
 $T_{C} = 656.57$ $^{\circ}R$ (from ref. 1)
 v (ft³/lb-mol) = 0.674053/D (g/cc)
 $1 \text{ atm} = 14.696 \text{ psia}$
 $1 \text{ kg/cm^{2}} = 14.223 \text{ psia}$
 D (lb/ft³) = 62.428 D (g/cc)

Table IV. Saturated Liquid Densities for Propylene

<i>т</i> , °F	D _s (exptl), Ib/ft ^a	D _* (calc)," lb/ft³
32 (15)	34.21	34.14
77	31.61	31.60
104	29.87	29.86
122	28.67	28.57
140	27.07	27.10
40 (6)	33.68	33.71
70	32.04	32.02
100	30.14	30.13
130	27.99	27,94
160	25.11	25.14
68.18 (17)	32.25	32.13
80.96	31.40	31.36
90.50	30.74	31.04
100.22	30.16	30.12
110.30	29.47	29.43
121.73	28.60	28.58
131.72	27.82	27.80
139.37	27.16	27.16
147.92	26.36	26.37

^a Calculated using Equation 4. See Table III for coefficients. ^b Numbers in parentheses are literature references.

points. These data cover the range from 32° to 140°F, from over 1600 psia to saturation pressure. When Equations 2, 4, 6, and 7 are combined to calculate v_{PT} values, it is possible to reproduce the 56 input data points with an average deviation of $\pm 0.09\%$.

Comparisons of the $v_{P,T}$ data used as input and those values calculated using Equation 7 are given in Table V. Values of the parameters A_3 and A_4 are included in Table III.

A recent Russian publication (22) received after this work was completed also contains a review of the volumetric properties of liquid propylene. Where the same data sets are evaluated, their conclusions as to their quality are similar to those presented here. However, the Russian monograph does include details of some experimental data not used in this work. Their results, presented in tabular form, were, for the most part, obtained by graphical methods. No analytical correlations are presented.

Volume Correction Factors

In correcting a metered volume of a liquid hydrocarbon to standard conditions, it is necessary to make two types of corrections. One is for specific gravity, and the other is for compressibility. Mathematically, this can be expressed as:

$$V_{P_a,T_a} = V_{P,T} \cdot f_g \cdot (1 + f_b \cdot \Delta P) \tag{9}$$

The use of this expression implies the use of at least three separate factors; one for f_g , another for f_b , and still another for the vapor pressure, P_s , so that ΔP can be calculated.

An alternative approach is to use a composite volume correction factor which combines both the gravity and compressibility corrections into a single factor. Mathematically, this is expressed as:

$$V_{P_0,T_0} = f_c \cdot V_{P,T}$$
 (10)

To complete the calculations, only one table for f_c values is necessary. In terms of molar volume,

$$f_c = \frac{V_{P_o, T_o}}{V_{P, T}} \tag{11}$$

where $v(P_o, T_o)$ is the molar volume at the reference conditions. Since the reference conditions usually chosen are saturation pressure and 60°F, $v(P_o, T_o)$ can be determined from data for the density of the saturated liquid using Equation 4.

e V. Propylene C	ompressed Liquid M	olar volumes			
P, psia	v _{P,T} (exptl), ft³/lb-mol	v _{P,T} (calc),ª ft³/lb-mol	P, psia	v _{P,T} (exptl), ft³/lb-mol	v _{P,T} (calc) ft³/lb-mo
140°F (5) ⁶	B = 38	31.0429°	70°F (6)	B = 222	23.0823
469.4	1.5319	1,5330	1250	1.2629	1.2639
910.3	1.4653	1,4683	1500	1.2540	1.2547
1564.5	1.4043	1.4047	70°F (12)	B = 223	30.9173
130°F (6)	B = 60	08.8151	300	1.3070	1.3061
400	1,4951	1,4946	600	1.2920	1.2913
500	1.4817	1,4801	1000	1.2750	1.2738
600	1.4690	1.4670	1600	1.2540	1.2513
1000	1,4270	1.4235	68°E (5)	B 22	79 8340
1250	1.4042	1.4015	384.0	1 2062	1 2070
1500	1.3849	1,3824	364.U 906.0	1.2903	1.2970
122°E (5)	в — 7	71 0558	1550.3	1.2/18	1.2/40
341.4	1,4653	1.4672	50°E (5)	в — 2917 5741	
924.5	1,4043	1.4053	597 A	1 2482	1 2/100
104°F (5)	в == 12	15.2501	1308.5	1.2256	1.2499
284.5	1.4043	1.4047	40°F (6)	B = 331	16.1887
1009.8	1.3481	1.3491	200	1 2456	1 2444
1465.0	1.3217	1.3229	300	1 2422	1 2409
100°E (6)	в — 13	20 0000	400	1 2389	1 2375
100 1 (0)	1 2000	1 2000	500	1 2355	1 2342
300	1.3899	1,3899	600	1 2321	1 2309
400	1.3819	1.3810	1000	1,2203	1,2188
500	1,3/39	1.3/30	1250	1,2128	1,2118
1000	1.3000	1,3002	1500	1.2060	1.2051
1250	1.3268	1.3255	40°E (12)	P 223	20 0100
1500	1.3138	1.3125	401 (12)	B = 332	1 2400
	- 17		300	1.2440	1.2409
86°F(5)	B == 1/	13.4898	600	1.2330	1.2309
284.5	1.3481	1.3488	1000	1.2210	1.2188
696.9	1.3217	1.3233	1000	1.2000	1.2025
1209.0	1.2963	1.2973	32°F (5)	B = 364	45.7380
70°F (6)	B = 22	223.0823	284.5	1.2256	1.2261
200	1.3108	1.3114	1066.7	1.2037	1.2038
300	1.3054	1.3061	1948.6	1.1826	1.1826
400	1.3003	1.3010	^a Value calculated	using smoothed value	s of 8: See Equ
500	1.2953	1.2960	7 and Table III for c	oefficients, ^b Numbers	s in parenthes
600	1.2906	1.2913	literature references	^c B determined by	nonlinear regr

tion are literature references. ^eB determined by nonlinear regression analysis on data listed.

1.2734

1.2738

1000

Table VI, Liquid Propylene	Molar Volumes	(ft³/lb-mol)
----------------------------	---------------	--------------

	Pressure, psia							
τ,°F	400	600	800	1000	1200	1400	1600	<i>τ</i> , °F
40	1.2375	1.2309	1.2247	1.2188	1.2131	1.2077	1.2025	40
45	1,2472	1.2402	1.2336	1.2273	1.2214	1.2157	1.2102	45
50	1.2572	1.2498	1.2428	1.2361	1.2298	1.2238	1.2180	50
55	1.2676	1.2596	1.2522	1.2451	1.2385	1.2321	1.2261	55
60	1.2783	1.2698	1.2619	1.2544	1.2473	1.2406	1.2342	60
65	1.2894	1.2803	1.2719	1.2639	1.2564	1.2494	1.2426	65
70	1.3009	1.2912	1.2822	1.2737	1.2658	1.2583	1.2512	70
75	1.3129	1.3025	1.2928	1.2838	1.2754	1.2675	1.2600	75
80	1.3254	1.3142	1.3039	1.2943	1.2853	1.2769	1.2690	80
85	1.3385	1.3264	1.3153	1.3051	1.2955	1.2866	1.2783	85
90	1.3521	1.3391	1.3272	1.3162	1.3061	1.2966	1.2878	90
95	1.3665	1.3523	1.3395	1.3278	1.3170	1.3069	1.2976	95
100	1.3815	1.3662	1.3524	1.3398	1.3282	1.3176	1.3076	100
105	1.3975	1.3807	1.3658	1.3522	1.3399	1 3285	1.3180	105
110	1.4144	1.3961	1.3798	1.3652	1.3520	1.3399	1.3287	110
115	1.4324	1.4122	1.3946	1.3788	1.3646	1.3517	1.3398	115
120	1.4516	1.4294	1.4101	1.3930	1.3777	1.3639	1.3513	120
125	1.4723	1.4476	1.4265	1.4079	1.3915	1.3766	1.3632	125
130	1.4947	1.4671	1.4438	1.4236	1.4058	1.3899	1.3755	130
135	1.5192	1.4881	1.4623	1.4402	1.4210	1.4038	1.3884	135
140	1.5462	1.5108	1.4821	1.4579	1.4369	1.4184	1,4019	140

The compressed liquid molar volume, $v_{P,T}$, is then determined from the Tait equation (Equation 7) with the values of $V_{S,T}$ and Ps obtained from the saturated liquid density (Equation 4) and the vapor-pressure data (Equation 2), respectively. Values of VPT calculated at evenly spaced temperature and pressure intervals within the range of the correlation are given in Table VI. These values along with the value for $\vec{v}(P_o, T_o)$ can then be used to obtain the factor, fc, necessary to correct a measured volume of liquid propylene to standard conditions.

Nomenclature

- f_b = isothermal compressibility correction factor, $-1/v_S \tau$ $(\Delta v / \Delta P)$
- $f_c = \text{composite volume correction factor, } [v(P_o, T_o)]/(v_{P,T})$
- f_q = specific gravity reduction factor, $[v(S,T_o)]/(v_{S,T})$
- P =pressure, psia

 $T = \text{temperature}, \, {}^{\circ}\text{R} \left(T = 459.67 + {}^{\circ}\text{F}\right)$

 $V_{P,T}$ = volume at conditions P,T

- $v_{P,T}$ = molar volume at conditions P,T
- θ = temperature function $(1 T/T_c)^{1/3}$

Subscripts

- C = critical property
- o = standard reference state
- P = pressure
- T = temperature
- S = saturation property

Literature Cited

- "API Technical Data Book," API Division of Refining, 2nd ed., 1971.
- (2) Canjar, L. N., Goldman, M., Marchman, H., Ind. Eng. Chem., 43 (5), 1186-93 (1951). Cragoe, C. S., NBS-LC 763, November 23, 1943.
- (3)
- Dean, M. R., and Legatski, T. W., Ind. Eng. Chem. (Anal. Ed.), 16 (1), (4) 7-8 (1944).
- (5) Dittmar, P., Schulz, F., Strese, G., Chem. Ing. Technol., 34 (6), 437-41 (1962).
- (6) Farrington, P. S., Sage, B. H., Ind. Eng. Chem., 41 (8), 1743 (1949).
- Graggenheim, E. A., J. Chem. Phys., **13**, 253–61 (1945).
 Hanson, G. H., Trans. Am. Inst. Chem. Eng., **42**, 959–73 (1946).
 Hanson, G. H., Hogan, R. J., Nelson, W. T., Cines, M. R., Ind. Eng.

- (a) Hallson, G. H., Hogan, H. J., Nelson, W. T., Ches, M. R., *Ind. Eng. Chem.*, **44** (3), 604–09 (1952).
 (10) Maass, O., Wright, C. H., *J. Am. Chem. Soc.*, **43**, 1098–111 (1921).
 (11) Manley, D. B., PhD thesis, University of Kansas, Lawrence, Kan., 1970.
 (12) Manley, D. B., Swift, G. W., *J. Chem. Eng. Data*, **16** (3), 301–07 (1971).
 (13) Marchman, H., Prengle, H. W., Motard, R. L., *Ind. Eng. Chem.*, **41** (11), 2658–60 (1949).
- (14) Michels, A., Wassenaar, T., Louwerse, P., Lunbeck, R. J., Wolkers, G. (15) Morecroft, D. W., J. Inst. Petrol., 44, 433–44 (1958).
 (15) Morecroft, D. W., J. Inst. Petrol., 44, 433–44 (1958).
 (16) NGPA Technical Committee, Ind. Eng. Chem., 34 (10), 1240–43 (1942).
 (17) Pall, D. B., Maass, O., Can. J. Res., 14B, 96–104 (1936).
 (18) Rackett, H. G., J. Chem. Eng. Data, 15 (4), 514–17 (1970).
 (19) Reamer, H. H. Song, P. J. Inst. Chem. Chem. Commun. (19) Research (19) Song P. J. (

- Reamer, H. H., Sage, B. H., *Ind. Eng. Chem.*, **43** (7), 1628-34 (1951).
 Tomlinson, J. R., NGPA Technical Publication TP-1, "Liquid Densities of Ethane, Propane, and Ethane–Propane Mixtures," February 1971.
- (21) Vaughan, W. E., Graves, N. R., Ind. Eng. Chem., **32** (9), 1252–56 (1940). (22) Voshchenka, D. M., Voinov, Yu. F., Voityuk, B. V., Dregulyas, E. K., Ne-
- duzhii, I. A., Provotar, V. P., Soldatenko, Yu. A., Storozhenko, E. I., Khmara, Yu. I., "Thermodynamic and Transport Properties of Ethylene and Propylene," State Committee of Standards of the Soviet Ministry, USSR, State Office of Standards and Reference Data, Series: Monograph No. 8, 1971; Transl. from the Russian and published by the Office of Standard Reference Data, NBS, U.S. Department of Commerce, Washington, D.C., June 1972.

Received for review October 17, 1974. Accepted April 2, 1975.